id
int64
-30,985
55.9k
text
stringlengths
5
437k
-1,952
\pi*37/12 - 2 \pi = \pi*13/12
44,463
0.6 = 0.024*25
-6,629
9/9 \cdot \frac{4}{(7 + z) \left(z + 1\right)} = \frac{36}{9(z + 1) (7 + z)}
28,588
108.25 = (-1)*6.75 + 115
14,199
\left(x + (-1)\right)! = \frac{x!}{x}
4,751
|-z + y\cdot 2| = |z - 2\cdot y|
-1,290
-\frac{28}{42} = \dfrac{\left(-28\right)*\frac{1}{14}}{42*\frac{1}{14}} = -2/3
29,309
k*x = k*x
13,779
Y Y Y = Y J = J Y
-588
(e^{\dfrac{\pi*i}{12}*1})^{16} = e^{16*\frac{\pi*i}{12}}
-18,314
\dfrac{3 \cdot (-1) + n^2 - 2 \cdot n}{n^2 - 6 \cdot n + 7 \cdot (-1)} = \frac{(n + 3 \cdot (-1)) \cdot \left(n + 1\right)}{(n + 1) \cdot (n + 7 \cdot \left(-1\right))}
16,296
2^{n + l + (-1)} = 2^{n - l + 1} \cdot 4^{l + (-1)}
29,442
p - q + 2q = -(-q - p)
24,728
2 = \binom{2}{1}\cdot \binom{1}{1}
19,530
d + g = v \cdot z \Rightarrow \frac1z \cdot (d + g) = v
-23,720
12/35 = \frac{4}{5}*\frac{3}{7}
1,433
5/7 \frac68*1/(9*10)*24*3 = 3/7
2,282
3\times (1 + x^2) - (x^2 + (-1))\times 3 = -2\times (x\times 2 + 3\times (-1)) + 4\times x
10,156
6^3 = 5^3 + 3 * 3 * 3 + 4 * 4 * 4
14,516
7191 = 10000 + 2809 (-1)
7,502
8 \cdot \frac{1}{27}/(\frac13) = \frac89
9,185
9!/(3!*3!*3!*3!) = 280
-2,586
-\sqrt{6} + \sqrt{6}\cdot \sqrt{4} = 2\cdot \sqrt{6} - \sqrt{6}
23,150
6 = 7\cdot 0 + 3\cdot 2
1,075
\binom{s}{q} = s/q \cdot \binom{(-1) + s}{q + (-1)}
2,522
(33 + 33 + 11)/55 = (3 + 3 + 1)/5 = \dfrac75
31,339
8\times 221^3\times 442^{257} = 442^{260}
-7,096
\frac15 = \frac{2}{5} \cdot 3/6
26,420
e_1 \times k_1 \times e_2 \times k_2 = e_1 \times e_2 \times k_1 \times k_2 = e_1 \times e_2 \times k_1 \times k_2
20,859
Z^g = Z^p \Rightarrow Z^{\frac{g}{p}} = Z
2,303
\dfrac{\left(n!\right)!}{n!} = (n! + (-1))!
23,093
312500 = 5^3*5^3*{6 \choose 3}
28,157
1 = 1/y + y rightarrow 1 = y^7 + \frac{1}{y^7}
21,043
\dfrac{1}{x^3} = \dfrac1x - \dfrac{3}{x^2} = \frac{10}{x} + 3 \cdot (-1)
-6,821
10 \cdot 11 \cdot 9 = 990
7,942
x\cdot l = 88 \Rightarrow \frac{1}{l}\cdot 88 = x
-547
\left(e^{5*i*π/4}\right)^{14} = e^{14*i*π*5/4}
36,773
1 - \dfrac{50}{81} = \tfrac{31}{81}
-4,031
\frac{12 \cdot 10}{12 \cdot 3} \cdot \tfrac{r^5}{r^4} = \frac{r^5}{r^4} \cdot \frac{1}{36} \cdot 120
5,243
\cot((π\cdot (-1))/4) = \cot(\frac{π}{4}\cdot 3)
-151
{5 \choose 3} = \tfrac{5!}{3! \cdot (5 + 3 \cdot \left(-1\right))!}
2,567
r^4 + 2\cdot (-1) = r^4 + 4 = r^4 + 4\cdot r \cdot r + 4 - r^2 = r^2 + 2 - r^2 = (r^2 + 2 - r)\cdot (r^2 + 2 + r)
-22,254
x^2 + 13 x + 36 = (x + 4) \left(x + 9\right)
38,353
\left(1 + 1\right) \cdot \left(1 + 1\right) - 1^2 = 1 + 2
21,072
\left(3\cdot (-1) + z\right)\cdot (2\cdot (-1) + z) = 6 + z^2 - z\cdot 5
5,269
U + x = U + x + k - n rightarrow U + x + k = U + x + n
63
|l^l| = 1 > |l|
27,423
u_v \cdot x = u_w \Rightarrow \frac{u_w}{x} = u_v
-19,430
7/3 \cdot \frac{7}{2} = \dfrac{1/2}{\frac{1}{7} \cdot 3} \cdot 7
52,406
1000000007 = 7 + 10^9
35,307
3*(e + a) = e*3 + a*3
14,464
(q + 1)^2 = q^2 + 2 \cdot q + 1 = q \cdot q + 1
24,787
-\sin(2*z) = -2*\cos(z)*\sin(z)
27,415
z^5 + (-1) = \left(1 + z^4 + z^3 + z^2 + z\right)\cdot ((-1) + z)
154
-E[R] = E[-R]
11,175
w = \frac{1}{z + 4(-1)}(3(-1) + z) \Rightarrow \tfrac{4w + 3(-1)}{(-1) + w} = z
38,568
x x = 2^2\Longrightarrow x = 2
36,798
-4/15 = -\tfrac{4}{15}
5,738
\sqrt{2} = \tfrac{4\cdot \cos{\pi/12}}{-\tan{\frac{\pi}{12}} + 3}
25,195
(1 + m)*(1 + m)! + (1 + m)! = (m + 1)!*(1 + m + 1)
-3,502
\frac{7}{10} = 0.7
3,581
\cos{h}*\sin{e} + \sin{h}*\cos{e} = \sin\left(h + e\right)
17,819
3 - 2f_2 = f_2 + b + f_1 - 2f_2 = -f_2 + b + f_1
8,123
(k \cdot k)^3 = k^6
113
3945636 = 4\cdot (1!\cdot \binom{9}{1} + \binom{9}{2}\cdot 2! + \dotsm + \binom{9}{9}\cdot 9!)
48,293
x^{x^{(-1) + 1}} = x
16,391
\frac{\theta}{4 + \theta} = \frac{\theta}{4 + i + \theta - i}
-18,607
-20/11 = -\dfrac{1}{11}*20
11,711
-\mathbb{E}(V) = \mathbb{E}(-V)
24,897
g*d*x = g*x*d
11,403
e^x = 1 + x + \frac{1}{2!}\times x^2 + \frac{1}{3!}\times x^3 + \dots > \frac16\times x^3
-22,831
\dfrac{72}{16} = 9\cdot 8/(2\cdot 8)
51,289
\left\lfloor{\frac13*6}\right\rfloor = 2
28,409
y + x + x + y = x + y + x + y
-23,244
\dfrac{1}{3} = \frac421/6
8,792
1.0000006^2 = (1 + \frac{6}{10^7}) \cdot (1 + \frac{6}{10^7}) = (1 + \frac{3}{5 \cdot 10^6})^2
1,791
2 + a = a + (-1) + 3
12,315
g_2 + g_1 = -2\Longrightarrow -g_1 + g_2 = -8
-20,288
4/4 \cdot (-\frac{8}{3}) = -\frac{1}{12} \cdot 32
24,830
z*7 - z*4 = z*3
47,553
2^{31} = 1298 + 734182\cdot 2925
26,349
A = A \cup \left(B \cap B^c\right) = (A \cap B) \cup (A \cap B^c)
10,054
\pi/3 - \pi = \frac{1}{3}\times (\pi\times (-2))
7,129
\sqrt{S_n} = F_n \Rightarrow F_n \cdot F_n = S_n
20,662
2\times (n + (-1)) = n\times 2 + 2\times (-1)
21,816
y \cdot 99 = 13\Longrightarrow y = \frac{13}{99}
26,612
x = c^2 \Rightarrow c = \sqrt{x}
21,590
a + x = (a + x)^2 = a^2 + a \times x + x \times a + x^2 = a + a \times x + x \times a + x
1,859
-7.5 = -17/6 - 14/3
-7,355
4/14\cdot 5/13 = \frac{10}{91}
-15,964
-9/10 \cdot 8 + \frac{10}{10} = -62/10
375
y + 144 = 11\cdot (9 + y) \Rightarrow 99 + 11\cdot y = y + 144
4,318
2\cdot \sin{1} = 1.683\cdot \dots > \frac85
27,944
\frac{\omega^2\cdot 5^{1/3}}{5^{1/3} \omega} = \omega
23,490
a\cdot z = b \implies z = b/a
-22,073
\frac{4}{24} = \frac{1}{6}
14,183
3 = \tfrac{1}{-1/3 + 1} \times 2
43,512
\frac{1}{3}*6 = 2
3,965
\frac{x}{x + 30}\cdot 0.4 = \tfrac{3}{10} \implies 90 = x
26,467
10 10 + 23 \left(-1\right) = 77