id
int64
-30,985
55.9k
text
stringlengths
5
437k
5,970
98*100 + 2 = \left(99 + (-1)\right)*(99 + 1) + 2 = 99^2 + (-1) + 2 = 99^2 + 1
9,426
3^5 - ((-1) + 3)^5\cdot {3 \choose 1} + (3 + 2\cdot (-1))^5\cdot {3 \choose 2} = 150
16,547
(m + 1/2)^2 = 1/4 + m^2 + m
20,898
\sigma * \sigma = (\sqrt{n + \sqrt{n + \sqrt{n + ...}}})^2 = n + \sigma
51,976
\frac{n}{n^2 + n} + \dotsm + \frac{n}{n^2 + 1} \lt x_n < \dfrac{n}{n^2 + 1} + \dotsm + \frac{n}{n^2 + 1}\Longrightarrow \frac{1}{n^2 + n}\cdot n^2 < x_n \lt \dfrac{1}{n^2 + 1}\cdot n^2
-4,553
\frac{4}{4 \times \left(-1\right) + x} + \dfrac{3}{2 \times (-1) + x} = \frac{20 \times (-1) + x \times 7}{8 + x^2 - x \times 6}
16,422
(-1) + x \cdot x = \left(x + 1\right) \left((-1) + x\right)
6,859
(2 \cdot (-1) + 1)^2 + (0 + (-1))^2 + (2 \cdot (-1) + 0)^2 = 6
36,615
0 - y = -y \in X
6,452
0 = 3\cdot (-1) + z^3 - z\cdot 3 \Rightarrow z = 2.1038
-7,571
\frac{-18 \cdot i + 6}{4 - 2 \cdot i} = \frac{1}{4 - i \cdot 2} \cdot (6 - 18 \cdot i) \cdot \dfrac{2 \cdot i + 4}{4 + i \cdot 2}
22,822
\operatorname{E}\left[T^2\right] = \operatorname{E}\left[T\right]^2
10,287
1 = \frac{1}{a} \cdot a \Rightarrow \dfrac{1}{\frac{1}{a}} = a
24,171
(1 + 2)\cdot p = 3\cdot p
32,511
(k + 1)! - k! = k \cdot k!
-3,140
-2^{\frac{1}{2}} + 18^{1 / 2} + 50^{\frac{1}{2}} = -2^{1 / 2} + (9 \cdot 2)^{1 / 2} + \left(25 \cdot 2\right)^{\frac{1}{2}}
44,389
4\times 7\times 13 = 364
-5,472
\dfrac{1}{(10 + q) \cdot (q + 2) \cdot 9} \cdot (q \cdot 6 + 12) - \frac{15 \cdot \left(10 + q\right)}{9 \cdot (q + 2) \cdot (q + 10)} + \frac{q \cdot 36}{(10 + q) \cdot \left(2 + q\right) \cdot 9} = \frac{36 \cdot q + 6 \cdot (q + 2) - (10 + q) \cdot 15}{9 \cdot (q + 2) \cdot (10 + q)}
28,390
(j + 2)! = (2 + j)\cdot (1 + j)\cdot j\cdot ...
-18,439
\dfrac{(3\times (-1) + q)\times (10\times (-1) + q)}{q\times (q + 10\times (-1))} = \dfrac{1}{q^2 - 10\times q}\times (q^2 - 13\times q + 30)
8,809
\frac{1}{y + 1}\cdot \left(3\cdot y + 2\cdot (-1)\right) = \dfrac{1}{y + 1}\cdot \left(3\cdot (y + 1) + 5\cdot (-1)\right) = 3 - \frac{5}{y + 1}
11,780
H^{1 + n} = H^n\cdot H
7,119
d/dx (\left(x + (-1)\right) \left(x + 1\right)^3) = ((-1) + x) (x + 1) \cdot (x + 1)\cdot 3 + (x + 1)^3
24,668
0.352 = \frac{8^2}{20^2} + 2\frac{8^2}{20^2}*\frac{1}{20}12
252
\dfrac{1}{h_1 \cdot h_2} + \tfrac{1}{(h_2 + (-1)) \cdot h_2 \cdot h_1} = \frac{1}{h_1 \cdot \left((-1) + h_2\right)}
22,812
c_1 - 1/2 + 10/4 = 0 \Rightarrow c_1 = -2
19,068
-\frac{25}{7} = \sec{x} \Rightarrow -7/25 = \cos{x}
30,563
3 \cdot 3 + 1^2 - 3 = 7
-4,704
\dfrac{y*3 + 14}{y^2 + 4(-1)} = -\frac{2}{y + 2} + \frac{5}{y + 2\left(-1\right)}
22,001
x - \tfrac{1}{3!}\cdot x^3 + \dfrac{x^5}{5!} - ... = \sin{x}
428
(2 \cdot 10^{1/2})^2 + \left(5 \cdot 10^{1/2}\right)^2 = 40 + 250 = 290 = (290^{1/2})^2
20,002
y^3 - \left(5 + i\right) y \cdot y + y \cdot (i \cdot 5 + 2) + 10 (-1) = (5(-1) + y) (y \cdot y - iy + 2)
5,956
(z - y) \cdot (z^1 + z^0 \cdot y + \ldots + z \cdot y^0 + y^1) = z^2 - y^2
19,013
\tan^{-1}(∞) = \frac{1}{2} \cdot \pi
-5,412
2.56 \cdot 10 = \frac{2.56}{10^6} \cdot 10 = \dfrac{2.56}{10^5}
37,037
\sin(f + g) = \sin\left(f\right) \cdot \cos(g) + \sin(g) \cdot \cos\left(f\right)
10,398
g^{h + b} = g^b \cdot g^h
11,879
\sqrt{l + 3} = (l + 2)^2 + (-1) = (l + 3)^2 - 2 \cdot (l + 3)
-25,026
-1 - y - y \cdot y - y^3 - y^4 - \ldots = -\frac{1}{-y + 1}
-19,304
3/4*3/7 = \frac{3*\frac14}{7*\frac{1}{3}}
7,070
-3\cdot d_2\cdot g\cdot d_1 + d_2^3 + g^3 + d_1 \cdot d_1 \cdot d_1 = \tfrac{1}{2}\cdot (d_1 + d_2 + g)\cdot \left((-g + d_1)^2 + (d_2 - g)^2 + (-d_1 + d_2)^2\right)
37,973
F + Q := F \cup Q
26,344
l + n + 1 + 1 = 1 + n + 1 + l
9,452
(a + l) \cdot (a + l) = a^2 + 2\cdot a\cdot l + l^2 = i + 2\cdot a\cdot l - i = 2\cdot a\cdot l
52,557
349 = 205 + 144
26,501
p \times {k \choose p} = {k + (-1) \choose (-1) + p} \times k
15,901
2*\left(2 + 3*n\right) = 4 + 6*n
26,652
s^6 s^{12} = s^{18}
11,595
\sqrt{2} + 5^{1/3} = y rightarrow \left(-\sqrt{2} + y\right)^3 = 5
9,131
\left(o^y + 3\right) (o^y + (-1)) + 4 = o^{2y} + 2o^y + 1 = (o^y + 1)^2
27,625
x = \pi/4 \implies \cos^5(x) - \sin^5(x) = 0 \neq \cos(5 \cdot \pi/4)
-6,693
\frac{8}{10} + \frac{1}{100}\cdot 3 = \tfrac{3}{100} + \frac{1}{100}\cdot 80
-19,691
\frac{15}{7} = \frac{5\cdot 3}{7}
37,373
a = h \Rightarrow a = h
6,192
\frac{1}{1 + m}m = 1 - \tfrac{1}{1 + m}
4,064
\mathbb{E}(R - Y)^2 + Var(-Y + R) = \mathbb{E}((R - Y)^2)
8,818
\frac{657720}{30^4}*1 = \frac{203}{250}
24,758
\sin\left(y + z\right) = \sin(y) \cos(z) + \cos(y) \sin(z)
40,906
\frac{4!}{\left(4 + 2 \cdot (-1)\right)! \cdot 2!} = \dfrac{1}{2 \cdot 2} \cdot 24 = 6
-20,393
\frac{-14 \cdot t + 56 \cdot (-1)}{t \cdot 70 + 35} = 7/7 \cdot \tfrac{8 \cdot (-1) - 2 \cdot t}{5 + t \cdot 10}
7,221
(z + x) \cdot \left(x^2 - x \cdot z + z^2\right) = z \cdot z \cdot z + x^3
16,123
2\cdot 1/31/25 = \frac{1}{775}\cdot 2
15,851
-\frac{1}{6}\cdot 2\cdot \frac15\cdot 2 + 1 = \frac{13}{15}
20,658
(1 - \cos\left(4\cdot x\right))^{\frac{1}{2}} = \left(2\cdot \sin^{22}(x)\right)^{1 / 2} = 2^{1 / 2}\cdot |\sin(2\cdot x)|
14,626
16 + 9^k - 1^k = 15 + 3^{k*2}
-21,028
-7/5 \cdot \frac{4 + z}{z + 4} = \tfrac{28 \cdot (-1) - 7 \cdot z}{z \cdot 5 + 20}
28,572
\sin(z + 2 \cdot \pi) = \Im{\left(e^{i \cdot z + i \cdot 2 \cdot \pi}\right)} = \Im{(e^{i \cdot z})} = \sin\left(z\right)
8,374
2 - 2\cdot a\Longrightarrow 2\cdot (1 - a) = 0
-22,030
\frac{1}{7}*10 = \dfrac{40}{28}
1,642
\dfrac12\cdot (3\cdot (-1) + \sqrt{3 + \sqrt{2}\cdot 2} \cdot \sqrt{3 + \sqrt{2}\cdot 2}) = \sqrt{2}
16,410
4^n + 15 \cdot n + \left(-1\right) = (3 + 1)^n + 15 \cdot n + \left(-1\right)
17,896
0 = x^3 - x + 24 (-1)\Longrightarrow 3 = x
21,185
-\frac{3*x + 4*y}{5*z - 8*w} = -\dfrac{(3*x - 4*y)*(-1)}{\left(5*z - 8*w\right)*(-1)} = \frac{3*x + 4*y}{8*w - 5*z}
-12,038
\frac13\cdot 2 = s/(16\cdot \pi)\cdot 16\cdot \pi = s
-22,123
\frac18 \cdot 40 = 5
-3,858
\dfrac{63}{54}\cdot \frac{1}{x^5}\cdot x^5 = \frac{63\cdot x^5}{x^5\cdot 54}
32,371
g \cdot f + d \cdot g + f \cdot d = \left(-(g^2 + f \cdot f + d^2) + (g + f + d)^2\right)/2
3,260
(a^2 + a*f + f^2)*(a - f) = a * a * a - f^3
-2,885
\sqrt{3}*2 = \sqrt{3}*(5 + 1 + 4 (-1))
13,457
\sqrt{2\cdot y + 1} = y - (y^2 - 2\cdot y + 1)/7 = \dfrac17\cdot (-y^2 + 9\cdot y + 1)
24,080
\|x_t - x_{1 + t}\|^2 \leq 0 \Rightarrow x_t = x_{t + 1}
2,108
\frac{1}{a \cdot \frac{1}{b}} = \dfrac{b}{a}
-16,844
8 = 8*5*p + 8*(-1) = 40*p - 8 = 40*p + 8*(-1)
-12,252
\frac{1}{18}*17 = \frac{s}{18*\pi}*18*\pi = s
25,299
q^2 + 2*w*q + w^2 = \left(q + w\right) * \left(q + w\right)
22,300
\frac{5!}{(5 + 2\cdot \left(-1\right))!}\cdot \frac{10!}{(10 + 3\cdot (-1))!}\cdot 7!\cdot \frac{1}{(7 + 2\cdot (-1))!}\cdot 3! = 720\cdot 42\cdot 20\cdot 6 = 3628800
-20,087
\frac{5 (-1) + y}{3 y + 4}*\tfrac{7}{7} = \frac{1}{28 + 21 y} (7 y + 35 (-1))
31,023
49 \cdot \left(-1\right) + 3 \cdot 11 \cdot 11 = 314
15,221
B\cdot \mathbb{E}\left(x\right) = B\cdot \mathbb{E}\left(x\right)
9,466
\sin{b} \sin{x} + \cos{b} \cos{x} = \cos(-b + x)
6,209
\ln\left(2\right)/\left(\ln(4)\right) = \frac{1}{2}
22,182
A\cdot x - x\cdot A = A \Rightarrow A^2 = A^2\cdot x - A\cdot A\cdot x
-21,015
-7/5*\frac{10*k}{10*k} = \frac{(-70)*k}{50*k}
-23,635
3/28 = \frac{3\cdot 1/4}{7}
45,482
-\frac82 = -\frac82
4,710
\frac{1}{16^{\frac14 \cdot 3} \cdot 27^{2/3}} = \frac{1}{\left(27^2\right)^{1/3} \cdot (16^3)^{\frac{1}{4}}}
6,829
g*(b*a + b*a) = (b*a + b*a)*g
7,242
-\frac14\pi = \frac14((-1) \pi)
19,825
\left(k + 2\right)\cdot (k + 3) - 5\cdot (2 + k) + 4 = k^2
8,303
x^2 + x \cdot 2 + 1 = \left(x + 1\right)^2