id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
38,973 | x\cdot 2 = \frac{3 \pi}{4} \Rightarrow x = \frac{1}{8} \pi\cdot 3 |
-15,321 | \tfrac{1}{\frac{q^{10}}{n^2} n^2} = \tfrac{1}{n^2*\left(\frac{q^5}{n}\right)^2} |
1,912 | \frac{l!}{(l - v)!\cdot v!} = {l \choose v} |
-10,526 | \frac{1 + p}{p^3 \cdot 4} \cdot \frac{1}{4}4 = \frac{4p + 4}{16 p^3} |
-7,509 | \tfrac14 \cdot 17 = 34/8 |
11,866 | x\times \lambda_g = x\times \lambda_g |
3,923 | w \in \mathbb{R}, x - y = w\Longrightarrow x = w + y |
21,812 | 4(-1) + (2(-1) + z) * (2(-1) + z) = z^2 - 4z |
16,911 | 3/5 \cdot \frac{1}{4} \cdot 2 = \tfrac{1}{10} \cdot 3 |
18 | 1^2+1^2=1*2\implies 2=2 |
-9,119 | \dfrac{1}{100}*74.8 = 74.8\% |
-20,482 | \frac{-n \cdot 10 + 4 \cdot (-1)}{n \cdot 70 + 28} = \frac{1}{4 + 10 \cdot n} \cdot (10 \cdot n + 4) \cdot (-1/7) |
9,064 | \eta = 1/\eta = 1/\eta\cdot L^{-T}/L = \eta\cdot L^{-T}/L |
-30,701 | 21\times (-1) - x\times 14 = -7\times (2\times x + 3) |
27,985 | |z + (-1)| = |1 - z| \geq |1| - |z| = 1 - |z| rightarrow |z| \geq \frac{3}{4} |
13,408 | \frac{b}{g} = b/g |
8,046 | 1 + 8 \cdot \frac19 \cdot ((-1) + 10^{l + 1}) = \frac{1}{9} \cdot (8 \cdot 10^{l + 1} + 1) |
7,110 | 1 - \frac{1}{1 + x^n} = \frac{1}{x^n + 1}*x^n |
24,234 | \frac{1}{(d + x) \cdot (x + h)} = \frac{1}{h - d} \cdot (-\frac{1}{h + x} + \frac{1}{d + x}) |
4,606 | y*T/I = y*T/I |
15,053 | \dfrac{a^b}{a^d} = a^{-d + b} |
-509 | \frac{11}{12} \cdot \pi = -26 \cdot \pi + \pi \cdot 323/12 |
15,737 | x^{3/2} = x^{\frac{1}{2}}*x |
32,079 | \dotsm^2 = \dotsm\cdot \dotsm |
49,740 | 54/6=9 |
-2,690 | 25^{\frac{1}{2}}\cdot 7^{\frac{1}{2}} + 7^{\frac{1}{2}} = 5\cdot 7^{1 / 2} + 7^{\frac{1}{2}} |
28,875 | 5/2 - \frac25 = \frac{21}{10} |
-30,073 | 14 \cdot y + 6 \cdot y^5 + y \cdot y \cdot y \cdot 12 = \frac{\mathrm{d}}{\mathrm{d}y} \left(7 \cdot y^2 + y^6 + 3 \cdot y^4\right) |
23,865 | \cos^k{z} = \cos^k{z} |
19,765 | 3 (-1) + 7 = 4 |
875 | 2 = A/x = \frac{A}{x \cdot U} \cdot \dfrac{U}{x} \cdot x = \dfrac{1}{x \cdot U} \cdot A \cdot |U| |
-2,340 | \frac{6}{11} - 4/11 = \frac{1}{11}*2 |
30,293 | 1365 = 19^2\cdot 3 + 16\cdot 19^0 + 14\cdot 19^1 |
21,618 | \frac{y}{y + (-1)} = \frac{1}{y + \left(-1\right)}\cdot (y + (-1) + 1) = 1 + \frac{1}{y + (-1)} |
10,361 | x^2 + 3 - x^2 + 2\cdot x + 1 = x^2 - x^2 - 2\cdot x + 3 + \left(-1\right) = -2\cdot x + 2 = -2\cdot (x + (-1)) |
15,272 | 0 = B_4 - B_1*2 - 3*\frac{1}{5}*(2*B_1 - B_2) \Rightarrow B_4*5 - B_1*16 + 3*B_2 = 0 |
-20,058 | \dfrac{1}{k + 9} \left(-6 k + 6 (-1)\right)*9/9 = \frac{1}{81 + 9 k} (-54 k + 54 (-1)) |
17,141 | -h + e - f = e - f - h |
18,100 | \frac{y}{y^4 + 9} = \dfrac{1/9 \cdot y}{1 - -\frac{y^4}{9}} |
19,466 | P(A) = P(A) |
23,800 | \left\lceil{\frac{5}{(30/7)^{1/2}}}\right\rceil = 3 |
1,611 | 1/10 = \frac{8}{9} \cdot 9/10/8 |
-23,609 | 1/5 = 1/5 \cdot 2/2 |
-1,469 | -\frac95*(-\dfrac79) = \frac{\frac19*(-7)}{(-5)*1/9} |
-2,120 | 11/12 \times \pi + \tfrac{1}{12} \times 23 \times \pi = \frac{17}{6} \times \pi |
-22,710 | \tfrac{1}{49}\cdot 28 = 7\cdot 4/(7\cdot 7) |
21,175 | \frac{1}{g_1 g_2} = 1/(g_1 g_2) |
23,039 | z^2 + \frac{1}{z^2} = 2 (-1) + (\frac1z + z) (\frac1z + z) |
8,890 | mc = mc |
32,760 | b*g = (\sqrt{g*b})^2 |
24,690 | \frac16 + 1/6 = \frac{1}{3} |
17,222 | \dfrac{1}{2} + 1/4 + \dfrac18 + \ldots + \frac{1}{2^k} = \dfrac{1}{2^k}*((-1) + 2^k) |
-7,563 | \frac{-i\cdot 9 + 9}{3 + 3\cdot i}\cdot \frac{3 - i\cdot 3}{-3\cdot i + 3} = \frac{9 - i\cdot 9}{3 + 3\cdot i} |
-1,632 | \frac{3}{2}\cdot \pi = \pi + \frac{1}{2}\cdot \pi |
12,111 | \sin\left(\pi - e - h - c\right) = \sin(e + h + c) = \sin\left(e + h\right) \cos(c) + \cos(e + h) \sin(c) |
15,026 | 0 < \tfrac{e^{-1/z}}{z} = \frac{1}{z\cdot e^{\frac1z}} < 2\cdot z |
2,088 | (x + 1)\cdot \left(1 + x \cdot x - x\right) = 1 + x^3 |
23,102 | s^2*s = s^3 |
35,767 | 10 + 6\cdot \sqrt{3} = 1 + 3\cdot \sqrt{3} + 9 + 3\cdot \sqrt{3} = 1 + 3\cdot \sqrt{3} + 3\cdot (\sqrt{3})^2 + (\sqrt{3})^3 = \left(1 + \sqrt{3}\right)^3 |
-11,580 | -6 i - 9 + 1 = -8 - i*6 |
11,655 | (-c a + a^2 + d d + c c - d a - c d) \left(a + d + c\right) = a^3 + d d d + c^3 - 3 d c a |
-20,243 | 8/5 \dfrac{8 + 6q}{6q + 8} = \frac{64 + 48 q}{q\cdot 30 + 40} |
21,537 | 2*\left(-b + a\right) = 2*a - 2*b |
6,992 | \dfrac{30}{12^5}\cdot 66 = 55/6912 |
16,569 | \sin(\pi - t\cdot \pi) = \sin{\pi\cdot t} |
-18,960 | \frac192 = Z_t/(81 \pi)\cdot 81 \pi = Z_t |
10,475 | \cos(x \cdot t) = \cos(-t \cdot x) |
976 | a a + a b*2 + b^2 = (b + a) (b + a) |
15,713 | X \cdot X \cdot X - t^2 \cdot t = (X - t)\cdot (X^2 + t\cdot X + t^2) |
4,795 | -1.3 = (j + 10\cdot (-1))/2 \Rightarrow j = 7.4 |
33,797 | 5 \cdot 5 + 5^2 = 7^2 + 1 \cdot 1 |
4,195 | \overline{e^{m\cdot x + i\cdot p}} = \overline{e^{m\cdot x}\cdot e^{i\cdot p}} = e^{m\cdot x}\cdot e^{-i\cdot p} = e^{m\cdot x - i\cdot p} |
2,030 | \frac{1}{x + 1}(x^2 + 2x + 2) = x + 1 + \frac{1}{1 + x} |
-4,231 | 40/120\cdot y/y = 40\cdot y/\left(120\cdot y\right) |
9,763 | 1/\left(g\cdot x\right) = 1/(x\cdot g) |
-16,412 | 3\cdot (16\cdot 3)^{\frac{1}{2}} = 3\cdot 48^{1 / 2} |
5,562 | \frac{1}{4323} = 4322 \cdot 1/4323/4322 |
26,760 | \dfrac{x}{c_3}\times 1/c_2\times \ldots^{-1}/A = x\times |c_2\times |c_3|\times \ldots|\times A |
16,285 | l = \dfrac{l!}{\left(\left(-1\right) + l\right)!} |
-20,586 | \frac{1}{3} \times 8 \times \frac{1}{2 + 9 \times n} \times \left(n \times 9 + 2\right) = \dfrac{16 + 72 \times n}{27 \times n + 6} |
16,097 | A^T*z*u = z*A^T*u |
33,466 | \frac{x^2}{x!} = \frac{1}{(x + \left(-1\right))!} + \frac{1}{(x + 2\cdot \left(-1\right))!} |
14,409 | a^l\cdot x = a^l\cdot x |
27,613 | 2*\left(x + 1\right) = 2*x + 2 |
-19,072 | 1/2 = \frac{1}{49*\pi}*H_q*49*\pi = H_q |
10,928 | z^2 + z + 1 = (z + 2)\cdot \left(z + 2\right) = (z + (-1))\cdot (z + (-1)) |
17,914 | 2 \cdot (-1) + 2/3 \cdot q = 4 \cdot (q + 3 \cdot (-1))/6 |
39,838 | \frac{n + 3}{n^2 + 3*(-1)} < \tfrac{n + 3}{n^2 + 9*(-1)} = \tfrac{n + 3}{(n + 3)*(n + 3*\left(-1\right))} = \frac{1}{n + 3*(-1)} |
814 | -z_1 * z_1*3 + z_1 z_2*10 - 3z_2^2 = (z_1 + z_2)^2 - (2z_1 - 2z_2)^2 |
31,778 | 17\times 16\times 15\times \dotsm\times 2 = 17! |
49,984 | \frac{1}{4} (k + 2)^4 = \frac14 (k + 1 + 1)^4 = \dfrac14 (k + 1)^4 + (k + 1)^2 + 1/4 + (k + 1)^3 + k + 1 + \frac12 (k + 1) (k + 1) |
17,287 | (-10 + 4\cdot \sqrt{10})/9 = -10/9 + \dfrac{\sqrt{10}\cdot 4}{9} |
7,204 | B^2 + (-1) = (B + 1)\cdot (B + (-1)) |
7,748 | \frac1x \cdot 2 + 2 = \left(2 + x \cdot 2\right)/x |
-182 | \frac{1}{(8 + 4\cdot (-1))!}\cdot 8! = 8\cdot 7\cdot 6\cdot 5 |
21,644 | (k\cdot 4 + \left(-1\right))^3 = 64 k^3 - 48 k^2 + k\cdot 12 + \left(-1\right) |
18,225 | 1 = ((-1)^2)^{\dfrac12} |
13,679 | (4 + t^2 \cdot 4)^{1 / 2} = u \Rightarrow 4 \cdot t^2 + 4 = u \cdot u\wedge t^2 = \frac14 \cdot (u \cdot u + 4 \cdot \left(-1\right)) |
-26,576 | 2\times y^2 + 162\times (-1) = 2\times (y^2 + 81\times (-1)) = 2\times (y + 9)\times (y + 9\times (-1)) |
2,749 | m = 5 \Rightarrow -1 = (-1)^m |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.