id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
15,151 | (3 - \sqrt{2})^4 = ((3 - \sqrt{2}) \times (3 - \sqrt{2}))^2 = (11 - 6\times \sqrt{2})^2 = 193 - 132\times \sqrt{2} |
-17,302 | \frac{1}{100}\cdot 39.7 = 0.397 |
14,708 | 100 \left(-24\right) + 49*49 = 1 |
-13,742 | \frac{27}{7 + 4(-1)} = 27/3 = 27/3 = 9 |
-15,150 | \tfrac{1}{x^{10}\cdot g^{20}\cdot x} = \dfrac{1}{x\cdot (x^2\cdot g^4)^5} |
18,766 | -f^3 + a^3 = \left(f^2 + a^2 + f \cdot a\right) \cdot \left(a - f\right) |
-1,762 | 2/3\cdot \pi = -\pi/12 + \frac{1}{4}\cdot 3\cdot \pi |
24,183 | 10 + \cdots + 80 = 360 |
4,236 | (g + b) \cdot \left(-b + g\right) = -b \cdot b + g^2 |
18,197 | (x^2 + (-1))^3 = x^6 - 3x^4 + 3x \cdot x + (-1) |
27,170 | 8!/(2!\times 3!) = 8\times 7\times 6\times 5\times 2 = 3360 |
34,710 | \mathbb{E}[-Y + l] = -\mathbb{E}[Y] + l |
16,095 | 3\cdot 2\cdot 3 = 2 \cdot 2 \cdot 2 + 3^2 + 1 |
36,001 | 1/(G*A) = 1/(G*A) |
2,871 | 1/(d h) = \tfrac{1}{h d} |
-9,207 | -y*4 - y^2*12 = -2*2*3*y*y - 2*2*y |
-22,986 | \dfrac{10 \cdot 14}{7 \cdot 14} = \frac{140}{98} |
594 | det\left(E_1 G + E_2\right) = det\left(E_2 + GE_1\right) |
-3,753 | 64/88*\dfrac{y^2}{y^5} = \frac{64*y^2}{y^5*88} |
29,349 | 250/3 = -125/3 + 125 |
14,687 | 5 \cdot x + y = d/dx (y^3 \cdot 5) + x^2 |
-29,557 | 4\cdot x^3/x - x\cdot 3/x + \frac1x = (4\cdot x^2 \cdot x - 3\cdot x + 1)/x |
18,565 | \frac{1}{2}\frac{5}{2}\cdot 5=\frac{25}{4} |
31,354 | |x| = \|\left(x + y\right)/2 + \dfrac{1}{2} (x - y)\| \leq (|x + y| + |x - y|)/2 |
10,407 | 234 = 66 (-1) + 300 |
6,434 | (2 + 1 + 5 + 8 + 1 + 1)/6 = 3 |
2,302 | k!\cdot \left(k! + (-1)\right)\cdot (k! + 2\cdot (-1))\cdot ...\cdot 2 = (k!)! |
4,803 | -2 \cdot b \cdot a + (b + a) \cdot (b + a) = b^2 + a^2 |
6,270 | x^{1/2} Z x^{\frac{1}{2}} = xZ |
-10,381 | -40 = 40\cdot d + 30\cdot (-1) + 6 = 40\cdot d + 24\cdot (-1) |
19,100 | 1 + a^2\cdot 3 - a\cdot 4 = (\left(-1\right) + a)\cdot (3\cdot a + (-1)) |
13,854 | Z_i*Z_j = Z_j*Z_i |
2,504 | 5\times A = -5\Longrightarrow A = -1 |
11,051 | 1 + s^4 = (s^2 + 1) \cdot (s^2 + 1) - 2s^2 |
54,637 | 10=4+2+1+1+1+1 |
5,715 | 9^{m + 1} + 9 \times (-1) = ((-1) + 9^m) \times 9 |
20,543 | p \cdot p + (-1) = (1 + p)\cdot 2\cdot \frac{1}{2}\cdot (p + (-1)) |
-6,556 | \frac{3}{(y + 3\cdot \left(-1\right))\cdot (9\cdot \left(-1\right) + y)} = \dfrac{3}{y^2 - 12\cdot y + 27} |
30,513 | -\frac{x}{-2} = \dfrac{1}{-2}*((-1)*x) = x/2 |
23,355 | 5\cdot (-1) + 2\cdot n^3 \geq n^3\Longrightarrow n^3 \geq 5 |
-27,772 | d/dy (-4 \cdot \cot(y)) = -4 \cdot d/dy \cot(y) = 4 \cdot \csc^2(y) |
26,982 | -\sin{\frac{\pi}{3}} = \sin{4\cdot \pi/3} |
-18,948 | \dfrac{3}{10} = \dfrac{A_s}{64\pi} \times 64\pi = A_s |
51,844 | 3\cdot 6 + 1 = 19 |
13,344 | 1 + 2 \cdot n = -n^2 + (n + 1)^2 |
12,507 | \left(-1\right) + x^2 = (x + (-1)) \cdot \left(x + 1\right) |
14,509 | r*s*w = w*s*r |
-3,147 | \sqrt{13} \cdot (3 + 1) = 4 \cdot \sqrt{13} |
6,387 | g^2 - c^2 = \left(g + c\right)\cdot (-c + g) |
-3,572 | \frac{t}{t^2} = \dfrac{1}{t\cdot t}\cdot t = \frac{1}{t} |
2,534 | \left(\tfrac{a\cdot g}{a}\cdot 1\right)^x = \frac{a}{a}\cdot g^x |
-5,744 | \frac{3}{(9 \cdot (-1) + r) \cdot 4} = \frac{1}{r \cdot 4 + 36 \cdot (-1)} \cdot 3 |
33,547 | 9828 = 2^2 \cdot 3^3 \cdot 7 \cdot 13 = \frac{1}{2 \cdot 26 \cdot 27 \cdot 28} = \frac{1}{2(3^3 + \left(-1\right)) \cdot 3^3 \cdot \left(3 \cdot 3^2 + 1\right)} |
21,998 | |d*A| = |A| = |A*d| |
10,593 | \left(x\cdot 2 + d = (-1) - 3\cdot x^3 + 2\cdot x \implies d + 1 = -3\cdot x^3\right) \implies \left(1 + d\right)/\left(-3\right) = x^3 |
-7,571 | \frac{-i \cdot 18 + 6}{-2i + 4} = \frac{6 - 18 i}{4 - i \cdot 2} \dfrac{4 + 2i}{4 + 2i} |
12,160 | \frac{2^3*3^4}{5^4} = \frac{648}{625} \gt 1 |
2,882 | (-\sqrt{2} + 2)\cdot (5 + \sqrt{2}) = (2 + \sqrt{2})\cdot (-7\cdot \sqrt{2} + 11) |
8,250 | \tanh{z_2} = \tanh{z_1} rightarrow z_2 = z_1 |
8,046 | (1 + 10^{n + 1}*8)/9 = 8*(10^{1 + n} + \left(-1\right))/9 + 1 |
1,059 | \frac{1-\dfrac1t}{t-1}=\frac1t |
28,053 | (1 + x) \cdot l \cdot \beta - \left(l - q\right) \cdot \beta = l \cdot \beta + x \cdot l \cdot \beta - l \cdot \beta + q \cdot \beta = (x \cdot l + q) \cdot \beta |
-27,712 | -2 \cdot \sin\left(x\right) = d/dx (2 \cdot \cos\left(x\right)) |
-25,349 | \sin\left(x\right) x\cdot 2 + x^2 \cos(x) = d/dx (x^2 \sin(x)) |
5,866 | (3 + g) (1 + g) = 3 + g^2 + 4g |
28,032 | |k| \cdot |\mu| = |k \cdot \mu| |
-18,441 | \dfrac{q}{(5 (-1) + q) \left(q + 6 (-1)\right)} \left(q + 5 (-1)\right) = \frac{-q*5 + q^2}{q^2 - q*11 + 30} |
3,629 | 16*k^2 + k^2*x^2 + 8*k^2*x = -x^2 + 16 \Rightarrow (\left(-1\right) + k * k)*16 + x^2*(k * k + 1) + 8*x*k^2 = 0 |
-7,010 | \frac{1}{13}\cdot 2\cdot \dfrac{6}{14} = 6/91 |
51,623 | 2\cdot 7 + 6 = 20 |
11,777 | \left\{Y_1, Y_2\right\} \Rightarrow Y_2 = Y_1 \cup Y_2 |
404 | 1 + \sqrt{5} = (a + b\times \sqrt{5})\times (f + d\times \sqrt{5}) = a\times f + 5\times b\times d |
8,851 | \cos^2{x} = (\cos{2*x} + 1)*\frac{1}{2} |
21,542 | \frac{(3\cdot n + 1)^{1 / 2}}{(3\cdot n + 1)^{\frac{1}{2}}} = 1 \neq \frac{1}{3\cdot n + 1}\cdot (3\cdot n + 1)^{\dfrac{1}{2}} |
13,190 | A \cdot C \cdot C = 16 + 9 + 6 \cdot \left(-1\right) = 19 \Rightarrow 19^{1/2} = C \cdot A |
9,407 | \frac{11}{36} = \frac{1}{6} + \dfrac{5}{6}*1/6 |
7,791 | 120 = \frac{15}{2}\times 16 |
4,671 | \left\{E, F\right\} \implies E \cup F \setminus E = F |
24,630 | A \cdot X = 0\Longrightarrow 0 = A\text{ or }0 = X |
16,428 | \left(-1\right) + x^3 = \left(4 + x\right) (x^2 - 4x + 3) + 13 (x + (-1)) |
1,606 | a^{(-1) + b} = \frac{a^b}{a} |
11,685 | \frac{1}{w^2 + 5} + 4 = \frac{1 + 4(w^2 + 5)}{w^2 + 5} = \frac{1}{w^2 + 5}(4w * w + 21) |
17,796 | 2^k = (1 + k) \cdot (k + 2) \cdot \dots \cdot 2 \cdot k |
14,777 | \cos{kx} + i\sin{kx} = e^{ikx} = (\cos{x} + i\sin{x})^k |
9,730 | -\sin^2\left(x\right) \cdot 2 + 1 = \cos(2 \cdot x) |
33,269 | \frac{17}{5} = 2/5 + 3 |
-1,967 | \dfrac{1}{4} \cdot \pi + \pi = 5/4 \cdot \pi |
23,201 | \left(3/5\right)^2 + (\dfrac45)^2 = 1 |
21,136 | 25^{2 + n} = 5^{2*n + 4} |
8,567 | (1 + 6\cdot b)\cdot (6\cdot m + 1) = 1 + 6\cdot \left(m + m\cdot b\cdot 6 + b\right) |
-25,789 | \tfrac{4}{8 \cdot 5} = \dfrac{1}{40} \cdot 4 |
33,715 | 1/2 + 0 = 2/4 < \dfrac{2}{\pi} |
14,854 | a\cdot (1 - i) - x = 0 \Rightarrow a = \dfrac{1}{2}(i + 1) x |
12,637 | 6\cdot 5^k + 6\cdot (-1) - 5^k + 5 = 5^k\cdot \left(6 + (-1)\right) + \left(-1\right) |
32,541 | 5/8 = -1/8 + \frac{1}{2} + 1/4 |
29,813 | (6 + j^3 + 3\cdot j \cdot j + 8\cdot j)/3 = ((j + 1)^3 + 5\cdot (1 + j))/3 |
-23,289 | 1 - 3/7 = \frac{4}{7} |
-16,415 | 7\sqrt{16} \sqrt{11} = 7*4 \sqrt{11} = 28 \sqrt{11} |
29,258 | 2^2 \cdot 179 = 716 |
19,836 | 1 + y + y^2 + y^3\cdot \ldots = \frac{1}{1 - y} |
Subsets and Splits