id
int64
-30,985
55.9k
text
stringlengths
5
437k
-11,858
9.034/100 = 9.034\times 0.01
23,578
a\cdot g\cdot c = a\cdot \dfrac1c\cdot g = \tfrac{a}{g\cdot 1/c} = a\cdot c/g
25,255
d/z = \frac{1}{z\cdot \frac1d}
6,951
y^{13} = y^9*y*y^3
24,710
(x + 2)\cdot (\left(-1\right) + x) = 2\cdot \left(-1\right) + x^2 + x
2,979
\sin{t} = \dfrac{1}{x \cdot 5} \cdot (4 - \sqrt{x^2 + (-1)} \cdot 3) \Rightarrow (4 - 5 \cdot x \cdot \sin{t})^2 = 9 \cdot \left((-1) + x^2\right)
-23,028
\frac{45}{25} = \frac{9*5}{5*5}
35,157
\sin(\dfrac{1}{4} \cdot \pi) < \sin(5 \cdot \pi/18)
-18,481
5\cdot i = 2\cdot (3\cdot i + (-1)) = 6\cdot i + 2\cdot (-1)
-2,688
4\cdot 3^{\frac{1}{2}} = (2 + 3 + (-1))\cdot 3^{\frac{1}{2}}
3,059
\frac{1}{\sqrt{6}\cdot 2 + 5} = -2\sqrt{6} + 5
-27,508
12 a^2 = 2 \cdot 2 \cdot aa \cdot 3
29,452
275 \times (-1) + 1000 = 725
-7,623
\frac{1}{-5 - 3i}(8 + 32 i) = \frac{1}{-3i - 5}(32 i + 8) \dfrac{3i - 5}{-5 + 3i}
-6,011
\frac{3}{3*a + 3} = \dfrac{3}{(1 + a)*3}
15,651
\dfrac{\tan{x} \cdot 2}{\tan^2{x} + 1} = \sin{x \cdot 2}
-25,833
\frac{1}{1 + x}\cdot (11\cdot (-1) + 3\cdot x \cdot x \cdot x + x) = 3\cdot x \cdot x - 3\cdot x + 4 - \frac{15}{x + 1}
7,132
13\cdot (6 + a) = (2\cdot a + \left(13 + (-1)\right))\cdot \frac12\cdot 13
1,073
\int \left(y + (-1)\right) \cdot \left(3 \cdot y + 1\right)\,\text{d}y = \int (3 \cdot y^2 - 2 \cdot y + 1)\,\text{d}y = y^3 - y^2 + y
21,257
(1 + n) \cdot {n \choose j} = {n + 1 \choose j + 1} \cdot (j + 1)
6,855
p^8 + (-1) = (p^4 + 1) \cdot (p^4 + \left(-1\right)) = (p^4 + 1) \cdot (p^2 + 1) \cdot (p + 1) \cdot (p + (-1))
34,324
\left(2^{96}*17\right)^2 = 2^{200} - 31*2^{192} + 2^{198}
27,140
|h - d| + |d - x| = -(h - d) + d - x = -h + 2 \cdot d - x
24,972
\pi = \frac{\pi}{3} + \frac{\pi}{3} \cdot 2
10,851
\sqrt{n} = n^{\frac{1}{2}} = n^{1 - \frac{1}{2}} = \tfrac{n}{n^{\frac{1}{2}}}
31,019
\dfrac{1}{(-1) + y} = \dfrac{1}{y + (-1)}
593
m = m + 2*(-1) + 2
47,667
1 - \cos^2(x) = \sin^2(x)
34,662
\frac{\tan(3x)}{\tan(5x)} = \dfrac{1}{\tan(3x) + \tan\left(2x\right)}\tan(3x) = \dfrac{\tan(3x)}{(\tan(2) + \tan\left(3\right)) \frac{1}{1 - \tan(2\tan\left(3\right))}}
16,858
x*\epsilon = \epsilon*x
3,308
\frac{1}{k^3 + (-1)} \times (k^5 + (-1)) = \frac{1}{1 - \tfrac{1}{k^3}} \times (1 - \dfrac{1}{k^5}) \times k^2
1,103
\frac{1732 \cdot \tfrac{1}{1000}}{(-\frac{176}{3000000} + 1)^{1/2}} = \sqrt{3}
3,746
\frac{\mathrm{d}}{\mathrm{d}y} y^{1/2} = \frac{1}{y^{\frac{1}{2}}\cdot 2}
5,981
\dfrac{1}{z + \left(-1\right)} \cdot z = \frac{1}{(-1) + z} + 1
9,808
\int_0^1 x\,\text{d}x = x \cdot \int_0^{11} 1\,\text{d}x = x = x
-6,688
6/10 + 9/100 = \frac{60}{100} + 9/100
-17,551
53 = 6\cdot \left(-1\right) + 59
11,236
80 * 80 + 60^2 = 10000
42,221
(\left(-1\right) + 2^8) \cdot 3 = 765
14,774
(3/2)^3 + (\frac{1}{2} 5) (5/2)^2 = 19
30,033
\dfrac{1}{x^{\dfrac{3}{5}}} \frac{2}{5}\cdot 7^{\dfrac15} = x^{\dfrac25} \frac{d}{dx} 7^{\frac15}
-3,050
-40^{1 / 2} + 160^{1 / 2} = (16\cdot 10)^{1 / 2} - (4\cdot 10)^{1 / 2}
16,886
\sin{\frac{\pi}{2}} - \cos{\pi/2} = 1 + 0(-1) \neq -1
42,169
172 = 2^2 \times 43
40,748
|y| = (y * y)^{\frac{1}{2}} = y^{2/2} = y
476
1 + x^2 + x = \dfrac{1}{4} \cdot 3 + (x + \frac12)^2
14,509
s \cdot v \cdot q = s \cdot q \cdot v
21,659
(a + f) \cdot (a + f) = f \cdot f + a \cdot a + f \cdot a + f \cdot a
-15,658
\tfrac{k^4}{\frac{1}{k^6} \frac{1}{q^{10}}} = \frac{1}{\left(\frac{1}{k^3 q^5}\right)^2} k^4
16,860
2\int_0^\infty ...\,dx = \int_{-\infty}^\infty ...\,dx
-12,016
1/3 = \dfrac{1}{4 \cdot \pi} \cdot s \cdot 4 \cdot \pi = s
20,315
(\rho - y)\cdot \left(\rho + y\right) = \rho \cdot \rho - y \cdot y
15,084
(h + g)/x = \frac1x*g + h/x
1,737
8^{8^8} + 1 = (2^{2^{24}} + 1)*(2^{2^{25}} - 2^{2^{24}} + 1)
2,029
49\cdot y^2 + (-1) = (-1) + \left(y\cdot 7\right)^2
-536
\frac{1}{2} \cdot 35 \cdot \pi - \pi \cdot 16 = \pi \cdot 3/2
1,669
\left(a,b\right) = \dfrac{a \cdot b}{b \cdot a} = 1/b \cdot a \cdot b/a
-559
(e^{i\pi \cdot 7/12})^{17} = e^{\pi i \cdot 7/12 \cdot 17}
-20,625
\dfrac{-7p}{-5p + 7} \times \dfrac{4}{4} = \dfrac{-28p}{-20p + 28}
17,223
(\frac{1}{16} \cdot 3 + \frac{1}{16} \cdot 3)^{77} = (\frac{1}{16} \cdot 6)^{77}
7,552
\dfrac{c}{g} \Rightarrow c/g
-1,616
\pi \cdot \dfrac74 = \pi \cdot \frac{1}{4} \cdot 15 - \pi \cdot 2
30,475
3^{-3/4} = \frac13 \cdot 3^{\frac{1}{4}}
1,921
n^{-1/3} = \frac{1}{n^{\frac13}}
-19,052
\frac{1}{24}\cdot 7 = Y_p/(81\cdot \pi)\cdot 81\cdot \pi = Y_p
-25,787
\frac{7}{2}\cdot 10^{-1} = 7/20
-13,979
4 + \frac18\times 40 = 4 + 5 = 4 + 5 = 9
24,800
\dfrac{\frac{1}{3}}{\frac13 \cdot (x + 1)} = \frac{1}{x + 1}
26,573
\left(-1\right) + 10^{15} = 9\cdot 11111\cdot 10000100001
-3,692
\frac{t^5}{t^3}\times 12/9 = \dfrac{12\times t^5}{9\times t^3}
13,326
i \cdot i - 3/4 = (i^2 \cdot 4 + 3 \cdot (-1))/4
47,467
\operatorname{P}\left(y\right) = \left(y^2 + 11 - 2 \cdot \sqrt{2} \cdot y\right) \cdot (y^2 + 11 + 2 \cdot \sqrt{2} \cdot y) = (y \cdot y + 11) \cdot (y \cdot y + 11) - 8 \cdot y^2 = y^4 + 14 \cdot y^2 + 121
27,538
\sqrt{4 - y^2} = 2 \cdot \sqrt{1 - y \cdot y/4}
11,907
\frac49 = 2*\frac13/(\frac{1}{2}*3)
29,822
\sin{u} = 2 \times \cos{u/2} \times \sin{\frac{u}{2}}
5,452
z^3 + 1 = z^3 + (-1) = (z + \left(-1\right)) \cdot \left(z \cdot z + z + 1\right) = \left(z + 1\right) \cdot (z^2 + z + 1)
9,426
(3 + 2\cdot (-1))^5\cdot {3 \choose 2} + 3^5 - \left(\left(-1\right) + 3\right)^5\cdot {3 \choose 1} = 150
7,176
\frac14\cdot (a + b + g + f) = 8 \Rightarrow a + b + g + f = 32
14,823
t_i^2 = t_i^2\cdot \dfrac33
503
\log_10\left(x^{1/l}\right) = \log_10(x^{\frac{1}{l}}) = \dfrac{\log_10(x)}{l}
6,130
{7 \choose 1}\cdot {8 \choose 1}\cdot 6! = 40320
2,333
F^0\cdot F = F
-3,725
\dfrac{3}{t^2} = \frac{3}{t^2}
-16,621
-1 = -5 \cdot F - 3 = -5 \cdot F - 3 = -5 \cdot F + 3 \cdot \left(-1\right)
-22,354
p^2 - 5 p + 4 = (p + 4 (-1)) \left((-1) + p\right)
19,422
158 + 10 + Y_2 = 168 + Y_2
-4,601
\left(z + 2\right)\cdot (z + 5\cdot (-1)) = 10\cdot (-1) + z^2 - 3\cdot z
-8,068
\frac{-i - 7}{-i - 1} = \frac{1}{-1 - i} \cdot (-i - 7) \cdot \dfrac{i - 1}{i - 1}
20,103
2^n = g^n \cdot 2^{n + (-1)} \Rightarrow 2 = g^n
37,265
-5 = (0 + (-1)) \cdot ((-1) \cdot (-5))
18,531
T^U*T = T^U*T
4,670
A^H A^H = (AA)^H = A^H
29,385
-\cos(\pi \cdot 2/8) = \cos\left(6 \cdot \pi/8\right)
-3,892
\dfrac{11\cdot x}{4}\cdot 1 = 11/4\cdot x
19,853
j^2/j! = \frac{1}{(j + (-1))!} \times j = \dfrac{1}{(j + 2 \times (-1))!} + \frac{1}{(j + (-1))!}
7,338
9p^2 = s^2 \cdot 3 \implies p \cdot p \cdot 3 = s \cdot s
-3,496
\frac{1}{100}*25 = 0.25
20,722
2^{(2 + V)*2} = 4^{V + 2}
-2,249
\dfrac{1}{20} \cdot 5 = \frac{1}{4}
931
e^z \cdot z = x rightarrow e^{-z} \cdot x = z