id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
20,031 | 1 + \left(5 \times p + 1\right) \times 19 = x \times 5 \Rightarrow 19 \times p + 4 = x |
8,546 | (n + 1)^2 = n^2 + 2*n + 1 = (n + \left(-1\right))^2 + 2*n + (-1) + 2*n + 1 = (n + (-1))^2 + 4*n |
9,817 | 190 = (20 + (-1))*20/2 |
26,669 | |(t + \frac{1}{2}) * (t + \frac{1}{2}) + \dfrac74|/(\sqrt{2}) = \frac{1}{\sqrt{1^2 + 1^2}}*|t * t + 2 + t| |
17,209 | 0 = \dfrac{0}{1 + 0^2} |
4,658 | \int\limits_{-1}^1 \left(a + h\right)^2\,dz = \int (a * a + \int (h^2 + 2\int ah\,dz)\,dz)\,dz = \int (a^2 + \int h^2\,dz)\,dz |
-10,754 | 10 = -6 + 5*a + 7*(-1) = 5*a + 13*(-1) |
10,436 | \dfrac{x}{z} = \frac{x}{z} |
9,906 | 41625 = \frac{1}{5}125*(1 + 2 + 3 + 4 + 5)*111 |
639 | z^2 - 10 z + 25 = (z + 5 (-1))^2 |
18,917 | {8 \choose 5}\cdot 5 = 280 |
46,701 | 72-32=40 |
13,167 | x = \tfrac{1}{2}(x + y - z + x + z - y) \geq \sqrt{(x + y - z) (z + x - y)} |
23,937 | 1 - 1/36 - \frac{20}{36} = \frac{1}{36}\cdot 15 |
437 | \left(b + g\right) \cdot (b + g) = b^2 + g^2 + b \cdot g + b \cdot g |
-10,694 | \tfrac{30}{z*15 + 12} = \frac133*\dfrac{10}{z*5 + 4} |
36,341 | 180 + 30 \cdot (-1) - 48.59 = 101.41 |
22,318 | 4*(-1) + a^3 - a^2*3 + 5*a = (a + (-1))^3 + 2*(a + (-1)) + (-1) |
24,774 | 29 \cdot 29 + 29 \cdot 37 + 37^2 = 49 \cdot \left(2^2 + 2 \cdot 7 + 7^2\right) = 49 \cdot 67 |
18,806 | (s*2)^2 = s^2*4 |
-10,780 | -15 = 35 + 2 \cdot t + 9 = 2 \cdot t + 44 |
4,235 | \sin(\beta + \alpha) = \sin(\beta) \times \cos(\alpha) + \cos(\beta) \times \sin(\alpha) |
4,712 | (z + \frac{z^2}{2!} + \frac{1}{3!} \cdot z \cdot z \cdot z + \ldots)^{-1} = \frac{1}{e^z + \left(-1\right)} |
25,013 | \sqrt{a * a + b^2} = (b^2 + a^2)^{\frac12} |
10,276 | a^2\cdot \dfrac{\frac{1}{a}\cdot 1/b}{b^2}\cdot 1\cdot b^6 = \frac{1}{b\cdot \dfrac{1}{b^6\cdot a^2}\cdot b \cdot b\cdot a} |
-20,323 | 4/4 \cdot \frac{1}{-10} \cdot (z \cdot 2 + 2) = \left(z \cdot 8 + 8\right)/\left(-40\right) |
21,571 | h = h*d = d\Longrightarrow h = d |
30,570 | {5 \choose 2}*{9 \choose 2} = 360 |
22,671 | (x^2)^3 + 64 = (x \cdot x)^3 + 4^3 = (x^2 + 4)\cdot \left(x^4 - 4\cdot x^2 + 16\right) |
4,333 | 5 \cdot (-1) \cdot (-5) \cdot (-25) \cdot \left(-110\right) = 68750 |
17,323 | \left(t + p\right) (a \frac{p}{p + t} + b \dfrac{t}{p + t}) = a p + b t |
24,817 | \lim_{x \to 1}(3*x^2 - 4*x + 1) = 0 = \lim_{x \to 1}(x + \left(-1\right)) |
15,511 | \operatorname{asin}(\theta) = \frac{1}{\sin(\theta)} = \frac{1}{\sin(\theta)} |
22,508 | (x^3 + 0x^2 + 1x + 0) = (x^2 + 0x + 1) * (x + 0) |
28,410 | 2 = (i + 1)^1 + (1 - i)^1 |
-21,019 | 8/8*\frac{7*t}{t*6 + 4} = \tfrac{56*t}{32 + 48*t} |
13,873 | e^{1/x} = 1 + \frac1x + \tfrac{1}{2 \cdot x^2} + \ldots > \dfrac{1}{2 \cdot x^2} |
-22,303 | q^2 - q \times 6 + 8 = (q + 2 \times \left(-1\right)) \times (4 \times (-1) + q) |
31,575 | -10 x + 3x + 12 x = 15 x - 10 x = 5x |
21,795 | \dfrac{4}{2\cdot (2\cdot x + 1)} = \dfrac{1}{2\cdot x + 1}\cdot 2 = \frac{1}{x + 1} + \dfrac{1}{(x + 1)\cdot (2\cdot x + 1)} |
20,579 | 1 - \frac{1}{2^5}(\binom{5}{0} + \binom{5}{2}) = 1 - \frac{1}{32}(1 + 5) = 0.8125 |
4,302 | a^2*M + I + M*a^2 = I + 2*M*a * a |
12,177 | \sin(\frac12 \cdot \pi + k) = \cos{1/k} \geq 1 - \dfrac{1}{k^2} |
-17,640 | 28 = 35 + 7*(-1) |
22,230 | \frac{2^k*6}{\left(2^k*6\right)^2} = \frac{1}{2^k*6} |
1,119 | 1 - \frac{1}{K + 1} = \frac{1}{K + 1}*K = \frac{1}{1 + 1/K} |
8,808 | \left|{D^t\times D}\right| = \left|{D\times D^t}\right| |
-12,835 | 2/7 = 6/21 |
31,631 | \frac{1}{\frac12 \cdot 6} = 1/3 |
-3,324 | \sqrt{7} + \sqrt{112} - \sqrt{63} = -\sqrt{9 \cdot 7} + \sqrt{7} + \sqrt{16 \cdot 7} |
29,454 | \tan(y + 2\times \pi) = \tan(y) |
19,288 | 1 + 2 + 3 + \cdots + 21 = 21\times 22/2 = 231 |
38,634 | \pi^{-1}[\pi[U]] = U |
19,706 | (4 \cdot x + z) \cdot (z + x) = x \cdot x \cdot 4 + 5 \cdot x \cdot z + z \cdot z |
5,953 | 1 = \cos^2{\dfrac{\pi}{2}} + \sin^2{\pi/2} |
8,601 | \frac{1000}{2 + (-1)} + \frac{1}{1 + 0(-1)}0 = 1000 |
37,239 | x \cdot 3 + 3 \cdot y = (x + y) \cdot 3 |
-14,357 | 10 + \frac1210 = 10 + 5 = 15 |
27,322 | \sin(\tan^{-1}(y)) = \frac{y}{(y^2 + 1)^{1 / 2}} |
35,186 | y + ly^2 + l^2 y^3 + \dotsm = (ly + (ly)^2 + (ly)^3 + \dotsm)/l = \frac{1}{1 - ly} |
950 | 11 - k\cdot 4 = 3\Longrightarrow k = 2 |
-18,269 | \frac{1}{-3 l + l^2} (15 (-1) + l^2 + 2 l) = \frac{(3 (-1) + l) (l + 5)}{(l + 3 (-1)) l} |
22,363 | (1 + n + 1)\cdot (n + 1)! = (1 + n + 1)\cdot (n + 1)! |
14,124 | F + B = -(-B + 180 - F) + 180 |
26,137 | 12 \times 16^0 + 5 \times 16^1 + 16^2 = 348 |
20,734 | 9/8 = 3/2*\dfrac{1}{4}*3 |
1,367 | 1/256 = \left((1/2)^2\right)^4 |
21,901 | (x^2 + z^2) \cdot (x + z) \cdot (-z + x) = x^4 - z^4 |
8,643 | (T + 1)^2 = T^2 + 2*T + 1 > T^2 + 1 |
26,804 | \sqrt{5/3} = \sqrt{\frac{1}{12}20} |
6,402 | 1 \leq 4 \cdot x < 2 \implies 4 \cdot x = 4 \cdot x + 1 |
32,456 | (s * s)^2 = s^4 |
-3,325 | 2*\sqrt{7} = \sqrt{7}*(3*(-1) + 1 + 4) |
14,876 | (c + a)*\left(a - c\right) = a * a - c^2 |
6,948 | \sqrt{1 + s} = 1 + s/2 + \ldots |
12,252 | 2^{d + f} = 2^d\cdot 2^f |
16,616 | xv vx = (vx) * (vx) xv\Longrightarrow 1 = vx |
68 | 4 + z^4 - z^2\cdot 5 = ((-1) + z)\cdot (z + 2\cdot (-1))\cdot (z + 1)\cdot (z + 2) |
22,613 | z_0^4 - z_0^2*2 + 1 = 0 \implies (z_0^2 + (-1))^2 = 0 |
8,892 | (z + (-1) + 1)^{\dfrac12} = \sqrt{z} |
23,059 | 29/3 = -\dfrac{2}{3}*2 + 35 - 8*3 |
30,173 | \frac{8 + y}{8 - y} = 1 + \frac{2 \cdot y}{8 - y} = 1 + \frac{1}{8/y + \left(-1\right)} \cdot 2 |
-14,317 | \frac{65}{8 + 5} = \frac{1}{13}65 = 65/13 = 5 |
21,109 | A*z = z/(1/A) |
9,090 | -(l + 1)! + (2 + l)! = (l + 1)!\cdot (l + 1) |
30,604 | \cos(-G) = \cos\left(G\right) |
17,018 | b^2 + \frac{1}{b * b} + 1 = (b + \tfrac1b)^2 + (-1) = (b + \frac{1}{b} + 1)*(b + \tfrac{1}{b} + (-1)) |
4,045 | \frac{l_2}{l_1} = \frac{1}{l_1}l_2 |
-3,191 | \sqrt{3} \cdot (4 + 2 + 3(-1)) = \sqrt{3} \cdot 3 |
-4,015 | 120/36*\dfrac{1}{r^4}*r^5 = \frac{r^5*120}{36*r^4}*1 |
4,480 | \left(3\times (-1) + x\right)\times y = C + e^x\times 6 \Rightarrow y = \frac{C + e^x\times 6}{3\times (-1) + x} |
16,191 | 4^{\frac23} = 2^{1/3}*2 |
13,434 | a \cdot h = -a \cdot (-h) |
3,697 | d_1^2 - d_2^2 = (d_1 + d_2) (-d_2 + d_1) |
26,926 | f^{-x}*b = \tfrac{1}{f^x}*b |
4,403 | 5^{20} \cdot \binom{19}{9} = 5 \cdot 5^{19} \cdot \binom{19}{9} |
22,003 | 2/31 = 1/31 + \frac{1}{30} \cdot 30 \cdot 1/31 |
9,775 | \left(k + \left(-1\right)\right) (k + 1) k \ldots = (1 + k)! |
29,167 | ak = ai \Rightarrow a^k = a^i |
35,930 | \mathbb{Var}[S_m] = \mathbb{E}[(S_m - \mathbb{E}[S_m]) * (S_m - \mathbb{E}[S_m])] = \mathbb{E}[(S_m + 5*\left(-1\right))^2] |