id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
23,498 | \mathbb{E}[Y*X] = \mathbb{E}[X]*\mathbb{E}[Y] |
23,775 | 1.3245 + \frac{1}{((-1) + 10^3)*10^4} 456 = 1.3245 + 456/(999*10000) |
12,216 | \frac{1}{x + 2} = \frac{(x + 1)!}{(x + 2)!} |
-20,552 | -\dfrac49*\frac{1}{x + 6}*\left(6 + x\right) = \frac{-4*x + 24*(-1)}{9*x + 54} |
15,240 | g + A = \sum_{i=1}^m r_i\cdot (g_i + A) = \sum_{i=1}^m r_i\cdot g_i + A |
2,822 | (-\tfrac{3}{2} + x)\cdot 2 = 3\cdot \left(-1\right) + x\cdot 2 |
37,622 | 0 = \sin{π\cdot 2} |
-3,335 | (3 + 1)*3^{1/2} = 3^{1/2}*4 |
28,587 | B\cdot h_{t\cdot x} = h_{x\cdot t}\cdot B |
13,190 | EC^2 = 16 + 9 + 6(-1) = 19 rightarrow \sqrt{19} = EC |
-18,248 | \dfrac{x \cdot (x + 10)}{\left(x + 9\right) \cdot (10 + x)} = \frac{x^2 + x \cdot 10}{x^2 + 19 \cdot x + 90} |
-263 | \dfrac{6!}{3! (6 + 3(-1))!} = \binom{6}{3} |
45,104 | \frac{153}{3} = 51 |
-23,663 | \frac15 \cdot 3/4 = \frac{3}{20} |
33,587 | {1000 \choose 2} = \frac12\cdot 1000\cdot 999 |
-4,050 | z^3\cdot 33/\left(z\cdot 22\right) = z^3/z\cdot \tfrac{33}{22} |
3,258 | (-1) + g^2 = (g + 1)\cdot (g + (-1)) |
24,836 | c^2 - f^2 = (c + f)\cdot \left(c - f\right) |
21,751 | 1 + 3 + 3^2 + \dotsm + 3^k = \dfrac{1}{3 + (-1)}(3^{k + 1} + (-1)) = (3^{k + 1} + \left(-1\right))/2 |
14,560 | \sqrt{x + 1} - \sqrt{x} = \frac{1}{\sqrt{x + 1} + \sqrt{x}} > \frac{1}{2*\left(x + 1\right)} |
-20,791 | \frac{7}{7} \cdot \frac{1}{6 \cdot (-1) - z \cdot 9} \cdot 10 = \frac{1}{42 \cdot (-1) - 63 \cdot z} \cdot 70 |
5,809 | \frac{4}{12} = \tfrac13 = 0.333\cdot \dotsm |
8,374 | -a\cdot 2 + 2 \Rightarrow 0 = (1 - a)\cdot 2 |
-7,121 | 5/42 = \frac{1}{15}\cdot 5\cdot \frac{1}{14}\cdot 5 |
8,974 | 0 = x + 4 + 48 \cdot (-1) + 2 \Rightarrow x = 42 |
24,578 | 1/\Omega = \frac{1}{\Omega^{\frac12}\cdot \Omega^{1/2}} |
396 | \sin(10\cdot π) = \sin(2\cdot π) = \cos(π/2) = 0 |
746 | (-\dfrac12)^{\frac{1}{2}} = (-\tfrac{1}{2})^{1/2} |
-4,893 | 2.72\cdot 10 = \frac{2.72\cdot 10}{100} = 2.72/10 |
24,938 | \cos{\frac{\pi}{6}} = \sin{\pi/3} = \frac{1}{2}\cdot \sqrt{3} |
1,862 | n - r \geq (-1) + m rightarrow m + r \leq n + 1 |
36,808 | 12 + \frac{1}{60} 33 = 12.55 |
27,016 | 1 = |1| = |1 - g_k + g_k| \leq |1 - g_k| + |g_k| = |g_k + (-1)| + |g_k| \lt 1/2 + |g_k| |
-13,055 | 10/24 = \dfrac{1}{12} 5 |
42,634 | 2^8 = 2^7*2 |
-20,654 | \tfrac{8 \cdot x + 7 \cdot (-1)}{8 \cdot x + 7 \cdot (-1)} \cdot (-\frac{6}{7}) = \frac{42 - 48 \cdot x}{49 \cdot (-1) + x \cdot 56} |
18,499 | 2^0 = \dfrac{2^1}{2} = \dfrac22 = 1 |
21,380 | |\frac{n + (-1)}{n + 1} + (-1)| = |-\frac{2}{n + 1}| = \frac{2}{|n + 1|} |
16,930 | 2 \cdot (1 + \frac{1}{17}) = 35/17 \lt \frac{32}{15} |
-3,060 | \sqrt{11} \sqrt{4} + \sqrt{11} = \sqrt{11} + \sqrt{11}\cdot 2 |
27,822 | gG = gG |
42,230 | 41 = 67 + 22 \cdot (-1) + 6 \cdot (-1) + 2 |
46,015 | \frac{1}{4}*7 = 1.75 |
5,620 | b \cdot e \cdot r = e \cdot b \cdot r |
-2,817 | -2\sqrt{3} + 5\sqrt{3} = -\sqrt{3} \sqrt{4} + \sqrt{25} \sqrt{3} |
21,927 | k^2 = b_{k + 1} - b_k = \frac{b_{k + 1} - b_k}{k + 1 - k} |
5,735 | (i + (-1))^2 - i \cdot i = 1 - 2\cdot i |
20,541 | 11/6 = 1 + \frac{1}{2} + \dfrac13 |
17,469 | \sin(\tan^{-1}{y}) = \frac{1}{(y^2 + 1)^{1/2}}y |
-25,269 | -\frac{1}{x^9}*8 = \frac{d}{dx} \dfrac{1}{x^8} |
24,201 | 2\times 2^k = 2^{1 + k} |
6,724 | 25 + x^2*4 + x*20 = \left(x*2 + 5\right)^2 |
24,782 | -y/z = \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{6 \cdot y - 10 \cdot z}{10 \cdot y - 6 \cdot z} |
18,870 | -e^{((-1) j^2)/2} j = \frac{\mathrm{d}}{\mathrm{d}j} e^{(j^2*(-1))/2} |
9,165 | \frac13 + 1/4 = \dfrac{1}{12} \cdot 7 |
8,715 | ff e = e = ffe |
6,136 | y^{g + d} = y^d y^g |
4,647 | 0 \cdot x + 0 \cdot x^2 + x^3 + \cdots + x^{(-1) + k} + x^k = \frac{-x^3 + x^{k + 1}}{(-1) + x} |
7,577 | \frac{1}{y \times y + 1} \times (2 \times y^2 + y) = 1 + \frac{1}{y^2 + 1} \times (y \times y + y + \left(-1\right)) = 1 + \frac{1}{2 \times (y^2 + 1)} \times (2 \times y^2 + 2 \times y + 2 \times (-1)) |
-5,235 | 0.27\cdot 10^{3(-1) + 6} = 10^3\cdot 0.27 |
224 | |A \cap B| = 7 \Rightarrow B = A |
45,984 | \frac{1}{g^n + d^n + h^n} = \frac{1}{g^n} = \frac{1}{g^n + d^n - d^n} = \frac{1}{g^n + d^n + h^n} |
29,565 | \tfrac{40}{9} km/2 = 20/9 km \approx 2.22 km |
1,846 | \frac{1}{d}*h/f = \frac{h}{d*f} |
-22,241 | p^2 - 9p + 10 (-1) = (p + 10 (-1)) (p + 1) |
2,480 | b + 0 + 0 = \left( b, ( 0, 0)\right) = \left( b, 0\right) = b |
17,948 | l^l = l^{l/2} \cdot l^{\dfrac{1}{2} \cdot l} |
33,466 | i^2/i! = \frac{1}{(i + (-1))!} + \frac{1}{(i + 2\times (-1))!} |
-2,517 | \sqrt{11}\cdot 6 = \sqrt{11}\cdot (5 + 1) |
-4,555 | (x + 5 \cdot (-1)) \cdot (x + 3) = x^2 - x \cdot 2 + 15 \cdot \left(-1\right) |
15,804 | \ln(2) \times \ln(k) = \ln(2) \times \ln(k) |
11,860 | \dfrac{A}{t + \left(-1\right)} + \frac{B}{1 + t} = \frac{1}{(1 + t)*(t + (-1))}\Longrightarrow 1 = -B + (A + B)*t + A |
19,618 | 12 = 12 (-1) + 6*4 |
-28,411 | y^2 - 8 \cdot y + 65 = y^2 - 8 \cdot y + 16 + 49 = \left(y + 4 \cdot (-1)\right)^2 + 49 = (y \cdot \left(-4\right))^2 + 7^2 |
18,317 | 1/9 = \frac{1}{126}\cdot 14 |
29,212 | x^2+2bx+c=x^2+2bx+b^2+c-b^2=(x+b)^2-(b^2-c) |
-7,601 | \dfrac{-7 + i\cdot 22}{3 - i\cdot 2} = \frac{1}{-2\cdot i + 3}\cdot (i\cdot 22 - 7)\cdot \dfrac{i\cdot 2 + 3}{3 + i\cdot 2} |
-20,099 | 5/1\cdot \frac{1}{z + 3}\cdot (z + 3) = \frac{5\cdot z + 15}{3 + z} |
-15,617 | \frac{1}{\dfrac{1}{b^2} \cdot i} \cdot i^{15} = \frac{1}{\frac{i}{b^2} \cdot \frac{1}{i^{15}}} |
32,918 | \frac{20}{3} = \frac{5*4}{3} |
30,105 | y \cdot y^2 = x^3 \Rightarrow y = x |
13,651 | \frac{1}{\dfrac1a} = a |
22,335 | \frac{1}{1 - x} = 1 + \dfrac{x}{-x + 1} |
-3,366 | \sqrt{11}*(2 + 4) = 6 \sqrt{11} |
25,907 | \left\lfloor{a/b + \frac1b\cdot ((-1) + b)}\right\rfloor = \left\lfloor{\frac{1}{b}\cdot \left(a + b + (-1)\right)}\right\rfloor |
8,570 | -\frac{1}{\sqrt{3}} + 1 = 1 - \frac{\sqrt{3}}{3} |
17,684 | -2 = \frac{\frac15 + (-1)}{(-1) + \dfrac75} |
2,029 | 49 N^2 + (-1) = \left(N\cdot 7\right) \cdot \left(N\cdot 7\right) + (-1) |
36,186 | e^{\ln\left(2\right)/2} = e^{\ln(\sqrt{2})} = \sqrt{2} |
34,249 | \sin{\frac{5}{2}} - (\frac{5}{5 + 1})^{1/2} = -0.314 \dots < 0 |
6,720 | 1 + m^2 + m \cdot 2 = (m + 1)^2 |
33,611 | i i = \left(-i\right)^2 |
4,460 | \dfrac{\sqrt{34} + 6}{-\sqrt{34} + 6} = 35 + \sqrt{34}*6 |
-6,745 | 4/10 + \tfrac{6}{100} = 40/100 + \dfrac{6}{100} |
19,943 | H = K \Rightarrow K/H = 1 |
16,577 | \left(z = 4 \cdot (-1) + x^2 \implies x^2 = z + 4\right) \implies \left(4 + z\right)^{1 / 2} = (x^2)^{\frac{1}{2}} |
-6,091 | \frac{5}{24 + 3\cdot q} = \frac{5}{3\cdot \left(8 + q\right)} |
-10,403 | -\tfrac{24}{5} = -24/5 |
22,920 | E_1^{E_2} \cdot E_1 = E_1^{E_2} \cdot E_1 |
8,205 | z^2 + z\cdot 2 + 5 = z^2 + 2\cdot z + 5 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.