id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
15,752 | h - h\cdot x\cdot h = h - h\cdot x\cdot h |
-2,349 | 9/12 - \dfrac{1}{12}8 = 1/12 |
22,636 | e^{-1/4} > e^0 - 1/4 = \tfrac34 > 0.7 = \frac{3.5}{5} \gt \frac{1}{5} \cdot \pi |
15,342 | |c\cdot i| = \sqrt{0^2 + c^2} = c |
1,475 | x/z = zx^i y^j z^{k + \left(-1\right)} = x^{2i} y^j z^k |
32,542 | x + N = x + N |
774 | -n\cdot 8 + c = 2\Longrightarrow c = 8\cdot n + 2 |
-362 | \frac{8!}{3!*(3*\left(-1\right) + 8)!} = {8 \choose 3} |
20,409 | (-1) + p^3 = (1 + p^2 + p)*(p + (-1)) |
-18,925 | \frac{1}{24}\times 23 = A_s/(9\times \pi)\times 9\times \pi = A_s |
17,594 | 7/x = 1/12 \implies x = 84 |
6,613 | (a + c)^2 = a * a + c*a*2 + c^2 |
29,194 | 3 = 5 + 6 + 8*(-1) |
-30,747 | z^2*9 + 18 (-1) = (z * z + 2(-1))*9 |
32,007 | 17 * 17*13^4*5^6 = 128970765625 |
20,191 | \dfrac{1}{4} = 16/64 |
16,516 | (z + 2)*(z + 2*(-1)) = z * z + 4*(-1) |
-5,653 | \dfrac{1}{(s + 9\cdot (-1))\cdot (2\cdot \left(-1\right) + s)}\cdot 3 = \dfrac{1}{s^2 - 11\cdot s + 18}\cdot 3 |
9,519 | g^3\times d^3 = (d\times g)^3 |
12,114 | y'^2 - y'*y + z = 0 \implies (y \pm \sqrt{y^2 - 4*z})/2 = y' |
985 | c^{x_1 + x_2 + \cdots + x_k} = c^{x_2}\times c^{x_1}\times \cdots\times c^{x_k} |
26,097 | \left(i + 1\right)^2 - i^2 = 1 + 2 i |
-9,344 | 60 \cdot (-1) - k \cdot 90 = -k \cdot 2 \cdot 3 \cdot 3 \cdot 5 - 2 \cdot 2 \cdot 3 \cdot 5 |
14,024 | -\frac{1}{\tau} = 5i = 25 \tau |
26,661 | \frac{24}{64} = \frac{1}{4^4} \cdot 3! \cdot 4^{4 + 3 \cdot (-1)} \cdot {4 \choose 3} |
31,420 | A - A - E = A \cap \overline{A \cap \overline{E}} = A \cap (E \cup \overline{A}) = A \cap E |
17,739 | (1 + 99 + 10 (-1)) \left(9 + 0(-1) + 1\right) (1 + 99 + 10 (-1)) = 81000 |
14,169 | l + 4 \cdot (-1) = -7 \Rightarrow l = -3 |
45,368 | 4400 + 219 (-1) = 4181 |
11,300 | e^{Q_1}*e^{Q_2} = e^{Q_2 + Q_1} |
-25,802 | \tfrac{5}{21} = \frac57 \frac{1}{3} |
-20,324 | \frac{z + 4 \cdot (-1)}{4 \cdot \left(-1\right) + z} \cdot (-3/2) = \frac{12 - z \cdot 3}{8 \cdot (-1) + z \cdot 2} |
-681 | (e^{\frac{\pi*i*4}{3}})^{13} = e^{4*\pi*i/3*13} |
27,344 | \cos{\frac{\pi}{4}} = \sin{\pi/4} = 1/\left(\sqrt{2}\right) |
13,825 | 2^l + 2^{(-1) + l}\cdot \frac1p\cdot l = 2^{(-1) + l}\cdot (l + p\cdot 2)/p |
26,935 | \pi \cdot (z^2 + 3 \cdot z + 18 \cdot (-1)) \cdot (z + 3)/1 = (18 \cdot (-1) + z^2 + z \cdot 3) \cdot \pi \cdot \left(z + 3\right) |
280 | (ag)^2 = a^2 g * g |
31,090 | d + e = 2\cdot e + d - e |
26,644 | \left(2 \cdot 5 \cdot t\right)^2 + 2 \cdot 5 \cdot t = 100 \cdot t^2 + 10 \cdot t = 10 \cdot \left(10 \cdot t^2 + t\right) |
27,471 | 2 \cdot k = \left(k + 1\right)^2 - k^2 - 1^2 |
6,099 | 1 = \frac12 + \frac{1}{3} + 1/7 + \frac{1}{42} |
190 | 1 + \pi = \cos(\frac{1}{2}\times \pi) + \left(\frac{\pi}{2}\right)^3\times \frac{1}{\pi^3}\times 8 + 2\times \frac{\pi}{2} |
14,338 | -4 = 6\cdot \left(-1\right) + y\Longrightarrow 2 = y |
22,802 | ((-8) * (-8) + 8^2 + 4^2)^{1/2} = 12 |
1,587 | 1 = -3 \cdot (1 - 1/2)^2 + 2 - 2 \cdot (-1/2 + 1)^3 |
5,337 | \|-T_\alpha Ex/E + \frac{x}{E}\| = \|\frac{x}{E} - T_\alpha x\| |
3,698 | 8\cdot \pi\cdot t = 2\cdot t\cdot 4\cdot \pi |
1,309 | \frac{z}{2 + m} = \frac{z^{m + 2}}{z^{m + 1}\cdot \frac{1}{(1 + m)!}}\cdot \dfrac{1}{(m + 2)!} |
-1,292 | -3/5\times 7/4 = ((-3)\times \dfrac{1}{5})/(4\times \frac{1}{7}) |
-6,702 | 20/100 + 1/100 = 1/100 + \frac{2}{10} |
18,041 | 1 = F_2*F_1 rightarrow 1 = F_1*F_2 |
3,651 | \theta \cdot \sigma_x = \theta \cdot \sigma_x |
-17,333 | 0.654 = 65.4/100 |
22,338 | (\sqrt{g} + \sqrt{c})^2 = g + c + 2 \cdot \sqrt{g \cdot c} \gt g + c |
22,726 | (a + b) N = aN + bN |
13,124 | \frac{1}{168}*5 - \dfrac{1}{40} = \tfrac{1}{840}*(25 + 21*(-1)) = \frac{1}{210} |
-7,848 | \tfrac{1 + 2\cdot i}{2\cdot i + 1}\cdot \frac{1}{1 - i\cdot 2}\cdot (-11 - i\cdot 3) = \frac{1}{1 - 2\cdot i}\cdot (-3\cdot i - 11) |
6,924 | t_i m_i = t_i m_i |
33,200 | 2\cdot 7 = \left(\sqrt{-13} + 1\right)\cdot (-\sqrt{-13} + 1) |
16,254 | 4 = \frac{1}{2}((-1) + 9) |
9,117 | 1/8 + \frac{1}{2} + \frac18 + 1/4 = 1 |
10,701 | 4 + (n + 2*\left(-1\right))/2 = \frac{n}{2} + 3 |
17,108 | \cos(2z) = (-1) + 2\cos^2(z) |
-5,649 | \dfrac{1}{20 \cdot (-1) + 2 \cdot p} \cdot 2 = \frac{2}{2 \cdot (10 \cdot (-1) + p)} |
3,900 | \frac{2}{4 + y^2} = \frac{1}{64 + y^2}\cdot 8 \implies y = 4 |
37,812 | 9/6 = \frac{3}{2 \cdot 3} \cdot 3 = \frac{3}{2} |
52,211 | 32 = 2^{6 + \left(-1\right)} |
21,992 | (y \cdot 4 + 12)^{\dfrac{1}{2}} = 2 \cdot (y + 3)^{\frac{1}{2}} |
-5,804 | \frac{z \times 4 + 12}{36 + 3 \times z^2 - z \times 21} = \frac{1}{36 + 3 \times z^2 - 21 \times z} \times (z \times 4 + 12 \times (-1) - 6 \times z + 24 + 6 \times z) |
25,039 | E \cdot Z = Z - E = Z \cdot E |
17,118 | (n + 1) \times \left(n + (-1)\right) = n^2 + (-1) |
-15,319 | \frac{1}{\frac{1}{\frac{1}{k^2} \cdot p^4} \cdot p^2} = \frac{1}{p^2 \cdot \frac{1}{p^4} \cdot k \cdot k} |
571 | \binom{2^n}{2} + \left(-1\right) = 2^n \cdot \left(2^n + (-1)\right)/2 + (-1) = \left(2^{2 \cdot n} - 2^n + 2 \cdot (-1)\right)/2 |
12,597 | y^d\cdot y^b = y^{b + d} |
24,381 | |x_1\times x_2| = |x_2|\times |x_1| |
4,010 | \cos{\frac{2\pi}{4}1} = 0 |
245 | \dfrac{1}{z + 2} = y \implies z = \frac{1}{y}(1 - y*2) |
-19,172 | \frac{7}{24} = \dfrac{A_x}{36*\pi}*36*\pi = A_x |
40,819 | 0.625 \cdot 2 = 1.25 |
28,283 | -i/6 + 1 = \left(-i + 6\right)/6 |
-9,943 | \phantom{ -\dfrac{7}{25} \times -\dfrac{1}{4} } = \dfrac{-7 \times -1 }{25 \times 4 } = \dfrac{7}{100} |
26,829 | \alpha \beta x = \beta \alpha x |
-9,482 | x*2*2*3 + 3 (-1) = 3 (-1) + x*12 |
-5,887 | \dfrac{30}{6(3\left(-1\right) + q) (2(-1) + q)} = \frac{5}{(q + 3(-1)) (q + 2(-1))} \frac{1}{6}6 |
10,460 | 5/8 + c_2 + 1/4 = 1 \Rightarrow \frac18 = c_2 |
19,309 | 1 + \dfrac{1}{x + (-1)} = \frac{x + \left(-1\right) + 1}{x + \left(-1\right)} = \frac{1}{x + \left(-1\right)}\cdot x |
30,093 | 3 \times 3 \times 3 + 1^3 + 5^3 = 153 |
10,384 | \sqrt{2} \approx 1.41 \times \dotsm \lt 1.44 = 1.2^2 = \left(\tfrac{5}{4}\right)^2 |
-19,617 | \frac{70}{9} = \tfrac{10}{9}\times 7 |
576 | b - a = \frac14 \cdot (4 \cdot b - 4 \cdot a) |
-1,203 | \frac{1/7 \cdot (-9)}{8 \cdot \frac{1}{3}} = -9/7 \cdot 3/8 |
14,948 | \tfrac{\dfrac{1}{6}/6\cdot 5}{6} = 5/216 |
-6,683 | \frac{4}{100} + 6/10 = \frac{60}{100} + \frac{1}{100} \cdot 4 |
-10,743 | -\tfrac{7}{5*(-1) + 3*p}*3/3 = -\tfrac{21}{15*(-1) + 9*p} |
15,886 | 1 + 3*(x*2 + (-1)) = 6*x + 2*(-1) |
14,060 | N = \left\{\cdots, N, 1\right\} |
-22,303 | t \cdot t - 6\cdot t + 8 = (t + 4\cdot (-1))\cdot (2\cdot (-1) + t) |
-2,267 | \frac{5}{20} - 3/20 = \frac{2}{20} |
485 | (x + (-1)) (1 + x \cdot x + x) = x^3 + (-1) |
-2,442 | \left(4\cdot (-1) + 5 + 2\right)\cdot 7^{1/2} = 3\cdot 7^{1/2} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.