id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
30,060 | (x^2)^m = c \implies x^{2m} = c |
-22,216 | (t + 10) \cdot (t + 9) = t^2 + t \cdot 19 + 90 |
12,110 | \sin(x + \gamma) = \sin{\gamma} \cos{x} + \cos{\gamma} \sin{x} |
15,375 | \frac{1}{64}\cdot 15 + \frac{6}{64} + 1/64 = 22/64 |
-16,563 | 9\cdot \sqrt{16}\cdot \sqrt{13} = 9\cdot 4\cdot \sqrt{13} = 36\cdot \sqrt{13} |
11,523 | y' \cdot 4 + x \cdot 2 + 2y' y + 6(-1) = 0 \implies y' = \frac{1}{2y + 4}(6 - 2x) = \dfrac{1}{y + 2}(3 - x) |
33,174 | (1 + \sqrt{-5}) (-\sqrt{-5} + 1) = 6 |
7,016 | \frac{d_1^{d_2}}{d_1^c} = d_1^{d_2 - c} |
-20,191 | 7/7 \cdot \frac{1}{9} \cdot (x + 3 \cdot (-1)) = \tfrac{1}{63} \cdot (7 \cdot x + 21 \cdot (-1)) |
6,536 | x/4 + \frac{1}{4}*x + x/4 + \frac{x}{4} = x |
8,500 | \sin{\theta/2} \cdot \cos{\frac{1}{2} \cdot \theta} \cdot 2 = \sin{\theta} |
14,386 | \frac{g*1/h}{1 - -\frac1h z y} = \frac{g}{h + z y} |
26,928 | \operatorname{asin}(\sin(\pi + 2\cdot (-1))) = \operatorname{asin}(\sin(2)) |
-3,657 | \dfrac{k^4}{k \cdot k \cdot k} = \frac{k\cdot k\cdot k\cdot k}{k\cdot k\cdot k} = k |
-1,458 | -5/7 \cdot 8/7 = \frac{8 \cdot \frac{1}{7}}{(-1) \cdot 7 \cdot \frac{1}{5}} |
-11,566 | 19 i + 25 = 19 i + 10 + 15 |
-20,236 | \frac{4*(-1) - y*2}{-2*y + 4*\left(-1\right)}*(-\tfrac{1}{10}*3) = \frac{y*6 + 12}{-y*20 + 40*(-1)} |
-509 | \pi\cdot 323/12 - \pi\cdot 26 = \dfrac{1}{12}\cdot 11\cdot \pi |
-3,921 | \dfrac{r^2*84}{r^5*42} = \frac{r^2}{r^5}*84/42 |
35,703 | V_X = V_X^1 |
11,028 | (2^{1/2} \cdot z + (-1)) \cdot \left(1 + 2^{1/2} \cdot z\right) = (-1) + z^2 \cdot 2 |
20,289 | 2 + 3 = 5 > 4 |
14,720 | y/z = v \implies y = vz |
-6,209 | \frac{1}{y^2 - y\cdot 10 + 25} = \frac{1}{(5\cdot (-1) + y)\cdot (y + 5\cdot (-1))} |
-5,210 | 10^5 \cdot 7.1 = 10^{1 - -4} \cdot 7.1 |
45,764 | 2.2 = \dfrac{11}{5} |
16,122 | u^2 - v^2 = (u + v)\cdot \left(u - v\right) |
34,139 | ax+bx=(a+b)x |
28,262 | \frac16\cdot \sin(\pi) - \sin(0)/6 = 0 + 0\cdot (-1) = 0 |
6,485 | 0*a - 0*a = a*0 |
11,478 | \min{y, x'} = \frac12 \times \left(y + x' - |-x' + y|\right) |
-23,150 | -4 = 3(-4/3) |
3,787 | \frac{1}{y} = \frac{\overline{y}}{\overline{y} y} |
2,574 | (h + b) c = cb + ch |
35,696 | (-1) + y^3 = \left(y^2 + y + 1\right)\cdot ((-1) + y) |
39,532 | h\cdot b\cdot b = b\cdot h\cdot b |
9,233 | (2*(-1) + x)*\left(2 + x\right) = x^2 + 0*x + 4*(-1) |
-12,533 | 3 = \tfrac{30}{10} |
8,415 | k \cdot 0.25 \cdot (2 \cdot g)^2 = k \cdot g^2 |
32,888 | 2017 = 2017*\sqrt{2 + \left(-1\right)} |
8,539 | 4\cdot 1/27/180 = \frac{1}{1215} |
47,411 | \frac{|\overline{CB}|}{\sin A} = \frac{|\overline{CA}|}{\sin B} = \frac{|\overline{AB}|}{\sin C} \quad \left(= \frac{a+b}{\sin(A+B)}\;\right) |
-1,246 | 3 \times 1/2/(1/8) = \frac12 \times 3 \times 8/1 |
47,255 | 6 + 3 = 5 + 4 |
9,455 | k\cdot A = j\Longrightarrow A\cdot k = j |
30,090 | \tilde{x}\cdot b = \frac{0.036\cdot x}{0.0018\cdot b} = \dfrac{x}{b}\cdot 20 |
-2,500 | 2^{1 / 2}*(4 + 5 + 2*(-1)) = 7*2^{\frac{1}{2}} |
32,517 | FF = FF |
40,359 | (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)*99 = 5445 |
1,320 | \frac1z\cdot \sin{z} = \left(z - \dfrac{1}{6}\cdot z \cdot z \cdot z + \dotsm\right)/z = 1 - \dfrac{z^2}{6} + \dotsm |
46,396 | 3 \cdot 193 = 579 |
-4,427 | \frac{-z*5 + 8*(-1)}{2 + z * z + 3*z} = -\frac{1}{z + 2}*2 - \dfrac{3}{1 + z} |
-15,597 | \frac{1}{b^6\cdot x^6}\cdot b\cdot \frac{1}{x} = \dfrac{b\cdot \frac{1}{x}}{\frac{1}{\frac{1}{b^6}\cdot \frac{1}{x^6}}} |
-10,602 | \frac{8}{8\cdot (-1) + 4\cdot n} = \frac{1}{n + 2\cdot (-1)}\cdot 2\cdot 4/4 |
5,932 | z_1 = \operatorname{asin}(U) \Rightarrow U = \sin\left(z_1\right) |
8,456 | (1 - 8*d)*(d + 1) * (d + 1) = 1 - 8*d^3 - 15*d * d - 6*d |
30,039 | 6 = \dfrac{1}{4^1\cdot 1!}\cdot 4! |
15,924 | -x \cdot 81 = -81 \cdot x + 0 |
-20,123 | -14/(-8) = 7/4 (-2/(-2)) |
27,224 | 1 = (x\cdot y)^2 = x^2\cdot y^2\Longrightarrow x\cdot y = y\cdot x |
1,678 | (-x*2 + s)^2 = s^2 - s*x*4 + 4*x^2 |
27,614 | 305*(1 + 0.5 + 0.5^2) = 305*(1 + 0.5)*0.5 + 305 |
762 | 0 = b^2 - 2*b*h + h^2 = \left(b - h\right)^2 |
17,521 | 1 = z^{18} \Rightarrow \left(z^{18}\right)^3 = z^{54} = 1 |
-15,257 | \dfrac{r^2}{\frac{1}{\frac{1}{r^8} \cdot j^8}} = \frac{r^2}{\frac{1}{j^8} \cdot r^8} |
-5,736 | \frac{3}{90\cdot (-1) + p^2 - p} = \frac{3}{(10\cdot (-1) + p)\cdot (p + 9)} |
10,667 | {k \choose p} = {k + (-1) \choose p} + {k + (-1) \choose (-1) + p} |
33,841 | 0 = \left(-1\right) + 1 + (-1) + 1 + (-1) + 1 |
-10,495 | -41/48 = -\frac{1}{48} \cdot 41 |
32,690 | 5 = \left\lceil{4.0929}\right\rceil |
38,490 | 218 218 + (-1) = 219 \cdot 217 = 3 \cdot 73 \cdot 7 \cdot 31 |
26,179 | \frac{{7 \choose 0}}{{10 \choose 3}} \cdot {3 \choose 3} = 1/120 |
21,941 | (m + 1)^2 - (m + (-1))^2 = m^2 + 2\times m + 1 - m^2 + 2\times m + (-1) = 4\times m |
-5,105 | 0.79\cdot 10^0 = 0.79\cdot 10^{3 + 3(-1)} |
22,789 | 1 = \frac{\mathrm{d}y}{\mathrm{d}z}\cdot (z + y^2) \Rightarrow y^2 + z = \frac{\mathrm{d}z}{\mathrm{d}y} |
11,547 | 2\cdot \dfrac{1}{2}\cdot (\left(-1\right) + 2 - y) \cdot (\left(-1\right) + 2 - y) = (-y + 1)^2 |
25,548 | g h^2 g = \frac{1}{g h g} = h g h |
12,235 | \frac{a^2*g^7}{g*a^3} = \frac{g^6}{a} |
-11,175 | (z + 8(-1))^2 + c = (z + 8\left(-1\right)) \left(z + 8(-1)\right) + c = z^2 - 16 z + 64 + c |
13,281 | \pi = 3 + (6 + \tfrac{3^2}{6 + \frac{1}{6 + \dotsm}\cdot 5^2})^{-1} |
29,376 | 0 = x \Rightarrow \|x\| = 0 |
28,861 | \left(g + b\right) \cdot (-b \cdot g + g^2 + b \cdot b) = g^3 + b^2 \cdot b |
-23,108 | -\tfrac74 = -1/2*\frac127 |
-21,609 | \sin{-\pi \cdot 5/6} = -0.5 |
2,822 | 2\cdot (-3/2 + x) = x\cdot 2 + 3\cdot \left(-1\right) |
20,420 | \left\lfloor{\dfrac{1}{13} \cdot 200}\right\rfloor \cdot 3 + 4 = 49 |
24,077 | 1/36 + \dfrac19 + \frac{1}{9} = \frac{1}{4} |
2,185 | q + 5 \cdot q + 6 \cdot (-1) + 1 = 5 \cdot (-1) + 6 \cdot q |
-9,729 | -0.875 = -87.5/100 = -\frac18*7 |
13,197 | e^{(E + B)\cdot t} = e^{E\cdot t}\cdot e^{B\cdot t} = e^{B\cdot t}\cdot e^{E\cdot t} |
29,316 | -p*x + r*n = -p*x + r*n - r*x + r*x |
-4,538 | \frac{-y \cdot 6 + 3}{12 (-1) + y^2 - y} = -\frac{3}{y + 3} - \dfrac{1}{y + 4(-1)}3 |
41,427 | 9604 = 98\cdot 98 |
-18,275 | \frac{1}{p^2 + \left(-1\right)}*(4*(-1) + p^2 + p*3) = \frac{1}{(1 + p)*((-1) + p)}*(p + 4)*(p + (-1)) |
3,605 | \cos{z \times 2} = -2 \times \sin^2{z} + 1 |
7,225 | \sin{\dfrac{2π}{5}} = -\sin{\frac{π*8}{5}} |
2,045 | BA T - ATB = 0 \implies BA T = 0 |
18,515 | a^3 b^3 = \left(b a\right)^2 (a b) |
29,024 | (\sin^2(y))^{\dfrac{1}{2}} = |\sin(y)| = \sin(y) |
-20,540 | 5/5\cdot \frac{s}{3\cdot s + 2\cdot \left(-1\right)}\cdot 3 = \frac{1}{15\cdot s + 10\cdot \left(-1\right)}\cdot 15\cdot s |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.