id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
34,081 | \cos(2*x) = \cos^2\left(x\right) - \sin^2(x) = 2*\cos^2(x) + \left(-1\right) |
-4,840 | 7.2/10 = \tfrac{7.2}{10} |
19,659 | \int_{-1}^1 (x^2 \cdot c_2 + c_0)\,\mathrm{d}x = \left(\int\limits_0^1 \left(c_0 + c_2 \cdot x^2\right)\,\mathrm{d}x\right) \cdot 2 |
-5,887 | 6/6*\frac{1}{(x + 3*(-1))*(2*(-1) + x)}*5 = \frac{30}{\left(3*\left(-1\right) + x\right)*\left(2*(-1) + x\right)*6} |
13,698 | y = \int (-\cos\left(p + |y|\right)*y/|y|)\,\text{d}p = -\sin(p + |y|)*y/|y| |
18,150 | 1 = 3\cdot \left(x\cdot y\cdot z\right)^{2/3} + 2\cdot (-1) \leq x\cdot y + y\cdot z + z\cdot x + 2\cdot (-1) |
1,904 | h_2 + g_2\cdot \sqrt{2} + h_1 + \sqrt{2}\cdot g_1 = (g_2 + g_1)\cdot \sqrt{2} + h_1 + h_2 |
24,495 | \sin(x \times 2) = 2 \times \sin(x) \times \cos\left(x\right) |
9,515 | c = 2, b = 1 \implies \frac{1}{c c + b^2} c = \dfrac{2}{2 2 + 1 1} = 2/5 |
27,721 | 3616 = 1/6\cdot 21696 |
24,121 | 2^5 \cdot 3^2 = 288 |
12,620 | ((1 + i)/i)^i = (1 + \frac1i)^i |
11,983 | -(l^2 - 5 l + 13)*108 = 729 (-1) - (l*2 + 5 \left(-1\right)) (l*2 + 5 \left(-1\right))*27 |
22,876 | \overline{F} = x \Rightarrow F = x |
19,545 | H' \cdot g' = H \cdot g \Rightarrow \frac{g}{g'} \cdot H = H' |
14,452 | gfN = Ngf |
8,886 | (n + 1) * (n + 1) - 1 + n = n^2 + n |
-8,901 | (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot \left(-1\right) = -1^5 |
-22,139 | \frac{6}{9} = \frac{1}{3} \cdot 2 |
-20,667 | -\frac{3}{30} = 3/3 (-1/10) |
-16,440 | 8 \cdot 4^{\frac{1}{2}} \cdot 11^{\frac{1}{2}} = 8 \cdot 2 \cdot 11^{\dfrac{1}{2}} = 16 \cdot 11^{\frac{1}{2}} |
2,145 | (z + (-1)) \cdot (z + 1) = (z + \left(-1\right)) \cdot z + z + (-1) = z \cdot z - z + z + (-1) = z \cdot z + (-1) |
13,073 | I_n = A\cdot B \Rightarrow A\cdot B = I_n |
-20,300 | \frac{1}{4\cdot s + 16}\cdot \left(3\cdot s + 12\right) = \frac{3}{4}\cdot \frac{s + 4}{4 + s} |
41,876 | 1/e^x = e^{-x} |
5,348 | \left(\dfrac{(r + (-1)) r}{(r + 1) r} = 1/2 \implies r + 1 = 2r + 2(-1)\right) \implies r = 3 |
-20,696 | \frac{45}{-10\cdot t + 15\cdot (-1)} = \frac{9}{3\cdot \left(-1\right) - 2\cdot t}\cdot \frac55 |
-7,232 | 2/5*3/4 = 3/10 |
20,281 | O*A/\sin\left(B\right) = \frac{O*B}{\sin(A)} = A*B/\sin\left(O\right) |
-18,617 | 5 \cdot q + 5 = 7 \cdot (3 \cdot q + 9) = 21 \cdot q + 63 |
5,154 | w + w + S + S = (w + S) \times (1 + 1) = w + S + w + S |
4,506 | \frac{1}{1024}256 = 1/4 |
-16,730 | 2 = a^2 - a + 2\cdot a + 2\cdot (-1) = a^2 - a + 2\cdot a + 2\cdot (-1) |
25,401 | z\cdot (a + 1) + 100\cdot a + 56 = z + 1000\cdot a \Rightarrow z = 900 - \dfrac{56}{a} |
9,082 | 2^m + i = 2 \cdot 2^{m + \left(-1\right)} + 2 \cdot i/2 = 2 \cdot \left(2^{m + (-1)} + \frac{1}{2} \cdot i\right) |
30,640 | c \cdot c\cdot c\cdot c^2 = c^5 |
30,303 | E[Z]\times E[X] = E[X\times Z] |
-11,740 | \frac{81}{16} = (\frac94)^2 |
38,755 | 15/60 = \tfrac14 |
-1,772 | -\pi\cdot \dfrac{11}{12} = -\pi + \pi/12 |
-2,689 | \sqrt{9} \times \sqrt{5} + \sqrt{5} \times \sqrt{16} = \sqrt{5} \times 3 + 4 \times \sqrt{5} |
24,963 | a \cdot f^2 = a \cdot f^2 |
52,262 | \frac{1}{12} \cdot (q^2 + (-1)) = \left\lfloor{\sqrt{q}}\right\rfloor + \left\lfloor{\sqrt{2 \cdot q}}\right\rfloor + \dots + \left\lfloor{\sqrt{q \cdot \left(q + (-1)\right)/4}}\right\rfloor |
12,109 | 3\cdot j \cdot j + j\cdot 3 + 1 = (1 + j)^3 - j^3 |
2,478 | 1 + 24541/56660 = \frac{81201}{56660} |
29,072 | (-1) + z^3 = (z \cdot z + z + 1)\cdot (z + (-1)) |
30,507 | f\frac{-r^k + 1}{-r + 1} = f\dfrac{1}{(-1) + r}\left((-1) + r^k\right) |
31,749 | (1 + 1) (d + h) = d + h + d + h = d + h + d + h |
29,775 | i_1 xi_2 = xi_1 i_2 |
-1,692 | -\pi*2 + \pi*7/3 = \frac{\pi}{3} |
1,215 | 0.3\cdot \cos(3\cdot x) + 0.4\cdot \sin(3\cdot x) = U\cdot \sin(3\cdot x + X) = U\cdot \sin(3\cdot x)\cdot \cos\left(X\right) + U\cdot \cos(3\cdot x)\cdot \sin(X) |
107 | \rho^2 + b \cdot b + d^2 + \rho \cdot b \cdot d = 4 \geq \rho \cdot b + b \cdot d + \rho \cdot d + \rho \cdot b \cdot d |
29,221 | \cos(\arctan(n)) = \tfrac{1}{\sqrt{1 + n \cdot n}} |
8,063 | 648 = 3^4\cdot 2 \cdot 2 \cdot 2 |
27,277 | 3^{4 \cdot n + 3} = 3^3 \cdot (10 + (-1))^{2 \cdot n} = 3^3 \cdot (1 + 10 \cdot \left(-1\right))^{2 \cdot n} |
-10,592 | -9 = -5*y + 4 + 21*(-1) = -5*y + 17*\left(-1\right) |
8,035 | \frac 1p + \frac 1q=1 \implies (p-1)(q-1)=1 |
16,312 | \dfrac{1}{2^{-\sqrt{l}}}l \cdot l = 2^{\sqrt{l}} l^2 |
21,022 | b = x A \implies b/A = x |
1,336 | \frac{1}{((-1) + x)^2}*(x + 2*(-1))*e^x = \frac{\mathrm{d}}{\mathrm{d}x} (\frac{e^x}{(-1) + x}) |
10,876 | \frac{1}{2}*(\sin(c + g) + \sin(c - g)) = \sin(c)*\cos(g) |
19,592 | (f, g) = \frac{1}{g}*f*g/f = f^g/f |
-11,622 | -2 + 8i = i*8 + 3 + 5(-1) |
421 | \frac{(-2) \dfrac1x}{-e^{1/x} \frac{1}{x^2}} = \frac{1}{(-1) e^{\frac{1}{x}}}((-2) x) = 2xe^{-\frac1x} |
53,102 | (y + x)^2 = \frac{\mathrm{d}y}{\mathrm{d}x} rightarrow 1 + \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\partial}{\partial x} (y + x) = 1 + (y + x)^2 |
26,460 | \cos{z} = \left(e^{iz} + e^{-iz}\right)/2 \sin{z} = \frac{1}{2i}(e^{iz} - e^{-iz}) |
-5,705 | 8/8*\frac{3}{(q + 9(-1)) \left(2(-1) + q\right)} = \frac{24}{8(q + 2(-1)) (9\left(-1\right) + q)} |
5,902 | \left(1 - \sqrt{5} \cdot 2\right)^2 = -\sqrt{5} \cdot 4 + 21 |
-8,467 | 36 = \left(-4\right)*\left(-9\right) |
4,082 | 0 = \dfrac{1}{2}\times (1 - 1) |
-2,320 | \dfrac{2}{11} = -2/11 + \tfrac{4}{11} |
36,937 | -z_1 + 3 - 2\cdot z_2 = 0 \Rightarrow z_1 = -z_2\cdot 2 + 3 |
-3,659 | 5/(6*q) = 5*1/6/q |
5,467 | -\dfrac{y + 2\cdot (-1)}{2 + y} = \frac{2 - y}{2 + y} |
809 | y! = 10!\cdot 11\cdot 12\cdot ...\cdot y > 10!\cdot 11^{y + 10\cdot \left(-1\right)} |
9,167 | \cos{\frac{\pi}{4}} \cdot \sin{0} \cdot 2 = 0 |
639 | 25 + x^2 - 10*x = (x + 5*(-1))^2 |
15,505 | \frac{Z}{2} = G \implies Z < G |
23,765 | \sec{\theta} \tan{\theta} = \frac{d}{d\theta} \sec{\theta} |
-17,707 | 3 = 17 + 14 (-1) |
-15,806 | -71/10 = -9/10*9 + \frac{1}{10}*10 |
400 | 1 + 3*x = \frac{1 + x*3}{(1 - x)^8} |
27,567 | \overline{x} \cdot a = \overline{\overline{a} \cdot x} |
427 | \operatorname{E}[V \times x] = \operatorname{E}[V] \times \operatorname{E}[x] |
9,029 | x^2 + x y \cdot 2 + y^2 = \left(x + y\right)^2 |
20,442 | 5 + b^2 = 5 + a^2 \Rightarrow a^2 = b^2 |
20,452 | z + (-1) + (z + (-1)) \cdot (z + (-1)) + z = z \cdot z |
1,581 | ((-y + 1) \cdot (1 + y))^{1/2} = (1 - y^2)^{1/2} |
25,303 | \sin(\pi/3)\cdot 2 = \sqrt{3} |
15,184 | |x^2 - x| = |(-1) + x|*|x| |
18,229 | 11/15 = \frac{12 + \left(-1\right)}{16 + (-1)} |
-28,892 | (100 + 200 + 150 + 150)/4 = \dfrac{1}{4}\cdot 600 = 150 |
5,086 | -a \cdot a + z^2 = (-a + z) \cdot (a + z) |
-15,772 | -10\cdot \tfrac{1}{10}\cdot 8 + 2/10\cdot 10 = -\dfrac{1}{10}\cdot 60 |
-2,325 | \frac{5}{15} = \dfrac{1}{3} |
11,216 | \frac36 \cdot \frac{1}{6} \cdot 4 + \tfrac46 \cdot 4/6 = 7/9 |
5,969 | r^2 = 1 + ((-1) + r) \cdot (r + 1) |
21,094 | a*1/d/h = \frac{a*1/d}{h} = \frac{a}{d*h} |
-28,939 | \frac{1}{2}4 = 2 |
-16,335 | (25 \cdot 2)^{1/2} \cdot 10 = 50^{1/2} \cdot 10 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.