id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-11,858 | 9.034/100 = 9.034\times 0.01 |
23,578 | a\cdot g\cdot c = a\cdot \dfrac1c\cdot g = \tfrac{a}{g\cdot 1/c} = a\cdot c/g |
25,255 | d/z = \frac{1}{z\cdot \frac1d} |
6,951 | y^{13} = y^9*y*y^3 |
24,710 | (x + 2)\cdot (\left(-1\right) + x) = 2\cdot \left(-1\right) + x^2 + x |
2,979 | \sin{t} = \dfrac{1}{x \cdot 5} \cdot (4 - \sqrt{x^2 + (-1)} \cdot 3) \Rightarrow (4 - 5 \cdot x \cdot \sin{t})^2 = 9 \cdot \left((-1) + x^2\right) |
-23,028 | \frac{45}{25} = \frac{9*5}{5*5} |
35,157 | \sin(\dfrac{1}{4} \cdot \pi) < \sin(5 \cdot \pi/18) |
-18,481 | 5\cdot i = 2\cdot (3\cdot i + (-1)) = 6\cdot i + 2\cdot (-1) |
-2,688 | 4\cdot 3^{\frac{1}{2}} = (2 + 3 + (-1))\cdot 3^{\frac{1}{2}} |
3,059 | \frac{1}{\sqrt{6}\cdot 2 + 5} = -2\sqrt{6} + 5 |
-27,508 | 12 a^2 = 2 \cdot 2 \cdot aa \cdot 3 |
29,452 | 275 \times (-1) + 1000 = 725 |
-7,623 | \frac{1}{-5 - 3i}(8 + 32 i) = \frac{1}{-3i - 5}(32 i + 8) \dfrac{3i - 5}{-5 + 3i} |
-6,011 | \frac{3}{3*a + 3} = \dfrac{3}{(1 + a)*3} |
15,651 | \dfrac{\tan{x} \cdot 2}{\tan^2{x} + 1} = \sin{x \cdot 2} |
-25,833 | \frac{1}{1 + x}\cdot (11\cdot (-1) + 3\cdot x \cdot x \cdot x + x) = 3\cdot x \cdot x - 3\cdot x + 4 - \frac{15}{x + 1} |
7,132 | 13\cdot (6 + a) = (2\cdot a + \left(13 + (-1)\right))\cdot \frac12\cdot 13 |
1,073 | \int \left(y + (-1)\right) \cdot \left(3 \cdot y + 1\right)\,\text{d}y = \int (3 \cdot y^2 - 2 \cdot y + 1)\,\text{d}y = y^3 - y^2 + y |
21,257 | (1 + n) \cdot {n \choose j} = {n + 1 \choose j + 1} \cdot (j + 1) |
6,855 | p^8 + (-1) = (p^4 + 1) \cdot (p^4 + \left(-1\right)) = (p^4 + 1) \cdot (p^2 + 1) \cdot (p + 1) \cdot (p + (-1)) |
34,324 | \left(2^{96}*17\right)^2 = 2^{200} - 31*2^{192} + 2^{198} |
27,140 | |h - d| + |d - x| = -(h - d) + d - x = -h + 2 \cdot d - x |
24,972 | \pi = \frac{\pi}{3} + \frac{\pi}{3} \cdot 2 |
10,851 | \sqrt{n} = n^{\frac{1}{2}} = n^{1 - \frac{1}{2}} = \tfrac{n}{n^{\frac{1}{2}}} |
31,019 | \dfrac{1}{(-1) + y} = \dfrac{1}{y + (-1)} |
593 | m = m + 2*(-1) + 2 |
47,667 | 1 - \cos^2(x) = \sin^2(x) |
34,662 | \frac{\tan(3x)}{\tan(5x)} = \dfrac{1}{\tan(3x) + \tan\left(2x\right)}\tan(3x) = \dfrac{\tan(3x)}{(\tan(2) + \tan\left(3\right)) \frac{1}{1 - \tan(2\tan\left(3\right))}} |
16,858 | x*\epsilon = \epsilon*x |
3,308 | \frac{1}{k^3 + (-1)} \times (k^5 + (-1)) = \frac{1}{1 - \tfrac{1}{k^3}} \times (1 - \dfrac{1}{k^5}) \times k^2 |
1,103 | \frac{1732 \cdot \tfrac{1}{1000}}{(-\frac{176}{3000000} + 1)^{1/2}} = \sqrt{3} |
3,746 | \frac{\mathrm{d}}{\mathrm{d}y} y^{1/2} = \frac{1}{y^{\frac{1}{2}}\cdot 2} |
5,981 | \dfrac{1}{z + \left(-1\right)} \cdot z = \frac{1}{(-1) + z} + 1 |
9,808 | \int_0^1 x\,\text{d}x = x \cdot \int_0^{11} 1\,\text{d}x = x = x |
-6,688 | 6/10 + 9/100 = \frac{60}{100} + 9/100 |
-17,551 | 53 = 6\cdot \left(-1\right) + 59 |
11,236 | 80 * 80 + 60^2 = 10000 |
42,221 | (\left(-1\right) + 2^8) \cdot 3 = 765 |
14,774 | (3/2)^3 + (\frac{1}{2} 5) (5/2)^2 = 19 |
30,033 | \dfrac{1}{x^{\dfrac{3}{5}}} \frac{2}{5}\cdot 7^{\dfrac15} = x^{\dfrac25} \frac{d}{dx} 7^{\frac15} |
-3,050 | -40^{1 / 2} + 160^{1 / 2} = (16\cdot 10)^{1 / 2} - (4\cdot 10)^{1 / 2} |
16,886 | \sin{\frac{\pi}{2}} - \cos{\pi/2} = 1 + 0(-1) \neq -1 |
42,169 | 172 = 2^2 \times 43 |
40,748 | |y| = (y * y)^{\frac{1}{2}} = y^{2/2} = y |
476 | 1 + x^2 + x = \dfrac{1}{4} \cdot 3 + (x + \frac12)^2 |
14,509 | s \cdot v \cdot q = s \cdot q \cdot v |
21,659 | (a + f) \cdot (a + f) = f \cdot f + a \cdot a + f \cdot a + f \cdot a |
-15,658 | \tfrac{k^4}{\frac{1}{k^6} \frac{1}{q^{10}}} = \frac{1}{\left(\frac{1}{k^3 q^5}\right)^2} k^4 |
16,860 | 2\int_0^\infty ...\,dx = \int_{-\infty}^\infty ...\,dx |
-12,016 | 1/3 = \dfrac{1}{4 \cdot \pi} \cdot s \cdot 4 \cdot \pi = s |
20,315 | (\rho - y)\cdot \left(\rho + y\right) = \rho \cdot \rho - y \cdot y |
15,084 | (h + g)/x = \frac1x*g + h/x |
1,737 | 8^{8^8} + 1 = (2^{2^{24}} + 1)*(2^{2^{25}} - 2^{2^{24}} + 1) |
2,029 | 49\cdot y^2 + (-1) = (-1) + \left(y\cdot 7\right)^2 |
-536 | \frac{1}{2} \cdot 35 \cdot \pi - \pi \cdot 16 = \pi \cdot 3/2 |
1,669 | \left(a,b\right) = \dfrac{a \cdot b}{b \cdot a} = 1/b \cdot a \cdot b/a |
-559 | (e^{i\pi \cdot 7/12})^{17} = e^{\pi i \cdot 7/12 \cdot 17} |
-20,625 | \dfrac{-7p}{-5p + 7} \times \dfrac{4}{4} = \dfrac{-28p}{-20p + 28} |
17,223 | (\frac{1}{16} \cdot 3 + \frac{1}{16} \cdot 3)^{77} = (\frac{1}{16} \cdot 6)^{77} |
7,552 | \dfrac{c}{g} \Rightarrow c/g |
-1,616 | \pi \cdot \dfrac74 = \pi \cdot \frac{1}{4} \cdot 15 - \pi \cdot 2 |
30,475 | 3^{-3/4} = \frac13 \cdot 3^{\frac{1}{4}} |
1,921 | n^{-1/3} = \frac{1}{n^{\frac13}} |
-19,052 | \frac{1}{24}\cdot 7 = Y_p/(81\cdot \pi)\cdot 81\cdot \pi = Y_p |
-25,787 | \frac{7}{2}\cdot 10^{-1} = 7/20 |
-13,979 | 4 + \frac18\times 40 = 4 + 5 = 4 + 5 = 9 |
24,800 | \dfrac{\frac{1}{3}}{\frac13 \cdot (x + 1)} = \frac{1}{x + 1} |
26,573 | \left(-1\right) + 10^{15} = 9\cdot 11111\cdot 10000100001 |
-3,692 | \frac{t^5}{t^3}\times 12/9 = \dfrac{12\times t^5}{9\times t^3} |
13,326 | i \cdot i - 3/4 = (i^2 \cdot 4 + 3 \cdot (-1))/4 |
47,467 | \operatorname{P}\left(y\right) = \left(y^2 + 11 - 2 \cdot \sqrt{2} \cdot y\right) \cdot (y^2 + 11 + 2 \cdot \sqrt{2} \cdot y) = (y \cdot y + 11) \cdot (y \cdot y + 11) - 8 \cdot y^2 = y^4 + 14 \cdot y^2 + 121 |
27,538 | \sqrt{4 - y^2} = 2 \cdot \sqrt{1 - y \cdot y/4} |
11,907 | \frac49 = 2*\frac13/(\frac{1}{2}*3) |
29,822 | \sin{u} = 2 \times \cos{u/2} \times \sin{\frac{u}{2}} |
5,452 | z^3 + 1 = z^3 + (-1) = (z + \left(-1\right)) \cdot \left(z \cdot z + z + 1\right) = \left(z + 1\right) \cdot (z^2 + z + 1) |
9,426 | (3 + 2\cdot (-1))^5\cdot {3 \choose 2} + 3^5 - \left(\left(-1\right) + 3\right)^5\cdot {3 \choose 1} = 150 |
7,176 | \frac14\cdot (a + b + g + f) = 8 \Rightarrow a + b + g + f = 32 |
14,823 | t_i^2 = t_i^2\cdot \dfrac33 |
503 | \log_10\left(x^{1/l}\right) = \log_10(x^{\frac{1}{l}}) = \dfrac{\log_10(x)}{l} |
6,130 | {7 \choose 1}\cdot {8 \choose 1}\cdot 6! = 40320 |
2,333 | F^0\cdot F = F |
-3,725 | \dfrac{3}{t^2} = \frac{3}{t^2} |
-16,621 | -1 = -5 \cdot F - 3 = -5 \cdot F - 3 = -5 \cdot F + 3 \cdot \left(-1\right) |
-22,354 | p^2 - 5 p + 4 = (p + 4 (-1)) \left((-1) + p\right) |
19,422 | 158 + 10 + Y_2 = 168 + Y_2 |
-4,601 | \left(z + 2\right)\cdot (z + 5\cdot (-1)) = 10\cdot (-1) + z^2 - 3\cdot z |
-8,068 | \frac{-i - 7}{-i - 1} = \frac{1}{-1 - i} \cdot (-i - 7) \cdot \dfrac{i - 1}{i - 1} |
20,103 | 2^n = g^n \cdot 2^{n + (-1)} \Rightarrow 2 = g^n |
37,265 | -5 = (0 + (-1)) \cdot ((-1) \cdot (-5)) |
18,531 | T^U*T = T^U*T |
4,670 | A^H A^H = (AA)^H = A^H |
29,385 | -\cos(\pi \cdot 2/8) = \cos\left(6 \cdot \pi/8\right) |
-3,892 | \dfrac{11\cdot x}{4}\cdot 1 = 11/4\cdot x |
19,853 | j^2/j! = \frac{1}{(j + (-1))!} \times j = \dfrac{1}{(j + 2 \times (-1))!} + \frac{1}{(j + (-1))!} |
7,338 | 9p^2 = s^2 \cdot 3 \implies p \cdot p \cdot 3 = s \cdot s |
-3,496 | \frac{1}{100}*25 = 0.25 |
20,722 | 2^{(2 + V)*2} = 4^{V + 2} |
-2,249 | \dfrac{1}{20} \cdot 5 = \frac{1}{4} |
931 | e^z \cdot z = x rightarrow e^{-z} \cdot x = z |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.