id
int64
-30,985
55.9k
text
stringlengths
5
437k
32,286
a^{c/2}\cdot a^{c/2} = a^c
39,192
A\cdot O = O = O\cdot A
-18,496
5 \times r + 5 \times (-1) = 8 \times (5 \times r + 4) = 40 \times r + 32
510
((-1) + k)! = \left((-1) + k\right) (k + 2(-1))!
18,497
2^{\frac13} + 4^{1/3} = 2^{2/3} + 2^{\frac{1}{3}}
3,692
q x + x t = x\cdot (q + t)
12,245
\frac{1}{2} = 3/4 \cdot \frac13 \cdot 2 + \dfrac{1}{4} \cdot 0
-4,294
\dfrac{1}{x\cdot 9} = 1/(9\cdot x)
-635
e^{\frac{17}{12} \cdot \pi \cdot i \cdot 3} = \left(e^{17 \cdot \pi \cdot i/12}\right)^3
21,615
(1 - x + x^2)^{3n} \left(1 + x\right)^{3n} = ((1 - x + x^2) (1 + x))^{3n} = (1 + x^3)^{3n}
-5,488
\frac{t\cdot 2}{(t + (-1))\cdot \left(t + 4\cdot (-1)\right)} = \frac{2\cdot t}{t^2 - t\cdot 5 + 4}\cdot 1
39,883
\sin\left(-a\right) = -\sin(a)
15,526
4x^3 - c^3 = 2xc + 2
11,474
u = x^2\cdot \alpha\Longrightarrow \sqrt{\frac{u}{\alpha}} = x
5,468
1 + 3 \cdot x^1 + 5 \cdot x^2 + \dotsm = \frac{2 \cdot x}{(x + (-1))^2} - \frac{1}{x + \left(-1\right)} = \frac{x + 1}{(x + \left(-1\right))^2}
15,922
\frac{a^f}{a^d} = a^{f - d}
7,388
\left(5 + 7 \cdot \left(-1\right)\right) \cdot (3 + 5) = -16
-194
\dfrac{7!}{6! (6 (-1) + 7)!} = \binom{7}{6}
9,947
\mathbb{E}(x) \mathbb{E}(C) = \mathbb{E}(Cx)
20,651
\left\lfloor{y^2 + (-1)}\right\rfloor = (-1) + \left\lfloor{y \cdot y}\right\rfloor
11,368
\sin(Z + \alpha) = \cos{\alpha} \cdot \sin{Z} + \sin{\alpha} \cdot \cos{Z}
12,319
f^l = f^{l + \left(-1\right)} \cdot f
-7,381
4/13 \cdot 5/14 = \frac{10}{91}
36,521
2! \times \binom{4}{2} = 2 \times 6 = 12
4,493
12/10\cdot (-\dfrac{15}{10} + 3) = 1.8
10,847
1/16 + \dfrac19 = \frac{9}{144} + \frac{1}{144} \cdot 16 = 25/144
30,977
K = K\cdot e\Longrightarrow e \in K
15,867
6^3 - 5^2 \cdot 5 = 216 + 125\cdot (-1) = 91
32,788
\frac{3*\pi}{4}*1 = \pi - \dfrac{\pi}{4}
-10,642
\frac{9}{25 + s \cdot 15} \cdot \frac14 \cdot 4 = \frac{36}{100 + s \cdot 60}
3,278
\tfrac{1}{32} = \frac{1/2}{2}*1/8
1,326
\left(n + 1\right)! = (n + 1)\times n! < (n + 1)\times n^n = n^{n + 1} + n^n \lt n^{n + 1} + n^{n + 1} = 2\times n^{n + 1} < (n + 1)^{n + 1}
27,496
\sin(\pi\cdot y) = 2\cdot \cos(\pi\cdot y/2)\cdot \sin\left(\pi\cdot y/2\right)
-9,357
-p*20 + 50 = -p*2*2*5 + 2*5*5
8,644
\sin(\pi) \cdot \cos(0) \cdot 2 = 0
4,389
71 = f \cdot 2 + g_1 \Rightarrow g_1 = 71 - 2 \cdot f = 71 - 2 \cdot (-4) = 71 + 8 = 79
19,390
0 = -k + k \times x^2 - x^2 + 1 \Rightarrow (k + (-1)) \times ((-1) + x \times x) = 0
27,111
\left(-(x + 1) + x - 3 \cdot (x + \left(-1\right)) + 2 \cdot (2 \cdot (-1) + x) = 2 + x\Longrightarrow x + 2 = 2 \cdot (-1) - x\right)\Longrightarrow x = -2
17,487
8 = 3 \cdot (2^{\beta + (-1)} + 3 \cdot (-1)) - 2^{\beta + \left(-1\right)} + (-1) = 2^{\beta} + 8 \cdot (-1)
9,445
4^n + n^4 = 2^n \cdot 2^n + (n^2)^2 = (n^2 + 2^n)^2 - 2 \cdot 2^n \cdot n^2
17,223
(\frac{3}{16} + 3/16)^{77} = \left(6/16\right)^{77}
45,687
1 + 0 = 1 - 1 + 1
32,603
x \cdot E_\pi = x \cdot E_\pi
4,980
\sin^2(\vartheta) = \left(-\cos(\vartheta*2) + 1\right)/2
-1,364
\frac{\frac12\times 9}{(-2)\times 1/5} = -\frac{5}{2}\times 9/2
5,914
\left(q - \tfrac12\right)^2 + \frac34 = q^2 - q + 1
9,639
(a\cdot b)^2 = b \cdot b\cdot a \cdot a
4,875
\sum_{i=1}^x \left(i + 1\right)\cdot D_i^2\cdot ((-1) + i) + \sum_{i=1}^x D_i^2 = \sum_{i=1}^x i^2\cdot D_i^2
26,820
\left((-6) + 9 \cdot B = 3\Longrightarrow 3 + 6 = 9 \cdot B\right)\Longrightarrow B = 1
5,177
8\cdot z = 5\cdot z + 3\cdot z
24,544
-2 + 2\cdot \left(-1\right) + 2\cdot (-1) = (-3)\cdot 2
-152
\dfrac{1}{4! \cdot 2!} \cdot 6! = 15
39,097
\left(a - x\right)^2 = -(-g + h)^2\Longrightarrow (-g + h)^2 + (-x + a)^2 = 0
-30,575
-3\cdot (x \cdot x + 5\cdot \left(-1\right)) = 15 - x^2\cdot 3
-19,578
3/8\cdot 8/7 = \frac{1/7}{8\cdot \frac13}8
26,822
\frac34 + \frac34 = \frac{3}{2}
-3,653
\frac{18\cdot p^4}{21\cdot p^5}\cdot 1 = 18/21\cdot \tfrac{1}{p^5}\cdot p^4
17,012
\frac{1}{24} \cdot 18 = 3/4
-4,158
x \cdot x/6 = x^2/6
3,729
\frac{X^2}{4} + (-1) = (X + 2)\cdot \left(X + 2\cdot (-1)\right)/4
40,038
0.99 = (-1)*0.01 + 1
10,760
2\cdot \beta + 1 + 2\cdot x + 1 = (x + \beta + 1)\cdot 2
21,944
2^{66} + (-1) = (1 + 2^{33})*(2^{33} + (-1))
29,890
\dfrac{1}{(x + \left(-1\right))^2}*(x + (-1)) = \frac{1}{x + (-1)}
3,051
x - y < 2\Longrightarrow y \gt 2 \times (-1) + x
12,869
\left(c^3 = h^3 \Rightarrow c^9 = h^9\right) \Rightarrow c^2 = h^2
10,118
\sin{\beta}\cdot \sin{x}\cdot 2 = -\cos(x + \beta) + \cos(x - \beta)
274
{\frac12 \choose j} = \dfrac{1}{2 \cdot (1/2 + \left(-1\right)) \cdot \left(\frac12 + 2 \cdot (-1)\right) \cdot \cdots \cdot (1/2 - j + 1) \cdot j!}
20,917
\cos\left(e + b\right) = -\sin{e} \cdot \sin{b} + \cos{b} \cdot \cos{e}
10,768
d > c \Rightarrow c \cdot c = c\cdot c < c\cdot d < d\cdot d = d^2
-9,122
-20\cdot s = -s\cdot 2\cdot 2\cdot 5
7,542
(y*f) * (y*f) = (y*f)^2
-25,818
\dfrac{5}{4\cdot 10} = 5/40
20,452
z \cdot z = (z + (-1)) \cdot (z + (-1)) + z + z + (-1)
-404
\frac{51}{2}\cdot \pi - 24\cdot \pi = \pi\cdot \frac32
-1,375
\frac{7}{5}\cdot (-\frac81) = \frac{\frac{1}{5}\cdot 7}{1/8\cdot (-1)}
12,170
\sqrt{\sqrt{3}\cdot 2 + 4} = \sqrt{(\sqrt{3} + 1)^2}
620
(4 + 2 + (-1))\cdot (4 + \left(-1\right) + 2 + \left(-1\right)) = 5\cdot 4 = 20
-611
-\pi \cdot 10 + \frac{143}{12} \cdot \pi = 23/12 \cdot \pi
16,924
\frac{1}{2} (12 + 12 + 12 (-1) + 12 (-1)) = 0
1,317
1/20881492632000 = \frac{8!}{26!} \cdot 12!
35,189
1/(b\cdot x) = \frac{1}{b\cdot x}
4,302
x + f \cdot f\cdot M\cdot 2 = M\cdot f^2 + x + f^2\cdot M
9,536
0 = 1 + x + x \cdot x + \cdots + x^{r + (-1)} = \dfrac{1}{x + (-1)}\cdot \left(x^r + (-1)\right) \Rightarrow 1 = x^r
25,279
\cos(-\delta + \pi) = -\cos(\delta)
-22,200
\left(t + 6\right)\cdot (4\cdot \left(-1\right) + t) = 24\cdot \left(-1\right) + t^2 + 2\cdot t
39,538
\cos{z}\cdot \sin{z}\cdot 2 = \sin{z\cdot 2}
-16,954
-8 = 20\cdot z^2 + 4\cdot z - 8\cdot \left(-5\cdot z\right) - -8 = 20\cdot z^2 + 4\cdot z + 40\cdot z + 8
36,377
|l^2| = |l|^2 = |l|
-20,079
-1/4 \cdot \dfrac{(-4) \cdot q}{q \cdot (-4)} = \frac{4 \cdot q}{\left(-16\right) \cdot q}
-17,040
-p = -p\cdot (-p) + -p\cdot 6 = p^2 - 6\cdot p = p \cdot p - 6\cdot p
21,573
y = \frac{1}{2}\cdot (4 \pm \sqrt{16 + 20\cdot (-1) + 4\cdot y}) = (4 \pm \sqrt{4\cdot y + 4\cdot (-1)})/2 = 2 \pm \sqrt{y + (-1)}
36,153
144 = (h + d)^2 = h^2 + d^2 + 2 \cdot h \cdot d = 100 + 2 \cdot h \cdot d
-28,407
x^2 - 14 \cdot x + 58 = x^2 - 14 \cdot x + 49 + 9 = \left(x + 7 \cdot \left(-1\right)\right)^2 + 9 = (x \cdot (-7))^2 + 3^2
13,468
(3*f + 2007)^2 = (3*(f + 669))^2 = 9*(f + 669)^2
3,135
(y + 1)^{l + k} = (1 + y)^k \cdot (y + 1)^l
42,219
1 - f = 0 \implies 1 = f
-5,911
\dfrac{-12 m + 12 (6 (-1) + m) + (m + 2 \left(-1\right)) \cdot 6}{(m + 6 (-1)) (m + 2 (-1)) \cdot 12} = \frac{\left(6 (-1) + m\right) \cdot 12}{(2 (-1) + m) \left(6 \left(-1\right) + m\right) \cdot 12} + \frac{6}{\left(2 (-1) + m\right) (m + 6 (-1)) \cdot 12} (2 \left(-1\right) + m) - \frac{m \cdot 12}{12 \left(m + 2 (-1)\right) (m + 6 (-1))}
-28,995
0 = \dfrac12 \cdot \left(-3 + 3\right)
41,041
\frac14 = \frac18 + 1/8