id
int64
-30,985
55.9k
text
stringlengths
5
437k
15,151
(3 - \sqrt{2})^4 = ((3 - \sqrt{2}) \times (3 - \sqrt{2}))^2 = (11 - 6\times \sqrt{2})^2 = 193 - 132\times \sqrt{2}
-17,302
\frac{1}{100}\cdot 39.7 = 0.397
14,708
100 \left(-24\right) + 49*49 = 1
-13,742
\frac{27}{7 + 4(-1)} = 27/3 = 27/3 = 9
-15,150
\tfrac{1}{x^{10}\cdot g^{20}\cdot x} = \dfrac{1}{x\cdot (x^2\cdot g^4)^5}
18,766
-f^3 + a^3 = \left(f^2 + a^2 + f \cdot a\right) \cdot \left(a - f\right)
-1,762
2/3\cdot \pi = -\pi/12 + \frac{1}{4}\cdot 3\cdot \pi
24,183
10 + \cdots + 80 = 360
4,236
(g + b) \cdot \left(-b + g\right) = -b \cdot b + g^2
18,197
(x^2 + (-1))^3 = x^6 - 3x^4 + 3x \cdot x + (-1)
27,170
8!/(2!\times 3!) = 8\times 7\times 6\times 5\times 2 = 3360
34,710
\mathbb{E}[-Y + l] = -\mathbb{E}[Y] + l
16,095
3\cdot 2\cdot 3 = 2 \cdot 2 \cdot 2 + 3^2 + 1
36,001
1/(G*A) = 1/(G*A)
2,871
1/(d h) = \tfrac{1}{h d}
-9,207
-y*4 - y^2*12 = -2*2*3*y*y - 2*2*y
-22,986
\dfrac{10 \cdot 14}{7 \cdot 14} = \frac{140}{98}
594
det\left(E_1 G + E_2\right) = det\left(E_2 + GE_1\right)
-3,753
64/88*\dfrac{y^2}{y^5} = \frac{64*y^2}{y^5*88}
29,349
250/3 = -125/3 + 125
14,687
5 \cdot x + y = d/dx (y^3 \cdot 5) + x^2
-29,557
4\cdot x^3/x - x\cdot 3/x + \frac1x = (4\cdot x^2 \cdot x - 3\cdot x + 1)/x
18,565
\frac{1}{2}\frac{5}{2}\cdot 5=\frac{25}{4}
31,354
|x| = \|\left(x + y\right)/2 + \dfrac{1}{2} (x - y)\| \leq (|x + y| + |x - y|)/2
10,407
234 = 66 (-1) + 300
6,434
(2 + 1 + 5 + 8 + 1 + 1)/6 = 3
2,302
k!\cdot \left(k! + (-1)\right)\cdot (k! + 2\cdot (-1))\cdot ...\cdot 2 = (k!)!
4,803
-2 \cdot b \cdot a + (b + a) \cdot (b + a) = b^2 + a^2
6,270
x^{1/2} Z x^{\frac{1}{2}} = xZ
-10,381
-40 = 40\cdot d + 30\cdot (-1) + 6 = 40\cdot d + 24\cdot (-1)
19,100
1 + a^2\cdot 3 - a\cdot 4 = (\left(-1\right) + a)\cdot (3\cdot a + (-1))
13,854
Z_i*Z_j = Z_j*Z_i
2,504
5\times A = -5\Longrightarrow A = -1
11,051
1 + s^4 = (s^2 + 1) \cdot (s^2 + 1) - 2s^2
54,637
10=4+2+1+1+1+1
5,715
9^{m + 1} + 9 \times (-1) = ((-1) + 9^m) \times 9
20,543
p \cdot p + (-1) = (1 + p)\cdot 2\cdot \frac{1}{2}\cdot (p + (-1))
-6,556
\frac{3}{(y + 3\cdot \left(-1\right))\cdot (9\cdot \left(-1\right) + y)} = \dfrac{3}{y^2 - 12\cdot y + 27}
30,513
-\frac{x}{-2} = \dfrac{1}{-2}*((-1)*x) = x/2
23,355
5\cdot (-1) + 2\cdot n^3 \geq n^3\Longrightarrow n^3 \geq 5
-27,772
d/dy (-4 \cdot \cot(y)) = -4 \cdot d/dy \cot(y) = 4 \cdot \csc^2(y)
26,982
-\sin{\frac{\pi}{3}} = \sin{4\cdot \pi/3}
-18,948
\dfrac{3}{10} = \dfrac{A_s}{64\pi} \times 64\pi = A_s
51,844
3\cdot 6 + 1 = 19
13,344
1 + 2 \cdot n = -n^2 + (n + 1)^2
12,507
\left(-1\right) + x^2 = (x + (-1)) \cdot \left(x + 1\right)
14,509
r*s*w = w*s*r
-3,147
\sqrt{13} \cdot (3 + 1) = 4 \cdot \sqrt{13}
6,387
g^2 - c^2 = \left(g + c\right)\cdot (-c + g)
-3,572
\frac{t}{t^2} = \dfrac{1}{t\cdot t}\cdot t = \frac{1}{t}
2,534
\left(\tfrac{a\cdot g}{a}\cdot 1\right)^x = \frac{a}{a}\cdot g^x
-5,744
\frac{3}{(9 \cdot (-1) + r) \cdot 4} = \frac{1}{r \cdot 4 + 36 \cdot (-1)} \cdot 3
33,547
9828 = 2^2 \cdot 3^3 \cdot 7 \cdot 13 = \frac{1}{2 \cdot 26 \cdot 27 \cdot 28} = \frac{1}{2(3^3 + \left(-1\right)) \cdot 3^3 \cdot \left(3 \cdot 3^2 + 1\right)}
21,998
|d*A| = |A| = |A*d|
10,593
\left(x\cdot 2 + d = (-1) - 3\cdot x^3 + 2\cdot x \implies d + 1 = -3\cdot x^3\right) \implies \left(1 + d\right)/\left(-3\right) = x^3
-7,571
\frac{-i \cdot 18 + 6}{-2i + 4} = \frac{6 - 18 i}{4 - i \cdot 2} \dfrac{4 + 2i}{4 + 2i}
12,160
\frac{2^3*3^4}{5^4} = \frac{648}{625} \gt 1
2,882
(-\sqrt{2} + 2)\cdot (5 + \sqrt{2}) = (2 + \sqrt{2})\cdot (-7\cdot \sqrt{2} + 11)
8,250
\tanh{z_2} = \tanh{z_1} rightarrow z_2 = z_1
8,046
(1 + 10^{n + 1}*8)/9 = 8*(10^{1 + n} + \left(-1\right))/9 + 1
1,059
\frac{1-\dfrac1t}{t-1}=\frac1t
28,053
(1 + x) \cdot l \cdot \beta - \left(l - q\right) \cdot \beta = l \cdot \beta + x \cdot l \cdot \beta - l \cdot \beta + q \cdot \beta = (x \cdot l + q) \cdot \beta
-27,712
-2 \cdot \sin\left(x\right) = d/dx (2 \cdot \cos\left(x\right))
-25,349
\sin\left(x\right) x\cdot 2 + x^2 \cos(x) = d/dx (x^2 \sin(x))
5,866
(3 + g) (1 + g) = 3 + g^2 + 4g
28,032
|k| \cdot |\mu| = |k \cdot \mu|
-18,441
\dfrac{q}{(5 (-1) + q) \left(q + 6 (-1)\right)} \left(q + 5 (-1)\right) = \frac{-q*5 + q^2}{q^2 - q*11 + 30}
3,629
16*k^2 + k^2*x^2 + 8*k^2*x = -x^2 + 16 \Rightarrow (\left(-1\right) + k * k)*16 + x^2*(k * k + 1) + 8*x*k^2 = 0
-7,010
\frac{1}{13}\cdot 2\cdot \dfrac{6}{14} = 6/91
51,623
2\cdot 7 + 6 = 20
11,777
\left\{Y_1, Y_2\right\} \Rightarrow Y_2 = Y_1 \cup Y_2
404
1 + \sqrt{5} = (a + b\times \sqrt{5})\times (f + d\times \sqrt{5}) = a\times f + 5\times b\times d
8,851
\cos^2{x} = (\cos{2*x} + 1)*\frac{1}{2}
21,542
\frac{(3\cdot n + 1)^{1 / 2}}{(3\cdot n + 1)^{\frac{1}{2}}} = 1 \neq \frac{1}{3\cdot n + 1}\cdot (3\cdot n + 1)^{\dfrac{1}{2}}
13,190
A \cdot C \cdot C = 16 + 9 + 6 \cdot \left(-1\right) = 19 \Rightarrow 19^{1/2} = C \cdot A
9,407
\frac{11}{36} = \frac{1}{6} + \dfrac{5}{6}*1/6
7,791
120 = \frac{15}{2}\times 16
4,671
\left\{E, F\right\} \implies E \cup F \setminus E = F
24,630
A \cdot X = 0\Longrightarrow 0 = A\text{ or }0 = X
16,428
\left(-1\right) + x^3 = \left(4 + x\right) (x^2 - 4x + 3) + 13 (x + (-1))
1,606
a^{(-1) + b} = \frac{a^b}{a}
11,685
\frac{1}{w^2 + 5} + 4 = \frac{1 + 4(w^2 + 5)}{w^2 + 5} = \frac{1}{w^2 + 5}(4w * w + 21)
17,796
2^k = (1 + k) \cdot (k + 2) \cdot \dots \cdot 2 \cdot k
14,777
\cos{kx} + i\sin{kx} = e^{ikx} = (\cos{x} + i\sin{x})^k
9,730
-\sin^2\left(x\right) \cdot 2 + 1 = \cos(2 \cdot x)
33,269
\frac{17}{5} = 2/5 + 3
-1,967
\dfrac{1}{4} \cdot \pi + \pi = 5/4 \cdot \pi
23,201
\left(3/5\right)^2 + (\dfrac45)^2 = 1
21,136
25^{2 + n} = 5^{2*n + 4}
8,567
(1 + 6\cdot b)\cdot (6\cdot m + 1) = 1 + 6\cdot \left(m + m\cdot b\cdot 6 + b\right)
-25,789
\tfrac{4}{8 \cdot 5} = \dfrac{1}{40} \cdot 4
33,715
1/2 + 0 = 2/4 < \dfrac{2}{\pi}
14,854
a\cdot (1 - i) - x = 0 \Rightarrow a = \dfrac{1}{2}(i + 1) x
12,637
6\cdot 5^k + 6\cdot (-1) - 5^k + 5 = 5^k\cdot \left(6 + (-1)\right) + \left(-1\right)
32,541
5/8 = -1/8 + \frac{1}{2} + 1/4
29,813
(6 + j^3 + 3\cdot j \cdot j + 8\cdot j)/3 = ((j + 1)^3 + 5\cdot (1 + j))/3
-23,289
1 - 3/7 = \frac{4}{7}
-16,415
7\sqrt{16} \sqrt{11} = 7*4 \sqrt{11} = 28 \sqrt{11}
29,258
2^2 \cdot 179 = 716
19,836
1 + y + y^2 + y^3\cdot \ldots = \frac{1}{1 - y}