id
int64
-30,985
55.9k
text
stringlengths
5
437k
22,520
2 \times \sqrt{7} \times 4 = \sqrt{7} \times 2 \times 4
19,376
\dfrac{1}{\left(m + \left(-1\right)\right) m!} = \frac{1}{\left((-1) + m\right)! m*(m + (-1))}
28,897
\dfrac{36}{44} = 9/11
12,489
\pi/12 + x\pi/6 = \dfrac{\pi}{12}*(1 + 2x)
4,344
y + z = 0 \Rightarrow -y = z
-3,171
\sqrt{4 \cdot 6} + \sqrt{6} = \sqrt{6} + \sqrt{24}
21,272
\left(f + b\right) \cdot \left(f + b\right) = f^2 + 2\cdot b\cdot f + b \cdot b
21,415
11 = 2 * 2*2 + 3
22,586
f_2\times h\times f_1 = \frac{f_2}{h}\times f_1 = f_2\times \frac1h/\left(f_1\right) = \dfrac{f_2}{h\times f_1}
-5,570
\frac{1}{8\times (-1) + m^2 - m\times 2}\times 23 = \dfrac{(-1) + 4\times m + 8 - m\times 4 + 16}{m^2 - m\times 2 + 8\times (-1)}
-23,618
0.25 ^ 7 = (1 - 0.75)^7
13,400
3/6*\frac47 = \frac{2}{7}
41,345
\frac{1}{12} + \dfrac16 = \frac14
-10,544
-\frac{8}{3 \cdot q + 5} \cdot \dfrac{1}{12} \cdot 12 = -\frac{96}{60 + 36 \cdot q}
22,365
\frac{1}{3} + \dfrac{1}{2} = 5/6
-22,319
12 + m^2 - 8 \cdot m = (6 \cdot (-1) + m) \cdot (2 \cdot \left(-1\right) + m)
11,458
\dfrac{7 \cdot 6}{10 \cdot 9} = \frac{42}{90} = 7/15
26,806
(-4)^n/(-4) = (-4)^{n + (-1)} = (-1)^{n + (-1)}*4^{n + (-1)}
-10,711
-\frac{3}{3 + z\cdot 5}\cdot 6/6 = -\dfrac{1}{30\cdot z + 18}\cdot 18
11,106
{10 \choose 2}\times {26 \choose 3}\times 5! = 14040000
14,097
x_1 \overline{r_1} + ... + \overline{r_n} x_n = r_1 x_1 + ... + x_n r_n
33,303
\tfrac{1}{ba} = 1/(ab)
19,809
\frac{1}{x} + 1/x - \tfrac{1}{x \cdot x} = 2/x - \frac{1}{x^2} \lt 2/x
-6,697
5/100 + 7/10 = 70/100 + \frac{1}{100} 5
-19,472
\frac{7 \cdot 1/4}{5 \cdot 1/2} = \frac{7}{4} \cdot \frac15 2
23,697
\frac{10*85}{100} = 8.5
-9,472
-m \cdot 2 \cdot 3 \cdot 3 \cdot 3 + 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = -54 \cdot m + 48
12,337
\frac{1}{f\cdot h} = \dfrac{1}{h\cdot f} \neq 1/(f\cdot h)
32,736
a^l a^n = a^{l + n}
15,663
\sin{z} \cdot \cos{z} = \sin{z} \cdot \sin(\frac{1}{2} \cdot \pi - z)
15,271
1 + 4*e + 9*e^2 + \ldots + l^2*e^{l + (-1)} = e*l^2 - 2*e^2*l
-15,892
-\frac{1}{10}\cdot 55 = 5\cdot \dfrac{3}{10} - 10\cdot 7/10
-9,950
0.01 (-25) = -25/100 = -0.25
15,959
47^2*7^2*3^2*5 = 2207^2 + 4*(-1)
12,119
\frac{1}{(1 - 1/2)^2\cdot 2} = 2
31,786
6 + (t + 3\cdot (-1))/2 + \dfrac{1}{2}\cdot ((-1) + t) = 4 + t
-30,381
\frac{1}{10000}\cdot 2.077 = 2.077\cdot 0.0001
-2,628
63^{1 / 2} - 7^{\frac{1}{2}} = -7^{\dfrac{1}{2}} + (9 \cdot 7)^{\frac{1}{2}}
-11,086
(y + 7\cdot \left(-1\right))^2 + f = (y + 7\cdot (-1))\cdot \left(y + 7\cdot (-1)\right) + f = y^2 - 14\cdot y + 49 + f
-4,597
6\cdot (-1) + z^2 - z = \left(3\cdot (-1) + z\right)\cdot (z + 2)
-7,872
\frac{1}{-i - 4}\cdot (-18 - i\cdot 13)\cdot \frac{-4 + i}{-4 + i} = \frac{1}{-i - 4}\cdot (-18 - 13\cdot i)
-1,077
\frac{2 \cdot 1/7}{8 \cdot \frac15} = \frac27 \cdot \frac58
10,014
12*(x_1 - x_2) = 8*(z_1 - z_2) \implies 2*(z_1 - z_2) = 3*(x_1 - x_2)
-26,498
180\cdot x = 9\cdot x\cdot 10\cdot 2
-4,715
\dfrac{1}{z + 5} \cdot 5 + \frac{2}{z + 1} = \tfrac{1}{5 + z^2 + z \cdot 6} \cdot (7 \cdot z + 15)
12,900
(\cos\left(Z - B\right) - \cos(B + Z))/2 = \sin{Z} \cdot \sin{B}
-2,434
4\cdot \sqrt{2} = (3\cdot (-1) + 2 + 5)\cdot \sqrt{2}
16,020
2 (\cos{x} + (-1)) = 2*(1 - 2 \sin^2{\frac12 x} + (-1)) = 2 (-2 \sin^2{\frac12 x})
16,438
1/x + 1/2 = 1/x + 1/2
1,089
4/3 \cdot \pi - 2 \cdot \pi = -\pi \cdot 2/3
-26,574
162 \cdot (-1) + 2 \cdot z^2 = (81 \cdot (-1) + z^2) \cdot 2
3,000
\cos\left(Y + G\right) = -\sin{G} \cdot \sin{Y} + \cos{G} \cdot \cos{Y}
-6,827
8 \times 4 \times 10 = 320
-23,000
26/39 = \frac{26}{3 \cdot 13} \cdot 1
9,500
9/36 = \dfrac{1}{6}\cdot 3/6 + 1/6
-20,270
\frac{(-81) k}{9 + 45 k} = \frac{1}{k*5 + 1}(k*\left(-9\right)) \frac{9}{9}
8,927
n = 4*k + 2 rightarrow 3*n + 2 = 12*k + 8 = 4*\left(3*k + 2\right)
-22,071
\dfrac{7}{10} = 14/20
18,392
(3\cdot n - 5\cdot z)\cdot (z\cdot 7 + 2\cdot n) = 6\cdot n^2 + z\cdot n\cdot 11 - 35\cdot z \cdot z
20,337
\left(a + a\right)*0 = a*0
1,610
z \cdot (-d z + c) = c z - d z^2
2,541
\frac{x + 1}{x + (-1)} = \frac{1}{x + (-1)} \cdot (x + (-1) + 2) = 1 + \dfrac{2}{x + (-1)}
5,854
\cos(\tfrac{\pi}{3}) = \frac12
37
4 g h + (h - g)^2 = (h + g)^2
3,889
\frac{1}{1 + 2p}(4^p + (-1)) = \dfrac{(1 + 2^p) (2^p + (-1))}{2p + 1}
-11,604
17 - 7i = 15 + 2 - i*7
-3,355
\sqrt{13}\times \sqrt{25} + \sqrt{13} = \sqrt{13} + \sqrt{13}\times 5
25,007
vA = Av
-4,782
\dfrac{12 - 3 \cdot y}{y^2 - 7 \cdot y + 10} = -\tfrac{2}{y + 2 \cdot (-1)} - \dfrac{1}{y + 5 \cdot (-1)}
21,099
\left(2\cdot B\right)^2 = 2^2\cdot B \cdot B = 4\cdot B^2
10,322
-h = h + g\cdot g = h\cdot g
5,687
-x*4 = -Y * Y*3 + Y^3 \Rightarrow Y^3 - 3*Y^2 + Y*4 - 5*x = 4*Y - x*9
4,745
z^{1/3} = p + i\cdot q\Longrightarrow z = (q\cdot i + p) \cdot (q\cdot i + p) \cdot (q\cdot i + p)
-6,593
\frac{1}{3\cdot p + 21\cdot (-1)} = \frac{1}{3\cdot (p + 7\cdot (-1))}
35,507
\frac{4}{\sqrt{3}} = 4*\sqrt{3}/3 \approx 6.928/3
7,552
\frac{b}{c} \Rightarrow b/c
25,160
1 - \cos{t} = 2*\sin^2{t/2} \leq \dfrac{1}{2}*t * t
8,644
2\sin\left(π\right) \cos(0) = 0
-18,981
\frac{1}{40}\cdot 37 = D_t/(64\cdot \pi)\cdot 64\cdot \pi = D_t
45,987
1 = (\left(-1\right)^2)^{\frac13}
-3,657
\frac{j^4}{j^3} = \frac{j^4}{j\cdot j\cdot j}\cdot 1 = j
7,361
2\cdot z + 2\cdot x = x + x + z + z
-20,916
\frac22 \cdot (-\dfrac{1}{5 \cdot x + 5 \cdot (-1)} \cdot 4) = -\frac{8}{10 \cdot x + 10 \cdot \left(-1\right)}
-596
\tfrac{2}{3}*\pi = 92/3*\pi - \pi*30
3,743
\frac{3}{1} \times \frac{1}{4} = \frac{3}{4}
-10,359
\frac{1}{3 \cdot y + 6} \cdot (6 \cdot (-1) + 3 \cdot y) \cdot \frac55 = \frac{1}{30 + 15 \cdot y} \cdot (15 \cdot y + 30 \cdot (-1))
-3,076
(4 + 2 \cdot (-1)) \cdot 2^{\frac{1}{2}} = 2 \cdot 2^{1 / 2}
11,302
2 \cdot \cos{n} \cdot \sin{n} = \sin{n \cdot 2}
5,724
p^2 \cdot 3 = s^2 \cdot 9 \Rightarrow s \cdot s \cdot 3 = p^2
16,685
\frac12*\left(\sqrt{5} + 3\right) = ((\sqrt{5} + 1)/2)^2
-7,279
\dfrac{3}{7} \cdot \frac34 = 9/28
31,733
\cos(2 \cdot z) = \cos^2(z) - \sin^2(z) = 1 - 2 \cdot \sin^2(z)
-20,772
\dfrac{1}{3 \times \left(-1\right) + x} \times (x + 3 \times (-1)) \times (-8/5) = \frac{1}{15 \times (-1) + x \times 5} \times (24 - x \times 8)
21,051
\frac{dp}{dq} = \tfrac{4 \cdot p^2}{4 \cdot p \cdot q} = \frac1q \cdot p
24,675
(-z^2\cdot 2) \cdot (-z^2\cdot 2) \cdot (-z^2\cdot 2) + (z \cdot z \cdot z\cdot 3) \cdot (z \cdot z \cdot z\cdot 3) = z^6
13,595
-\sin{d}\cdot \cos{g} + \sin{g}\cdot \cos{d} = \sin(g - d)
-10,783
50 = -75 q + 75 + 12 (-1) = -75 q + 63
20,039
(Z_2 + Z_1) \cdot (Z_2 - Z_1) = -Z_1^2 + Z_2^2
-19,068
7/20 = \frac{A_r}{16 \cdot \pi} \cdot 16 \cdot \pi = A_r
-20,841
-\frac{1}{9 + z} \cdot 4/4 = -\frac{1}{4 \cdot z + 36} \cdot 4