id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
47,370 | 600 = 2\cdot (100 + 100 + 100) |
-11,466 | 12 - 8 \cdot i = 12 + 0 \cdot (-1) - i \cdot 8 |
-20,523 | (45 - 40\times j)/((-50)\times j) = \dfrac{1}{5}\times 5\times (9 - 8\times j)/\left(j\times (-10)\right) |
23,780 | 1 + x + x^2 + \dots = \frac{1}{-x + 1} |
33,200 | 2\cdot 7 = \left(1 + \left(-13\right)^{1 / 2}\right)\cdot (-(-13)^{1 / 2} + 1) |
3,737 | \left(d_2 * d_2 + d_1^2 + d_1*d_2\right)*(-d_2 + d_1) = -d_2^3 + d_1 * d_1 * d_1 |
4,771 | \varphi = \frac12(1 + \sqrt{5}) = 1 + \frac{1}{\varphi} |
4,335 | (2 \cdot (-1) + 2^n)/2 + \left(2^n + 2 \cdot (-1)\right)/2 = 2^n + 2 \cdot \left(-1\right) |
34,896 | 24 = \left(-1\right) + \frac14 \cdot 100 |
5,874 | x^2 + 4 = x^2 - (-1)\cdot 4 = x^2 - i^2\cdot 2^2 = x^2 - \left(2\cdot i\right)^2 = (x - 2\cdot i)\cdot (x + 2\cdot i) |
542 | \|x + y\|^2 = |1 + i|^2\cdot \|x\|^2 = 2\cdot \|x\| \cdot \|x\| = \|x\|^2 + \|y\|^2 |
5,804 | \sqrt{(y + 3)\cdot (2 + y)} = \sqrt{y^2 + y\cdot 5 + 6} |
-15,171 | \frac{1}{(r^5 x)^2 \frac{1}{r^{16}}} = \frac{r^{16}}{r^{10} x^2} |
41,216 | 1^2 + 9 \cdot 9 = 82 |
31,902 | e^I = 2 \Rightarrow e = 2^{\dfrac1I} |
10,648 | \left(x = \frac{x\cdot 2 + 1}{2 + x} \Rightarrow 1 = x^2\right) \Rightarrow x = 1 |
43,042 | h = 4 + h + 4\cdot (-1) |
-27,342 | \tan\left(-\pi + \theta\right) = \tan{\theta} |
-9,188 | -i*2*2*2*3 + 2*2*5 = -24*i + 20 |
31,082 | 1 + \frac{1}{\frac{1}{1 + \frac13\cdot 2} + 1} = 1 + \dfrac{1}{1 + 1/(5\cdot 1/3)} |
6,136 | y^h\cdot y^d = y^{d + h} |
23,776 | 28/126 + \frac{30}{126} = \dfrac{58}{126} |
16,117 | \frac{2}{1/3} \cdot 1/3 \cdot 40 = 2 \cdot 40 = 80 |
6,062 | y^2 - 4 \cdot y = \left(2 \cdot (-1) + y\right)^2 + 4 \cdot \left(-1\right) |
-2,452 | -\sqrt{9} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{25} = \sqrt{5} \cdot 5 - \sqrt{5} \cdot 3 |
19,638 | 0.6 = \frac{1}{3} \cdot \left(0.7 + 0.5 + 0.6\right) |
27,762 | 37 = 37\times 3\times 5 - 37\times 2\times 7 |
29,994 | 2 \pi = \pi*2 |
22,200 | b \cdot a \cdot x = a \cdot x \cdot b |
10,294 | \frac{(-1)^{1 + k}}{2^{1 + k}} = (-\frac{1}{2})^{k + 1} |
-4,882 | 7*10^{3 + 4} = 10^7*7.0 |
17,636 | e^x = 5 - x^2 + x*2\Longrightarrow x * x - 2*x + e^x = 5 |
21,729 | (k + 1) \cdot (k + 1) \cdot (k + 1) = \left(k + 1\right)\cdot (1 + k)\cdot (k + 1) |
11,320 | (\left(-1\right) + u)*(u + 1) = u^2 + (-1) |
36,752 | -(1 + k\cdot 2) + n\cdot 2 + 1 = 2(n - k) |
-612 | \pi\cdot 119/6 - 18 \pi = \pi \frac{1}{6} 11 |
-500 | \frac{1}{4}\pi = \frac{17}{4} \pi - 4\pi |
-7,785 | \frac{8 - i*2}{i - 4} = \frac{8 - i*2}{i - 4} \frac{-i - 4}{-4 - i} |
-22,966 | 90/63 = \frac{10\cdot 9}{7\cdot 9} |
36,283 | 6 = 2*3 = \left(1 + \left(-5\right)^{1/2}\right)*\left(1 - (-5)^{1/2}\right) |
22,770 | 3 \cdot 3 + 3\cdot \left(-1\right) + (-1) = 9 + 3\cdot (-1) + (-1) = 0 |
11,860 | \frac{C}{p + \left(-1\right)} + \frac{H}{p + 1} = \dfrac{1}{(p + 1)\cdot (p + (-1))} rightarrow 1 = (C + H)\cdot p + C - H |
37,939 | 3^{1/4} = 3^{1/4} |
2,642 | 128 = 256/2 |
-14,125 | \frac{1}{10 + 9\cdot \left(-1\right)}\cdot 2 = 2/1 = \frac21 = 2 |
16,821 | 5^{1 / 2}\cdot 15/5 = 5^{1 / 2}\cdot 3 |
40,752 | \left\{2, 6\right\} = \left\{2, 6\right\} |
-13,019 | 8/11 = \frac{1}{22} 16 |
24,144 | 2^{k + 5 \cdot \left(-1\right)} = 2 \cdot 2^{6 \cdot (-1) + k} |
843 | 2\cdot H_2 \geq 3\cdot H_1 \implies H_1 \leq H_2\cdot 2/3 |
-30,213 | \frac{5! \cdot \frac{1}{(5 + 4 \cdot \left(-1\right))! \cdot 4!}}{7! \cdot \frac{1}{\left(7 + 4 \cdot (-1)\right)! \cdot 4!}} = \frac{5! \cdot \dfrac{1}{1!}}{7! \cdot 1/3!} |
18,357 | 73 = \left(19 - 12 \sqrt{2}\right) (19 + 12 \sqrt{2}) |
-20,134 | \frac{x \cdot (-18)}{90 \cdot \left(-1\right) + 9 \cdot x} = \dfrac{\left(-2\right) \cdot x}{x + 10 \cdot (-1)} \cdot 9/9 |
26,780 | (\omega + (-1)) \cdot (\omega^4 + \omega \cdot \omega \cdot \omega + \omega^2 + \omega + 1) = (-1) + \omega^5 |
-11,645 | -3 + 5 - 8 \cdot i = -8 \cdot i + 2 |
-20,888 | (18 \cdot (-1) + 81 \cdot q)/(-36) = \frac{1}{-4} \cdot (9 \cdot q + 2 \cdot (-1)) \cdot 9/9 |
5,871 | z\cdot x/y = x/(y\cdot 1/z) |
9,142 | (-1) + 2^{2 \cdot n} = (2^n + 1) \cdot (2^n + (-1)) |
42,834 | \sec(x) = \sec\left(-x\right) |
8,068 | \cos(2 \cdot F) = 1 - 2 \cdot \sin^2(F) = 2 \cdot \cos^2(F) + (-1) |
33,842 | \delta + x = 0 \Rightarrow -\delta = x |
-2,671 | 11^{1 / 2} + (16\cdot 11)^{\frac{1}{2}} = 176^{\frac{1}{2}} + 11^{1 / 2} |
-15,529 | \tfrac{1}{\frac{1}{\frac{1}{d^4} \cdot r^8} \cdot r} = \frac{1}{r \cdot \frac{d^4}{r^8}} |
22,653 | 2 - 10^4 = 2 + 10000 (-1) = -9998 = -9.998*10^3 = -10/1000 = -10^4 |
8,751 | 0 = A^2 \times x \Rightarrow 0 = x \times A |
-18,335 | \frac{n^2 - 4 \cdot n + 60 \cdot (-1)}{6 \cdot n + n \cdot n} = \dfrac{1}{n \cdot \left(n + 6\right)} \cdot \left(n + 6\right) \cdot (n + 10 \cdot (-1)) |
16,343 | 51200 = 8^3 \times 10 \times 10 |
-19,020 | 29/40 = \tfrac{1}{25\cdot \pi}\cdot A_s\cdot 25\cdot \pi = A_s |
44,052 | 52 = 8 \cdot \left(-1\right) + 60 |
672 | (2*\pi*m)^{1/2}*\frac{e^m}{m^m}*\dfrac{m^m}{e^m} = \left(\pi*m*2\right)^{1/2} |
39,271 | 100800 = 5 \cdot 4 \cdot 5 \cdot 4 \cdot \binom{10}{5} |
11,116 | 5^3 = 4*19 + 7^2 |
25,859 | \left(y^2\right)^b = (1/y)^b = y^{b + \left(-1\right)} |
28,582 | 2^{\frac{1}{2}}*3 = 18^{1 / 2} |
12,892 | \frac{1}{\sigma} = 1 \implies \frac{1}{\sigma} |
15,855 | -\frac{1}{Y + (-1)} = \frac{1}{-Y + 1} |
4,414 | 2\cdot Y + 2\cdot \frac{\mathrm{d}Y}{\mathrm{d}z}\cdot z = \frac{\partial}{\partial z} (Y\cdot z\cdot 2) |
-27,012 | \sum_{n=1}^\infty \frac{1}{n \cdot 6^n} \cdot (1 + 5)^n \cdot (n + 2) = \sum_{n=1}^\infty \frac{6^n}{n \cdot 6^n} \cdot (n + 2) = \sum_{n=1}^\infty \frac1n \cdot (n + 2) |
15,087 | e_1 x + ye_2 + ze_3 = ze_3 + xe_1 + e_2 y |
7,232 | \frac{1}{x + (-1)} \cdot (x \cdot 6 + 9 \cdot (-1)) = \frac{6 - 9/x}{1 - 1/x} |
16,048 | 6 = d^3 + b^2 \cdot b = d^3 - (-b)^3 |
6,406 | 1 = (m + 1)!/m! = \dfrac{1}{m!} \cdot (m + 1) \cdot (m + 1 + (-1)) \cdot (m + 1 + 2 \cdot (-1))! |
19,710 | 65 = 8 * 8 + 1 * 1 |
14,931 | X \cdot V = Y\Longrightarrow \frac{\mathrm{d}Y}{\mathrm{d}X} = X \cdot \frac{\mathrm{d}V}{\mathrm{d}X} + V |
13,621 | y = \cos^{-1}{\frac{z}{\alpha}} \Rightarrow z/\alpha = \cos{y} |
19,283 | \,a-b = a+(-1)b\,] |
19,401 | z + z\cdot \frac13\cdot 4 = z\cdot 7/3 |
24,064 | \frac{3}{2} = \frac{1}{2} \cdot (2 + 1) = 1 |
21,082 | \tfrac{1}{d + X} = \tfrac{1}{-X^2 + d^2} \times (d - X) |
24,487 | 8 + 2(-1) = 6 = 3\cdot 2 |
5,440 | ((33 + 43*(-1))^2 + (7 + 0*(-1))^2 + (33 + 21*(-1))^2 + (29*(-1) + 33) * (29*(-1) + 33))/4 = 77.25 |
3,789 | (a - b)^2 = a^2 + b \cdot b - 2 \cdot a \cdot b = (a + b)^2 - 4 \cdot a \cdot b |
2,165 | 1/(S*T) = 1/\left(S*T\right) |
17,972 | \frac1y\times (x + y\times z) = x/y + z + 0\times y |
15,445 | (4 + z^2)^2 = 16 + z^4 + z^2*8 |
11,226 | (x + z) \times (x + z) = z \times z + x^2 + 2 \times x \times z |
31,442 | 9.75 = \frac14*(9 + 9 + 10 + 11) |
12,787 | d * d = (d + 6)*(12 + d)\Longrightarrow d = -4 |
-25,900 | 0.6 = 9/15 |
8,162 | (c*I - A)*X = C\Longrightarrow \frac{C}{c*I - A} = X |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.