id
int64
-30,985
55.9k
text
stringlengths
5
437k
28,585
\mathbb{E}\left((A - \mu)^2\right) = (\mathbb{E}\left(A\right) - \mu)^2 + \mathbb{Var}\left(A\right)
22,216
-0.618 = \frac12 (1 - \sqrt{5}) \approx -0.618
9,789
(1 + x)\cdot (x^2 + 1)\cdot (1 + x^4)\cdot \dotsm\cdot (x^{2^n} + 1) = \frac{1}{-x + 1}\cdot (-x^{2^{n + 1}} + 1)
21,927
l^2 = b_{l + 1} - b_l = \frac{1}{l + 1 - l} \cdot (b_{l + 1} - b_l)
16,267
2 (-1) + x = -(2 - x)
17,192
x\beta n = nx \beta
-20,436
\frac{1}{x + 10 \left(-1\right)} \left(x + 10 (-1)\right)/9 = \frac{1}{90 \left(-1\right) + x*9}(x + 10 \left(-1\right))
29,374
(1 + n)^2 = 1 + n^2 + 2*n
32,367
0 \cdot z = (0 + 0) \cdot z = 0 \cdot z + 0 \cdot z
32,027
y r x = r y x
16,943
2/10\cdot \frac{3}{10} = 6/100
-5,933
\frac{5}{j \cdot 5 + 45 \cdot \left(-1\right)} = \frac{5}{5 \cdot (j + 9 \cdot (-1))}
12,677
y^2 + 8\cdot y + 14 - q = 0 rightarrow y = (-8 \pm (10 + 4\cdot q)^{1/2})/2
11,040
-h^t + f^t = \left(-h + f\right) \cdot \left(f^{t + (-1)} + f^{2 \cdot (-1) + t} \cdot h + h^2 \cdot f^{3 \cdot (-1) + t} + \dots + f \cdot h^{t + 2 \cdot \left(-1\right)} + h^{t + \left(-1\right)}\right)
37,633
12 = \frac{18}{3} \cdot (5 + 4 \cdot \left(-1\right) + 1)
-26,575
\left(8 + x\right) (-x + 8) = 8 \cdot 8 - x^2
-2,690
7^{1/2} + 25^{1/2} \cdot 7^{1/2} = 7^{1/2} \cdot 5 + 7^{1/2}
32,987
\tfrac{45}{216} = \frac{1}{24}\cdot 5
20,697
\operatorname{acos}(-q) = \operatorname{acos}(\cos(\pi - \operatorname{acos}(q)))\Longrightarrow -\operatorname{acos}(q) + \pi = \operatorname{acos}(-q)
-10,262
-\frac{20}{15\cdot z + 5} = -\frac{1}{1 + z\cdot 3}\cdot 4\cdot 5/5
3,446
\dfrac52 \cdot \dfrac{1}{9} = 5/18
25,714
0 - z^3\cdot 2 + 9\cdot z^2 - z\cdot 12 + 5 = -2\cdot z^2 \cdot z + 9\cdot z^2 - z\cdot 12 + 5
28,282
\frac{\text{d}z}{\text{d}y} = \frac{1}{2 \cdot z \cdot y - y^2} \cdot (z^2 - 2 \cdot z \cdot y) = \frac{1}{2 \cdot y/z - (\frac{y}{z})^2} \cdot \left(1 - 2 \cdot y/z\right)
30,843
48 = 2! \cdot 2! \cdot 2! \cdot 3!
36,090
\dfrac{1}{8} = (\dfrac12)^3
31,164
22 = 8 \cdot (-1) + 30
-1,773
\frac{1}{3}\pi = -\pi \frac135 + 2\pi
7,249
17^5\cdot 13^4\cdot 3 \cdot 3\cdot 7 \cdot 7 = 17^5 (3\cdot 7\cdot 13^2)^2
-26,542
(10 - 3 \cdot x) \cdot \left(10 + 3 \cdot x\right) = -9 \cdot x^2 + 100
-15,771
-\frac{1}{10}\cdot 44 = -8\cdot 8/10 + 10\cdot \frac{1}{10}\cdot 2
-30,160
\frac{\mathrm{d}}{\mathrm{d}z} z^9 = 9\cdot z^{9 + (-1)} = 9\cdot z^8
1,409
\frac{1}{\sqrt{n} + \sqrt{n + 1}} = -\sqrt{n} + \sqrt{1 + n}
-4,733
\frac{1}{x^2 + 3*x + 2}*(5*(-1) - x*2) = -\frac{1}{x + 1}*3 + \frac{1}{x + 2}
4,806
t\cdot y^i = t\cdot y^i
32,515
9 = -8\cdot 2 + 25
11,192
6/11 \cdot 7/12 = \frac{1}{132} \cdot 42
-29,571
(7 + 5 \cdot z^2 + z)/z = 5 \cdot z^2/z + z/z + 7/z
-4,182
\frac{48\cdot z^5}{24\cdot z} = \frac{48}{24}\cdot z^5/z
12,880
1 + 6\xi + 1 = \xi*6 + 2
24,108
(11 + 3) \cdot (11 + 7 \cdot (-1)) = 56
-5,182
4.92\cdot 10 = \frac{49.2}{10}\cdot 1 = 4.92\cdot 10^0
15,482
k + k + k = 3\cdot k
6,015
y + y^2 = -\frac{1}{4} + (y + \dfrac{1}{2})^2
-713
e^{5 \cdot i \cdot \pi/3 \cdot 15} = (e^{\frac53 \cdot i \cdot \pi})^{15}
1,192
\sin(x) \sin(\alpha) + \cos(\alpha) \cos(x) = \cos(-x + \alpha)
3,978
\tfrac{2}{4 + 7 + 2} = \dfrac{2}{13}
21,617
-8 + x\cdot 4 + 2\cdot h = (2\cdot h^2 - 8\cdot h + 4\cdot x\cdot h)/h
18,674
E^c - D = D^c \cap E^c
12,180
-b^2\cdot 3 + 66\cdot b + 315\cdot (-1) = 0 \implies b^2 - 22\cdot b + 105 = \left(b + 15\cdot (-1)\right)\cdot (b + 7\cdot (-1)) = 0
-22,993
21/27 = \frac{7 \cdot 3}{3 \cdot 9}
3,006
-u^3 + x \cdot x \cdot x = \left(-u + x\right) (u \cdot u + x^2 + xu)
22,683
-b^2 + a^2 - ab + ba = \left(a + b\right) (-b + a)
-6,147
\dfrac{1}{2*i + 18*(-1)}*5 = \frac{5}{(i + 9*(-1))*2}
-9,926
0.01 (-28) = -28/100 = -\frac{1}{25}7
-13,128
-22.5/\left(-0.5\right) = 45
3,415
64 S^4 r r + 4 = (r^2 S^4\cdot 16 + 1)\cdot 4
17,337
b = db = bd
20,805
π/6 = \arccos(\sqrt{3}/2)
33,820
\frac{3 - x}{(x + 3*(-1))^2} = -\frac{1}{(x + 3*(-1))^2}*(x + 3*\left(-1\right)) = -\frac{1}{x + 3*(-1)}
34,616
1 + \cos{x} = 1 + \cos{2 x/2} = 2 \cos^2{x/2}
28,720
2^{1/2} \approx 1 + \frac12 - 1/8 + \dfrac{1}{16} = 23/16 \approx 1.4375
21,342
\sin(y\cdot 2) = \cos(y) \sin\left(y\right)\cdot 2
26,899
\cos\left(x \cdot 2\right) = -2 \cdot \sin^2(x) + 1 \implies \sin(x) = \sqrt{\frac12 \cdot (1 - \cos\left(2 \cdot x\right))}
-29,374
(x - g) \cdot (x + g) = -g \cdot g + x^2
11,972
545140134^2*12^2 = (12^3 + 640320^3)*163
-20,336
2/2 \cdot \tfrac{1}{-x \cdot 7 + 5 \cdot (-1)} \cdot 2 = \frac{1}{10 \cdot \left(-1\right) - 14 \cdot x} \cdot 4
1,922
7 = 6 \cdot (-1) + 18 + 5 \cdot \left(-1\right)
34,072
512^2 = 64^2 64
14,850
(1 + 2\cdot (-1))^2 = (-1) \cdot (-1) = 1 \leq 2\cdot \left(1 + (-2)^2\right) = 2\cdot \left(1 + 4\right) = 10
4,912
-x_2 + x_1 = x_0 - x_1 \implies x_2\cdot ... = -x_1\cdot 2 + x_0
33,256
73 = 145 + 72 \times (-1)
1,632
\sin(\alpha) \cdot \cos(J) - \cos(\alpha) \cdot \sin\left(J\right) = \sin\left(-J + \alpha\right)
717
1/z=\bar{z}=z^n\implies z^{n+1}=1
-9,413
2*2*7*x = 28*x
3,974
x := x_1 x_2 \cdots x_n := x_1 x_2 \cdots x_n
47,991
2 + 8 (-1) = -6 = 3 (-2)
14,747
\dfrac{117.7}{1 + 0.07} \frac{1}{1 + 0.1} = 100
1,961
\frac{1}{-y + 1} = \frac{1 + 0\cdot (-1)}{-y + 1}
9,038
\frac{1}{x + 2\left(-1\right)}\left(4 + 2x^3 - 10 x\right) = 2(-1) + 2x^2 + 4x
-20,472
\frac{q\cdot 9 + 9(-1)}{q\cdot 10}\cdot 6/6 = \frac{1}{60 q}\left(54 q + 54 (-1)\right)
9,484
5 + \left(1 + n\right)^2 = n \cdot n + 2 \cdot n + 6
48,701
x^2 + x + 1 = (x^2 + x + \tfrac 1 4) + \frac 3 4 = \left(x + \frac 1 2 \right)^2 + \frac 3 4
41,398
\cos{\frac{\pi}{4}} = \sin{\frac{1}{4}\cdot \pi} = 1
-12,190
1/2 = \frac{q}{16 \pi} \cdot 16 \pi = q
2,804
t^3-3t^2+t+1=(t-1)(t^2-2t-1)
-7,145
3/13\cdot \frac{5}{12} = 5/52
14,115
\frac{100}{6} = \frac{1}{x}\cdot 40 rightarrow 2.4 = x
-11,621
i\cdot 4 + 0 + 20 (-1) = i\cdot 4 - 20
6,649
16 = y^2 \cdot 9 + z^2 - 6yz \Rightarrow (z - 3y) \cdot (z - 3y) = 16
15,999
z^4 - z^2 + 1 = (1 + z * z - \sqrt{3}*z)*(z * z + z*\sqrt{3} + 1)
29,059
cb = b = bc
-29,802
d/dx (5 + x^2*2 - x*6) = 6\left(-1\right) + x*4
-9,675
\dfrac{2}{2} = 1
16,160
c = a/b \Rightarrow a = b \times c = 0 \times c = 0
15,823
\sin{\frac{1}{5}\cdot \pi/2} = \sin{\pi/10}
12,958
d + x + c = x + c + d = c + d + x
-27,702
\frac{\text{d}}{\text{d}y} \cos(y) = -\sin\left(y\right)
15,520
\frac16(1 + 2 + 3 + 4 + 5 + 6) = \frac{6}{2*6}7 = \tfrac{7}{2}
10,616
x - b = (\sqrt{x} - \sqrt{b})\cdot (\sqrt{x} + \sqrt{b}) \geq (\sqrt{x} - \sqrt{b}) \cdot (\sqrt{x} - \sqrt{b})
-22,102
\dfrac{1}{20}30 = \dfrac123