id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-17,682 | 65 \cdot (-1) + 73 = 8 |
9,807 | \frac{1}{A \times B} = \dfrac{1}{B \times A} |
5,398 | (2 + x)^{\frac{1}{2}} - x^{1 / 2} = \frac{1}{x^{\frac{1}{2}} + (x + 2)^{\dfrac{1}{2}}}\cdot 2 |
12,783 | \left(x + (-1)\right)!/x! = \frac1x |
-20,127 | \dfrac99*\frac{1}{k*9}*(6*(-1) - 6*k) = \frac{1}{81*k}*\left(-k*54 + 54*(-1)\right) |
18,138 | 1 + 2^{1 + 3^n} = 2^{3^n}\cdot 2 + 1 |
24,698 | y^{1 / 2} * y^{1 / 2} = y |
7,421 | -7/6 + 7 = \frac{1}{6} \cdot 35 |
1,542 | 1/3 = \dfrac{1}{3} \cdot 2/2 |
-26,545 | c^2 - d^2 = (d + c)\cdot (c - d) |
3,297 | 2m^2 - 2m + 1 = m^2 + m^2 - 2m + 1 = m^2 + (m + (-1))^2 |
19,401 | x + 4/3 x = 7/3 x |
17,847 | 3 + 2 \cdot 12 = 2 \cdot 12 + 3 |
-4,285 | \frac{6}{5} = \frac{1}{5} \cdot 6 |
15,932 | -\int \sin{u}\,du + \sin{u}\cdot (u + (-1)) = (u + (-1))\cdot \sin{u} + \cos{u} |
3,958 | \frac{1}{24} 2 = \dfrac{2}{2 + 7 + 15} |
-20,205 | -\dfrac{5}{-5}*\frac173 = -\frac{15}{-35} |
9,148 | 0 = Z\cdot H - Z\cdot H = \frac{Z\cdot B}{l_1} - B\cdot H/(l_2) = (Z\cdot B\cdot l_2 - l_1\cdot B\cdot H)/(l_2\cdot l_1) |
15,985 | \left(2^{m - n} + (-1)\right)\times 2^n = 2^m - 2^n |
10,848 | (5 + 14)/2 = 9.5 |
-5,907 | \frac{1}{2(s + 3(-1))}5 \dfrac{(2(-1) + s) \cdot 3}{3(2\left(-1\right) + s)} = \tfrac{(s + 2(-1)) \cdot 15}{\left(2(-1) + s\right) (3(-1) + s) \cdot 6} |
24,447 | \sin{\frac12 \cdot 3 \cdot \pi} = -1 \lt 0 |
23,461 | C \times D = C \times D |
12,393 | 1 - x_2\cdot x_1 = 1 - x_1 + 1 - x_2 - (1 - x_2)\cdot (-x_1 + 1) |
1,424 | \pi/3 = -2\pi/3 + \pi |
-10,719 | -\frac{18}{48 \cdot (-1) + q \cdot 12} = -\frac{1}{4 \cdot q + 16 \cdot (-1)} \cdot 6 \cdot 3/3 |
-410 | (e^{\pi \cdot i/3})^{20} = e^{20 \cdot \frac{\pi}{3} \cdot i} |
-10,653 | \frac{9}{p + 3} \cdot 15/15 = \frac{1}{45 + 15 \cdot p} \cdot 135 |
1,699 | (-(3\times k + 1)) \times (-(3\times k + 1)) = (3\times k + 1)^2 |
-22,225 | (z + 8)\cdot (6\cdot (-1) + z) = 48\cdot (-1) + z^2 + z\cdot 2 |
3,209 | 2^x = 3 \cdot j + 1 \implies (j + 1) \cdot 3 + 1 = 2^{x + 2} |
28,788 | \frac{1}{\cos{2\cdot y} + 1}\cdot \sin{y\cdot 2} = \tan{y} |
4,454 | -y^1 + z^1 = \left(-y + z\right)\cdot z^0\cdot y^0 |
34,953 | 5^0 + 2 \cdot 2^2 = 3^2 |
-20,119 | \frac{1}{n \cdot 3 + 6} \cdot \left(20 + n \cdot 10\right) = \frac{10}{3} \cdot \frac{1}{2 + n} \cdot (2 + n) |
31,650 | \sum_{i=0}^n \binom{n}{i} = \sum_{i=0}^n \binom{n}{i} |
-24,735 | -\tfrac{60}{100} = -160/100 = -1.6 |
18,069 | (x + c) (x - c) = x x - c^2 = x x + 1 - 1 + c^2 |
49,155 | \left(\begin{cases} x^3 - x & \text{for }\: 0 = z \\z^3 - z & \text{for }\: x = 0 \end{cases} \implies z^3 + x^3 = 0\right) \implies x = -z |
8,373 | 2 + q = 2 \cdot l \cdot q + 1 \Rightarrow (l \cdot 2 + (-1)) \cdot q = 1 |
-4,145 | \frac{y}{y^4} = \tfrac{y}{yy y y} = \frac{1}{y * y^2} |
10,134 | |v_0| = (\frac{m}{m + 1} \cdot 2)^{\frac{1}{2}} \Rightarrow m = \frac{v_0^2}{-v_0^2 + 2} |
3,224 | \left(m^2 + m + 1/4\right)^{1 / 2} - \tfrac12 = ((m + 1/2) \cdot (m + 1/2))^{\tfrac{1}{2}} - 1/2 = m |
5,583 | y^{2000} = (y^3)^{666}*y^2 = (-1)^{666}*y^2 = y^2 |
-23,813 | \tfrac{1}{3 + 9} \cdot 36 = 36/12 = 36/12 = 3 |
4,048 | 4 c + 8 (-1) = 4 (c + 2 (-1)) |
-27,384 | 620 + 10*\left(-1\right) = 610 |
17,601 | x^{\frac{1}{r} \cdot p} = (x^p)^{\dfrac{1}{r}} = (x^p)^{\frac1r} |
15,927 | z^2/2\cdot 2 = z^2 |
36,646 | 15^m = \left(3 + 12\right)^m |
76 | x \cdot s + r \cdot x = x \cdot (r + s) |
-20,517 | -\dfrac{5}{z + 3 \cdot (-1)} \cdot \frac{1}{9} \cdot 9 = -\dfrac{45}{27 \cdot (-1) + 9 \cdot z} |
26,333 | 100 = 33\cdot 3 + 3 + 3(-1) + 3/3 |
-22,714 | \frac{40}{36} = 10*4/(4*9) |
-3,990 | 4p^2 * p = 4p^2 * p |
27,144 | 3/16 = \dfrac{1}{4^2} \cdot (2^2 - 1^2) |
23,404 | \left(1 + \frac1n\right)^j = \left(1 + \frac{1}{n}\right) \cdot (1 + 1/n)^{j + \left(-1\right)} \geq (1 + 1/n)^{j + (-1)} |
15,822 | y\cdot e^{t^2} = z + h \Rightarrow y = \frac{h}{e^{t^2}} + \frac{1}{e^{t^2}}\cdot z |
23,913 | \left(L - J = -x + M \Rightarrow L - M = J - x\right) \Rightarrow M - L = -J + x |
35,138 | \frac{y^3}{(y^2 + 1)^{\frac{5}{2}}} = -\frac{y}{(1 + y^2)^{5/2}} + \frac{1}{(y^2 + 1)^{\dfrac{1}{2} \cdot 3}} \cdot y |
31,063 | (4\cdot m + 10\cdot \left(-1\right))\cdot \left(m + (-1)\right) + 2\cdot (m + \left(-1\right)) = \left(4\cdot m + 8\cdot (-1)\right)\cdot (m + (-1)) = 4\cdot (m + 2\cdot (-1))\cdot (m + \left(-1\right)) |
29,276 | 45 + 29 \sqrt{2} = (\sqrt{2} + 3)^3 |
10,604 | \left(1 - z \cdot z\right)^{\frac{1}{2}} = \sin(\arccos{z}) |
13,101 | e = b \implies -e + b = 0 |
-28,952 | 2500 = 50^2 |
36,504 | 7777 = 2223*\left(-1\right) + 10^4 |
5,798 | M*E * E = C_D*M^2 - C_D*E * E = C_x*M^2 - C_x*E^2 = C_x*M^2 - (C_D*C_x - C_D*E)^2 |
-9,467 | -i\cdot 24 = -i\cdot 2\cdot 2\cdot 2\cdot 3 |
-17,680 | 20 = 3\left(-1\right) + 23 |
30 | \dfrac{1}{100}Y*5 = Y/20 |
8,198 | \mathbb{E}\left[e^V\right] = e^{\mathbb{E}\left[V\right]} |
538 | \frac{dg}{dx}\cdot i = \frac{dg}{dy} |
2,219 | A_t\cdot x_t = x_t\cdot A_t |
-485 | (e^{11\times i\times \pi/12})^{10} = e^{10\times \dfrac{1}{12}\times \pi\times i\times 11} |
4,936 | \left(-1\right) + \mathbb{E}(X) = \mathbb{E}((-1) + X) |
19,959 | \frac{1}{2n}=\frac{1}{6n}+\frac{2}{6n}=\frac{1}{3n}+\frac{1}{6n} |
16,152 | -h/b = \frac{1}{b} \times \left((-1) \times h\right) = \frac{h}{(-1) \times b} |
-27,694 | d/dz (-\cos\left(z\right)) = \sin(z) |
15,481 | z^2 + 1 = \left(42\cdot z^2 + 42\right)/42 |
26,356 | 3 \cdot 3 - 2\cdot 2^2 = 1 |
19,476 | Q^6 - 2*Q^3 + 1 = (Q^3 + (-1))^2 = (Q + (-1))^6 |
-19,032 | \frac{1}{45} 26 = G_t/\left(81 π\right)*81 π = G_t |
-24,498 | 4 \cdot 5 + 8 \cdot \frac{1}{7} \cdot 42 = 4 \cdot 5 + 8 \cdot 6 = 20 + 8 \cdot 6 = 20 + 48 = 68 |
-8,091 | \dfrac{1}{-5 - i} \cdot (-i \cdot 15 - 23) \cdot \dfrac{-5 + i}{-5 + i} = \tfrac{-23 - 15 \cdot i}{-5 - i} |
-19,686 | \frac{7*2}{9} = \tfrac{14}{9} |
7,447 | \sin(\theta)*\cos(\alpha) + \sin\left(\alpha\right)*\cos(\theta) = \sin(\theta + \alpha) |
33,396 | H \cdot K = K \cdot H |
6,088 | 1 * 1 + 7 * 7 = 2*5^2 |
16,642 | \frac{1}{{25 \choose 9}} = \dfrac{9!}{25!}\cdot 16! |
-22,960 | \dfrac{42}{30}= \dfrac{2\cdot21}{2\cdot15}= \dfrac{2\cdot 3\cdot7}{2\cdot 3\cdot5}= \dfrac{7}{5} |
20,259 | \left(0 = X*x*X^U \Rightarrow X*X^U*x^U = 0^U\right) \Rightarrow 0^U = x^U*X^U |
5,707 | \tan^3(\arctan x)= (\tan(\arctan x))^3= x^3 |
-12,867 | 5\cdot (-1) + 25 = 20 |
23,712 | \frac{1}{10^{2\infty + 1}} = \frac{1}{10^{\infty}} |
-7,923 | \frac{1}{32} \times (80 + 48 \times i - 80 \times i + 48) = (128 - 32 \times i)/32 = 4 - i |
31,755 | |z \cdot z - 4 \cdot z - -3| = |z + 3 \cdot (-1)| \cdot |z + (-1)| \leq 3 \cdot |z + \left(-1\right)| |
10,888 | \dfrac{1}{(x + 2\cdot (-1))\cdot (z + 2\cdot (-1))}\cdot ((-5)\cdot (x - z)) = \frac{1}{\left(x + 2\cdot (-1)\right)\cdot (2\cdot (-1) + z)}\cdot (-\left(2\cdot (-1) + x\right)\cdot (z\cdot 4 + 3\cdot (-1)) + (z + 2\cdot \left(-1\right))\cdot (3\cdot \left(-1\right) + 4\cdot x)) |
-9,176 | 12 \left(-1\right) - 12 k = -k*2*2*3 - 2*2*3 |
-18,481 | 5 \cdot \alpha = 2 \cdot (3 \cdot \alpha + (-1)) = 6 \cdot \alpha + 2 \cdot \left(-1\right) |
26,127 | C H_1 + C H_2 = (H_1 + H_2) C |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.