id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
22,650 | \left(f + d\right)^2 = d^2 + d \cdot f \cdot 2 + f^2 |
4,194 | 1/27*4/\left(8*\pi\right) = 1/(\pi*54) |
-1,868 | -\pi \cdot \frac{19}{12} + \pi \cdot \frac{19}{12} = 0 |
42,649 | 1000 = 0 + 0(-1) + 1000 |
-11,641 | -10 + 10\cdot i = -4 + 6\cdot \left(-1\right) + 10\cdot i |
28,396 | \frac{36}{120} = \frac{1}{10} 3 |
3,734 | i = s*h*e = s*e*h |
23,698 | \frac{1}{6^3} \cdot \binom{6}{3} = \tfrac{20}{216} = \frac{5}{54} |
2,053 | \arcsin{-a} = -\arcsin{a} |
-24,755 | \cos{\pi \cdot 7/12} = \frac14 \cdot (-6^{1 / 2} + 2^{\frac{1}{2}}) |
18,637 | c*2 + \frac23*a \Rightarrow a = -c*3 |
-28,967 | 3 = 15 \times (-1) + 18 |
172 | (S + 2(-1)) (1 + S) = 2(-1) + S^2 - S |
20,051 | R^2*X = R^2*X |
15,206 | z^2 + 72 - 13\cdot n^2 = 6\cdot 2^{1/2}\cdot n \cdot n + 12\cdot 2^{1/2}\cdot z = 2^{1/2}\cdot (6\cdot n^2 + 12\cdot z) |
-5,923 | \frac{1}{4 \cdot (6 \cdot (-1) + k)} \cdot 3 = \tfrac{3}{24 \cdot \left(-1\right) + 4 \cdot k} |
-425 | (e^{7i\pi/4})^{13} = e^{i\pi \cdot 7/4 \cdot 13} |
12,925 | \dfrac{a}{y} = \tfrac{a}{y} |
8,456 | (-8\cdot a + 1)\cdot (1 + a)^2 = 1 - 8\cdot a^3 - 15\cdot a \cdot a - 6\cdot a |
34,586 | m \cdot m/m! = \tfrac{1}{((-1) + m)!}\cdot m |
21,015 | ce - cb = c*(e - b) |
26,424 | 2\times (1 + 2^n\times \left((-1) + n\right)) = 2 + 8 + 24 + 64 + \dotsm + 2^n\times n |
25,073 | 0 + \gamma^2 = \gamma^2 |
11,623 | 4 - 7*(y^2 - y*4 + 4) = -y^2*7 + y*28 + 24*(-1) |
-17,035 | 3 = 3(-4p) + 3 = -12 p + 3 = -12 p + 3 |
14,651 | \tfrac{1}{k \cdot z^k} \cdot z^{k + 1} \cdot (k + 1) = (k + 1) \cdot z/k = \left(1 + \tfrac{1}{k}\right) \cdot z |
23,497 | \frac{1}{1}2 = 2 + \dfrac110 |
23,318 | \int\limits_0^\pi \cos^{2\cdot k + 1}{t}\,dt = 0 = \int\limits_0^{2\cdot \pi} \cos^{2\cdot k + 1}{t}\,dt |
-8,573 | \dfrac{2}{3} - \dfrac{4}{12} = {\dfrac{2 \times 4}{3 \times 4}} - {\dfrac{4 \times 1}{12 \times 1}} = {\dfrac{8}{12}} - {\dfrac{4}{12}} = \dfrac{{8} - {4}}{12} = \dfrac{4}{12} |
-22,371 | (7 \cdot (-1) + p) \cdot \left(p + 6\right) = 42 \cdot (-1) + p^2 - p |
-6,430 | \tfrac{1}{t\cdot 3 + 27}\cdot 5 = \frac{5}{3\cdot (t + 9)} |
12,659 | |x - z| = z - x = \frac{z^2 - x^2}{x + z} \lt \frac{1}{2 \cdot x} \cdot (z \cdot z - x^2) |
6,101 | \tfrac13*2/3 = \frac29 |
26,907 | 14.7 = \frac{6}{6} + 6/5 + \tfrac64 + 6/3 + 6/2 + \dfrac11 \times 6 |
9,111 | (x + c) \cdot (x + c) + d = c^2 + d + x^2 + 2\cdot x\cdot c |
2,156 | \dfrac{64^{1 / 2}}{8^{1 / 2}} = (\dfrac18 \cdot 64)^{\dfrac{1}{2}} = 8^{1 / 2} = 2 \cdot 2^{\frac{1}{2}} |
-19,226 | 1/45 = \frac{1}{36\cdot \pi}\cdot A_s\cdot 36\cdot \pi = A_s |
323 | (i \cdot 16)^{-1} = (4 \cdot i)^{-1} - \frac{3}{16 \cdot i} |
-6,396 | \tfrac{1}{12 + 2\cdot p} = \frac{1}{2\cdot (6 + p)} |
36,918 | 3^7 + 3\cdot (-1) = 2184 |
16,756 | \frac{1}{n}*x = x/n |
24,936 | x^2 = (x + \left(-1\right) + 1)^2 = \left(x + \left(-1\right)\right)^2 + 2*(x + \left(-1\right)) + 1 |
28,461 | 26 = 5 * 5 + 1^2 = 4^2 + 3^2 + 1^2 = 3^2 + 3^2 + 2^2 + 2^2 |
36,626 | |f - g| = -(f - g) = g - f |
24,030 | \dfrac{h}{c} \coloneqq h/c |
11,177 | \frac{1}{z^2 - z + 2\cdot (-1)}\cdot 2 = \frac{2}{(z + 2\cdot (-1))\cdot (z + 1)} |
17,242 | (1 + 1)\cdot \left(1 + 1\right)\cdot (1 + 2)\cdot \left(7 + 1\right) = 96 |
35,942 | Y^2 + Y = 3*Y - I = Y^3 + I |
-6,693 | \frac{3}{100} + \frac{1}{10} \cdot 8 = \frac{80}{100} + \tfrac{1}{100} \cdot 3 |
18,247 | \frac{\partial}{\partial y} \left(y^p G\right) = Gy^{\left(-1\right) + p} p |
2,333 | F = FF^0 |
-27,766 | d/dz \left(3\tan(z)\right) = 3d/dz \tan(z) = 3\sec^2(z) |
-22,083 | \dfrac{6}{6}=1 |
21,467 | x^2 + x \cdot k \cdot 2 + k^2 = (x + k) \cdot (x + k) |
17,021 | \cos{4 b} = \cos(b \cdot 3 + b) |
24,678 | -(-\cosh(x) + \sinh(x))*\left(\sinh(x) + \cosh(x)\right) = 1 \implies 1 = 5*(\cosh\left(x\right) + \sinh(x)) |
23,091 | \left(n^3 - n^2 + n^2 - n + 1\right) \cdot (n^2 + n + 1) = (n^2 + n + 1) \cdot (1 + n \cdot n \cdot n - n) |
49,422 | (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq \frac{3(a+b+c)}{\sqrt[3]{abc}}=\frac{2(a+b+c)}{\sqrt[3]{abc}}+\frac{(a+b+c)}{\sqrt[3]{abc}}\geq\frac{2(a+b+c)}{\sqrt[3]{abc}}+3 |
30,281 | 3^{20*j} = ((3^3)^6*3^2)^j = (27^6*9)^j |
13,304 | 2\times \left(-1\right) + (\frac{1}{\xi} + \xi)^2 = \frac{1}{\xi^2} + \xi^2 |
48,542 | 8 = {8 \choose 1} |
-10,396 | -3/d \dfrac{4}{4} = -\frac{1}{4 d} 12 |
-9,614 | 30\% = 30/100 = 0.3 |
-22,636 | \dfrac{1}{3} \times - \dfrac{5}{8} = \dfrac{1 \times -5}{3 \times 8} = \dfrac{-5}{24} = -\dfrac{5}{24} |
13,216 | 4 \cdot 2 \cdot 3 + 5 \cdot 0 = 24 |
6,133 | \left(-n + m\right)\cdot 3 = -3n + 3m |
25,237 | (\tfrac16*5)^2 = \dfrac{1}{6}*5*\frac56 |
23,708 | l!*(1 + l) = (1 + l)! |
-24,879 | \frac{11}{12} = \frac{1}{12}\cdot s\cdot 12 = s |
40,162 | 4 + x = 3 + x + 1 = 3\cdot (1 + (x + 1)/3) |
-10,470 | \frac{3}{3}\cdot \frac{1}{5\cdot q}\cdot 3 = \dfrac{9}{15\cdot q} |
-4,127 | \frac18\cdot 7 = \frac{1}{8}\cdot 7 |
2,067 | \psi^4 + 4 = \psi^4 + 4\cdot \psi^2 + 4 - 4\cdot \psi^2 = \left(\psi^2 + 2\right)^2 - 4\cdot \psi^2 = (\psi^2 - 2\cdot \psi + 2)\cdot (\psi^2 + 2\cdot \psi + 2) |
13,713 | 7 = 7/2 \times 2 |
18,672 | Sy = yS + Sy |
-3,052 | 10^{1 / 2} \cdot (1 + 4 + 5) = 10^{\tfrac{1}{2}} \cdot 10 |
-5,225 | 0.64*10^{10 + 5 (-1)} = 10^5*0.64 |
13,973 | 2 + 3^{1 / 2} = ((2^{1 / 2} + 6^{\frac{1}{2}})/2)^2 |
-6,169 | \frac{1}{k * k + 5k + 36 (-1)}5 = \frac{1}{(k + 9) (4(-1) + k)}5 |
5,720 | x_2/(x_1) \cdot x_1^2 = x_1 \cdot x_2 |
6,347 | \left(x^2 + x + 1\right) \cdot (x + (-1)) = (-1) + x^2 \cdot x |
17,103 | (C' \times x/x)^3 = \frac{x}{x} \times C'^3 |
-28,785 | \int z \cdot z\,\mathrm{d}z = \frac{1}{2 + 1} \cdot z^{2 + 1} + X = z^3/3 + X |
-6,748 | \frac{1}{100}\cdot 4 + 50/100 = 4/100 + \dfrac{5}{10} |
13,364 | 48 = 50 + 3\cdot \left(-1\right) + 1 |
7,466 | \sin{2\cdot \pi} + \sin{4\cdot \pi} = \sin\left(\pi\cdot 4 + \pi\cdot 2\right) |
836 | \left(2^5 + 5^6\right)^2 = 5^{12} + 2^{10} + 2\cdot 2^5\cdot 5^6 |
30,275 | c + g_1 + g_2 = g_1 + g_2 + c |
21,960 | (3^{\left(-1\right) + x} + (-1))/2 = (3^{x + \left(-1\right)} + 3(-1))/2 + 1 |
818 | \left(-X\cdot n + X\cdot n\right)/n = X - n\cdot X/n |
403 | T/I \times z = \dfrac{T}{I} \times z |
-3,661 | \frac{108}{60}*\tfrac{k^3}{k^5} = \frac{108*k^3}{60*k^5} |
-29,096 | (-2)*(-6) = 12 |
-3,988 | k \cdot k\cdot 35/(k\cdot 30) = k \cdot k/k\cdot 35/30 |
-23,348 | \dfrac{1}{9}*4*3/4 = \frac13 |
17,942 | 9^{91} \gt 9^{90} = (9^9)^{10} > \left(7^{10}\right)^{10} = 7^{100} \gt 7^{94} |
33,121 | h \cdot m = h_1 \cdot m_1 \Rightarrow h_1/h = \frac{m}{m_1} |
18,146 | \frac37 = \dfrac{9}{21} |
-3,256 | (4 + 2)\cdot 3^{1/2} = 6\cdot 3^{1/2} |
13,471 | 8 = 4*k*j - k + j \Rightarrow \left(4*j + (-1)\right)*k + j = 8 |
Subsets and Splits