id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-1,952 | \pi*37/12 - 2 \pi = \pi*13/12 |
44,463 | 0.6 = 0.024*25 |
-6,629 | 9/9 \cdot \frac{4}{(7 + z) \left(z + 1\right)} = \frac{36}{9(z + 1) (7 + z)} |
28,588 | 108.25 = (-1)*6.75 + 115 |
14,199 | \left(x + (-1)\right)! = \frac{x!}{x} |
4,751 | |-z + y\cdot 2| = |z - 2\cdot y| |
-1,290 | -\frac{28}{42} = \dfrac{\left(-28\right)*\frac{1}{14}}{42*\frac{1}{14}} = -2/3 |
29,309 | k*x = k*x |
13,779 | Y Y Y = Y J = J Y |
-588 | (e^{\dfrac{\pi*i}{12}*1})^{16} = e^{16*\frac{\pi*i}{12}} |
-18,314 | \dfrac{3 \cdot (-1) + n^2 - 2 \cdot n}{n^2 - 6 \cdot n + 7 \cdot (-1)} = \frac{(n + 3 \cdot (-1)) \cdot \left(n + 1\right)}{(n + 1) \cdot (n + 7 \cdot \left(-1\right))} |
16,296 | 2^{n + l + (-1)} = 2^{n - l + 1} \cdot 4^{l + (-1)} |
29,442 | p - q + 2q = -(-q - p) |
24,728 | 2 = \binom{2}{1}\cdot \binom{1}{1} |
19,530 | d + g = v \cdot z \Rightarrow \frac1z \cdot (d + g) = v |
-23,720 | 12/35 = \frac{4}{5}*\frac{3}{7} |
1,433 | 5/7 \frac68*1/(9*10)*24*3 = 3/7 |
2,282 | 3\times (1 + x^2) - (x^2 + (-1))\times 3 = -2\times (x\times 2 + 3\times (-1)) + 4\times x |
10,156 | 6^3 = 5^3 + 3 * 3 * 3 + 4 * 4 * 4 |
14,516 | 7191 = 10000 + 2809 (-1) |
7,502 | 8 \cdot \frac{1}{27}/(\frac13) = \frac89 |
9,185 | 9!/(3!*3!*3!*3!) = 280 |
-2,586 | -\sqrt{6} + \sqrt{6}\cdot \sqrt{4} = 2\cdot \sqrt{6} - \sqrt{6} |
23,150 | 6 = 7\cdot 0 + 3\cdot 2 |
1,075 | \binom{s}{q} = s/q \cdot \binom{(-1) + s}{q + (-1)} |
2,522 | (33 + 33 + 11)/55 = (3 + 3 + 1)/5 = \dfrac75 |
31,339 | 8\times 221^3\times 442^{257} = 442^{260} |
-7,096 | \frac15 = \frac{2}{5} \cdot 3/6 |
26,420 | e_1 \times k_1 \times e_2 \times k_2 = e_1 \times e_2 \times k_1 \times k_2 = e_1 \times e_2 \times k_1 \times k_2 |
20,859 | Z^g = Z^p \Rightarrow Z^{\frac{g}{p}} = Z |
2,303 | \dfrac{\left(n!\right)!}{n!} = (n! + (-1))! |
23,093 | 312500 = 5^3*5^3*{6 \choose 3} |
28,157 | 1 = 1/y + y rightarrow 1 = y^7 + \frac{1}{y^7} |
21,043 | \dfrac{1}{x^3} = \dfrac1x - \dfrac{3}{x^2} = \frac{10}{x} + 3 \cdot (-1) |
-6,821 | 10 \cdot 11 \cdot 9 = 990 |
7,942 | x\cdot l = 88 \Rightarrow \frac{1}{l}\cdot 88 = x |
-547 | \left(e^{5*i*π/4}\right)^{14} = e^{14*i*π*5/4} |
36,773 | 1 - \dfrac{50}{81} = \tfrac{31}{81} |
-4,031 | \frac{12 \cdot 10}{12 \cdot 3} \cdot \tfrac{r^5}{r^4} = \frac{r^5}{r^4} \cdot \frac{1}{36} \cdot 120 |
5,243 | \cot((π\cdot (-1))/4) = \cot(\frac{π}{4}\cdot 3) |
-151 | {5 \choose 3} = \tfrac{5!}{3! \cdot (5 + 3 \cdot \left(-1\right))!} |
2,567 | r^4 + 2\cdot (-1) = r^4 + 4 = r^4 + 4\cdot r \cdot r + 4 - r^2 = r^2 + 2 - r^2 = (r^2 + 2 - r)\cdot (r^2 + 2 + r) |
-22,254 | x^2 + 13 x + 36 = (x + 4) \left(x + 9\right) |
38,353 | \left(1 + 1\right) \cdot \left(1 + 1\right) - 1^2 = 1 + 2 |
21,072 | \left(3\cdot (-1) + z\right)\cdot (2\cdot (-1) + z) = 6 + z^2 - z\cdot 5 |
5,269 | U + x = U + x + k - n rightarrow U + x + k = U + x + n |
63 | |l^l| = 1 > |l| |
27,423 | u_v \cdot x = u_w \Rightarrow \frac{u_w}{x} = u_v |
-19,430 | 7/3 \cdot \frac{7}{2} = \dfrac{1/2}{\frac{1}{7} \cdot 3} \cdot 7 |
52,406 | 1000000007 = 7 + 10^9 |
35,307 | 3*(e + a) = e*3 + a*3 |
14,464 | (q + 1)^2 = q^2 + 2 \cdot q + 1 = q \cdot q + 1 |
24,787 | -\sin(2*z) = -2*\cos(z)*\sin(z) |
27,415 | z^5 + (-1) = \left(1 + z^4 + z^3 + z^2 + z\right)\cdot ((-1) + z) |
154 | -E[R] = E[-R] |
11,175 | w = \frac{1}{z + 4(-1)}(3(-1) + z) \Rightarrow \tfrac{4w + 3(-1)}{(-1) + w} = z |
38,568 | x x = 2^2\Longrightarrow x = 2 |
36,798 | -4/15 = -\tfrac{4}{15} |
5,738 | \sqrt{2} = \tfrac{4\cdot \cos{\pi/12}}{-\tan{\frac{\pi}{12}} + 3} |
25,195 | (1 + m)*(1 + m)! + (1 + m)! = (m + 1)!*(1 + m + 1) |
-3,502 | \frac{7}{10} = 0.7 |
3,581 | \cos{h}*\sin{e} + \sin{h}*\cos{e} = \sin\left(h + e\right) |
17,819 | 3 - 2f_2 = f_2 + b + f_1 - 2f_2 = -f_2 + b + f_1 |
8,123 | (k \cdot k)^3 = k^6 |
113 | 3945636 = 4\cdot (1!\cdot \binom{9}{1} + \binom{9}{2}\cdot 2! + \dotsm + \binom{9}{9}\cdot 9!) |
48,293 | x^{x^{(-1) + 1}} = x |
16,391 | \frac{\theta}{4 + \theta} = \frac{\theta}{4 + i + \theta - i} |
-18,607 | -20/11 = -\dfrac{1}{11}*20 |
11,711 | -\mathbb{E}(V) = \mathbb{E}(-V) |
24,897 | g*d*x = g*x*d |
11,403 | e^x = 1 + x + \frac{1}{2!}\times x^2 + \frac{1}{3!}\times x^3 + \dots > \frac16\times x^3 |
-22,831 | \dfrac{72}{16} = 9\cdot 8/(2\cdot 8) |
51,289 | \left\lfloor{\frac13*6}\right\rfloor = 2 |
28,409 | y + x + x + y = x + y + x + y |
-23,244 | \dfrac{1}{3} = \frac421/6 |
8,792 | 1.0000006^2 = (1 + \frac{6}{10^7}) \cdot (1 + \frac{6}{10^7}) = (1 + \frac{3}{5 \cdot 10^6})^2 |
1,791 | 2 + a = a + (-1) + 3 |
12,315 | g_2 + g_1 = -2\Longrightarrow -g_1 + g_2 = -8 |
-20,288 | 4/4 \cdot (-\frac{8}{3}) = -\frac{1}{12} \cdot 32 |
24,830 | z*7 - z*4 = z*3 |
47,553 | 2^{31} = 1298 + 734182\cdot 2925 |
26,349 | A = A \cup \left(B \cap B^c\right) = (A \cap B) \cup (A \cap B^c) |
10,054 | \pi/3 - \pi = \frac{1}{3}\times (\pi\times (-2)) |
7,129 | \sqrt{S_n} = F_n \Rightarrow F_n \cdot F_n = S_n |
20,662 | 2\times (n + (-1)) = n\times 2 + 2\times (-1) |
21,816 | y \cdot 99 = 13\Longrightarrow y = \frac{13}{99} |
26,612 | x = c^2 \Rightarrow c = \sqrt{x} |
21,590 | a + x = (a + x)^2 = a^2 + a \times x + x \times a + x^2 = a + a \times x + x \times a + x |
1,859 | -7.5 = -17/6 - 14/3 |
-7,355 | 4/14\cdot 5/13 = \frac{10}{91} |
-15,964 | -9/10 \cdot 8 + \frac{10}{10} = -62/10 |
375 | y + 144 = 11\cdot (9 + y) \Rightarrow 99 + 11\cdot y = y + 144 |
4,318 | 2\cdot \sin{1} = 1.683\cdot \dots > \frac85 |
27,944 | \frac{\omega^2\cdot 5^{1/3}}{5^{1/3} \omega} = \omega |
23,490 | a\cdot z = b \implies z = b/a |
-22,073 | \frac{4}{24} = \frac{1}{6} |
14,183 | 3 = \tfrac{1}{-1/3 + 1} \times 2 |
43,512 | \frac{1}{3}*6 = 2 |
3,965 | \frac{x}{x + 30}\cdot 0.4 = \tfrac{3}{10} \implies 90 = x |
26,467 | 10 10 + 23 \left(-1\right) = 77 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.