id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
26,427 | -15/2 + 7 = -1/2 |
18,142 | \frac{1}{2}*(1 + \cos{2*y}) = \cos^2{y} |
-1,592 | -7/6 \cdot \pi + \frac{11}{12} \cdot \pi = -\frac{\pi}{4} |
47,342 | \tan{\frac{\pi}{4}} = 1 |
17,192 | l*x*\beta = \beta*l*x |
-4,843 | 6.30 \times 10^{-1} = {6.30 \times 10^{-1}} \times 10^{2} = 6.30\times 10^{1} |
-10,769 | 5/5 \dfrac{1}{8 (-1) + 10 q} \left(q\cdot 3 + 2\right) = \frac{1}{50 q + 40 (-1)} (15 q + 10) |
41,949 | E_1 \cap (B \cup E_2) = (B \cap E_1) \cup (E_1 \cap E_2) = E_2 \cup \left(B \cap E_1\right) |
-9,188 | 20 - n \cdot 24 = 2 \cdot 2 \cdot 5 - n \cdot 2 \cdot 2 \cdot 2 \cdot 3 |
7,157 | 10 \cdot 32 = 320 |
293 | 20 - 24 \cdot z + 5 \cdot z = 7 \Rightarrow 20 - 19 \cdot z = 7 |
19,455 | \frac{40}{120} = \frac{1}{3} = \frac{2}{6} |
-3,096 | 3^{1 / 2}\cdot 5 + 4\cdot 3^{1 / 2} = 3^{1 / 2}\cdot 25^{1 / 2} + 16^{1 / 2}\cdot 3^{\frac{1}{2}} |
-1,418 | \frac{10}{14} = 10\cdot \tfrac{1}{2}/(14\cdot 1/2) = \tfrac{5}{7} |
54,688 | \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\implies \frac{1}{x^5}+\frac{1}{y^5}+\frac{1}{z^5}=\frac{1}{(x+y+z)^5} |
3,845 | y + 2 = 4 + y + 2(-1) = 4\left(1 + (y + 2(-1))/4\right) |
1,477 | 4\cdot l + 2 = (2\cdot l + 1)\cdot 2 + 0 |
10,650 | R = q^3\Longrightarrow R^{1/3} = q |
-10,560 | \dfrac33 \cdot (-\frac{10}{20 \cdot \left(-1\right) + z \cdot 5}) = -\frac{30}{z \cdot 15 + 60 \cdot \left(-1\right)} |
-27,503 | 2\cdot 2\cdot 3\cdot w\cdot 5 = w\cdot 60 |
45,659 | -\frac{1}{2} + \frac{\sqrt{17}}{2} = (-1 + \sqrt{17})/2 |
17,192 | n*\alpha*\beta = \beta*n*\alpha |
-7,626 | \tfrac{1}{2 - i}(i*13 - 1) \tfrac{2 + i}{i + 2} = \dfrac{-1 + i*13}{-i + 2} |
25,684 | \binom{a}{-b + a} = \binom{a}{b} |
8,818 | \frac{1}{250}\cdot 203 = \dfrac{27}{30^4}\cdot 30\cdot 29\cdot 28 |
-29,565 | \frac1z \times (4 + 2 \times z^4 + 5 \times z) = \frac4z + 2 \times z^4/z + \frac{5}{z} \times z |
28,526 | \frac{2}{2} \times 2 = 2 |
9,535 | (\frac{20}{5})^{\dfrac{15}{10}} = 8 |
4,040 | (\left(-1\right) + q) \cdot \left((-1) + x\right) + (-1) = x \cdot q - x - q |
47,401 | 2^{2 \cdot 2^2} = 256 |
30,723 | \left(1.75 - 0.5 \cdot y = -y + 2 \implies 0.25 = 0.5 \cdot y\right) \implies y = 0.5 |
-10,111 | -\tfrac{19}{20}\cdot \left(-\frac{7}{8}\right) = ((-19)\cdot (-7))/(20\cdot 8) = \frac{1}{160}\cdot 133 |
29,083 | \dfrac{10}{x} = 20/(2x) |
23,200 | 2 \cdot 2 \cdot 2^3 = 32 |
21,481 | f \cdot e_2 \cdot e_1 = e_2 \cdot e_1 \cdot f = e_1 \cdot f \cdot e_2 |
-20,343 | \frac{p\cdot 3}{30\cdot (-1) + 12\cdot p} = 3/3\cdot \tfrac{1}{4\cdot p + 10\cdot (-1)}\cdot p |
3,487 | x\cdot (-\frac{x}{x} + 1) = 0 \implies 1 = x/x |
16,576 | (a + b)^3 = b \cdot b^2 + a^3 + 3\cdot a^2\cdot b + 3\cdot a\cdot b^2 |
-22,047 | \dfrac72 = \dfrac{1}{10}*35 |
25,137 | 2 = \sqrt{(-1) + 2} \cdot 2 |
9,356 | \cos(\theta + \alpha) = \cos{\theta}\cdot \cos{\alpha} - \sin{\alpha}\cdot \sin{\theta} |
22,243 | a^2 - 4 \cdot a + 4 = (a + 2 \cdot (-1))^2 |
21,862 | \left(V \cdot A = x\Longrightarrow x/A = A \cdot V/A\right)\Longrightarrow V \cdot A/A = x/A |
-746 | -\pi*20 + 121/6*\pi = \pi/6 |
32,661 | 4k + 2 = 2(2k + 1) |
-19,003 | 1/9 = \tfrac{C_x}{36 \pi}\cdot 36 \pi = C_x |
37,743 | 1 = (1 - 2^{1 / 2})^{2 \cdot 0} |
35,606 | \tan{\beta} = \dfrac{\sin{\beta}}{\cos{\beta}} \implies \tan{\beta} |
18,112 | ( a', e) \left( a, e\right) = ( aa', e) |
20,821 | x^2 - f^2 = (x - f) \cdot (x + f) |
-1,755 | \pi\cdot \tfrac{5}{4} - \dfrac{\pi}{3} = 11/12\cdot \pi |
30,986 | \binom{x}{t} = \binom{x}{x - t} |
54,430 | \sin\left(c - \dfrac{3 \pi}{2}\right) = \sin(-(\dfrac{3 \pi}{2} - c)) = -\sin(\frac{\pi}{2} 3 - c) = \cos(c) = \cos(c) |
783 | 6!/(2!\cdot 3!) = {3 \choose 2}\cdot {1 \choose 1}\cdot {6 \choose 3} |
12,787 | f^2 = \left(6 + f\right) \left(12 + f\right)\Longrightarrow f = -4 |
-28,407 | x^2 - 14 \cdot x + 58 = x^2 - 14 \cdot x + 49 + 9 = (x + 7 \cdot (-1))^2 + 9 = \left(x \cdot (-7)\right)^2 + 3^2 |
-11,977 | 26/45 = G/(18\cdot \pi)\cdot 18\cdot \pi = G |
29,847 | 16^{\frac{3}{4}} = (16^3)^{\tfrac14} = (2^{4^3})^{\frac14} = 2^3 |
2,785 | 5 \cdot \pi \cdot r^2 = 9 \cdot \pi \cdot r^2 - 4 \cdot r^2 \cdot \pi |
-4,445 | -\tfrac{2}{1 + z} - \frac{1}{4 + z}\cdot 3 = \frac{1}{z^2 + z\cdot 5 + 4}\cdot (11\cdot (-1) - 5\cdot z) |
29,937 | 49 = ( a + d, a + d) = 16 + 2 \cdot ( a, d) + 25 |
-11,527 | -12 i - 16 + 0(-1) = -16 - 12 i |
28,581 | \frac{k + \left(-1\right)}{k + 1} = \frac{k + 1 + 2*(-1)}{k + 1} = 1 - \frac{1}{k + 1}*2 |
-21,025 | \tfrac{15 \cdot y + 21 \cdot (-1)}{-y \cdot 3 + 18 \cdot (-1)} = \dfrac{1}{6 \cdot (-1) - y} \cdot (y \cdot 5 + 7 \cdot (-1)) \cdot 3/3 |
-20,448 | \dfrac{12 \cdot (-1) + 4 \cdot z}{z \cdot 4 + 12} = \frac44 \cdot \dfrac{z + 3 \cdot (-1)}{z + 3} |
-6,556 | \frac{1}{z^2 - 12 \cdot z + 27} \cdot 3 = \frac{3}{\left(3 \cdot \left(-1\right) + z\right) \cdot \left(9 \cdot (-1) + z\right)} |
-4,519 | \frac{20\cdot (-1) + 8\cdot z}{z^2 - 6\cdot z + 5} = \dfrac{1}{5\cdot (-1) + z}\cdot 5 + \dfrac{3}{z + (-1)} |
5,943 | (10^3 - 9^2 * 9*2 + 8^3)/6 = 9 |
-21,161 | \dfrac{1}{4} = \dfrac{2}{8} |
6,199 | k + (-1) = k\cdot 2 - k + (-1) |
26,764 | 2\sqrt{3} = p/r + (-1) = \left(p - r\right)/r |
33,955 | 1/28 + 1/14 + \frac{1}{7} + 1/4 + \dfrac{1}{2} = \frac{1}{28}(1 + 2 + 4 + 7 + 14) = 1 |
11,097 | \tan^3(\tan^{-1}(x)) = \tan(\tan(\tan(\tan^{-1}(x)))) = \tan(\tan(x)) = \tan^2(x) |
6,612 | w_1*x + w_2*e + w_3*f = (w_3 + w_1 + w_2)*f + w_1*(-f + x - e + f) + (e - f)*(w_1 + w_2) |
966 | 5 \cdot (z + 2 \cdot (-1)) = 10 \cdot (-1) + 5 \cdot z |
26,155 | \tan{f} = -\tan(\pi - f) |
8,790 | 4 \cdot (x - d)^2 = 4 \cdot d^2 - d \cdot x \cdot 8 + 4 \cdot x \cdot x |
-28,869 | 0.01\cdot 20/(60\cdot 0.01) = \frac{1}{3} |
11,095 | x^2 + a^2 + x \cdot a \cdot 2 = (a + x)^2 |
390 | \frac{\mathrm{d}}{\mathrm{d}z} (e^{2*z + (-1)} + 1) = 2*e^{z*2 + (-1)} |
31,280 | W = X \implies W = X |
31,497 | \N = \left\{2, 0, 1, \dots\right\} |
38,435 | \sqrt{124} = \sqrt{2^2\cdot 31} = \sqrt{2^2} \sqrt{31} = 2\sqrt{31} |
16,481 | (1 + x)^2 + 24 = 25 + x^2 + 2 \cdot x |
21,932 | x^5 = n\times x^2 - m\times x^3 = n\times x^2 - m\times n + m \times m\times x |
2,280 | (-z + y)^2 = z^2 \cdot z \implies 4 - z^3 + y^2 - 2zy = 0 |
21,978 | \left(a + b \times i\right) \times (m + n \times i) = a \times m - b \times n + (a \times n + b \times m) \times i = a \times m - b \times n + i |
21,270 | 2 \times (-1) + x_2 = x_2 |
11,563 | x*2 + y*3 + 4*\beta = 24 \Rightarrow y*3 = -\beta*4 + 24 - x*2 |
5,122 | \tan{x} = \frac{\sin{x}}{\cos{x}} = \sqrt{1 - \cos^2{x}}/\cos{x} |
-5,159 | 0.81 \times 10^4 = 10^{6 + 2 \times (-1)} \times 0.81 |
-20,071 | \frac{36 + 32\cdot y}{27 + y\cdot 24} = \frac{y\cdot 8 + 9}{8\cdot y + 9}\cdot 4/3 |
-22,283 | 70 (-1) + y^2 - 3y = (y + 7) (y + 10 \left(-1\right)) |
-29,877 | d/dy y^l = y^{(-1) + l} l |
51,372 | 2 + 2 + 2 + 2 + 2 + 4 = 14 |
21,961 | \left\{1, 3, 27, 5, 4, 0, 2, \dotsm\right\} = \mathbf{Z}_{28} |
-10,628 | -\frac{30}{100 + q\cdot 60} = \frac{10}{10}\cdot (-\frac{3}{q\cdot 6 + 10}) |
-1,646 | 13/12 \times \pi = 0 + 13/12 \times \pi |
22,688 | n! = n*(n + (-1))! = n*(n + (-1)) \left(n + 2(-1)\right)! |
-20,024 | \tfrac{r\cdot 18 + 72}{-r\cdot 4 + 16\cdot \left(-1\right)} = \dfrac{1}{8\cdot (-1) - 2\cdot r}\cdot (-2\cdot r + 8\cdot (-1))\cdot (-\frac{1}{2}\cdot 9) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.