id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
25,707 | \frac73 = 2 + 1/3 |
43,337 | |X| = |X - w + w| \leq |X - w| + |w| |
-9,334 | 24*(-1) - p*80 = -2*2*2*2*5*p - 2*2*2*3 |
-23,903 | \dfrac{1}{7 + 8} \cdot 15 = \dfrac{15}{15} = \frac{1}{15} \cdot 15 = 1 |
-22,797 | 90/40 = \frac{90}{4 \times 10} \times 1 |
2,714 | \frac{\mathrm{d}}{\mathrm{d}y} \frac{1}{y^2} = -\dfrac{2}{y * y * y} |
15,315 | (-\alpha)^{\frac{1}{2}}\cdot i = i\cdot i\cdot \alpha^{1 / 2}\cdot \cdots |
15,553 | j\cdot 7 + i\cdot 14 = -7\cdot \left(-j - i\cdot 2\right) |
13,339 | \dfrac{6}{3} 1 = 2 (-1) + 2^2 |
20,898 | S^2 = ((I + (I + \left(I + \dots\right)^{1/2})^{1/2})^{1/2})^2 = I + S |
51,653 | 909 + 1 = 910 |
-10,695 | -\tfrac{1}{100 + 100 \cdot y} \cdot 5 = \frac{5}{5} \cdot (-\frac{1}{20 + 20 \cdot y}) |
-29,331 | -2 \cdot i + 9 = -i \cdot 2 + 1 + 8 |
34,787 | {n + (-1) \choose r + (-1)} = {(-1) + n \choose -r + n} |
-17,400 | 0.269 = \tfrac{1}{100}\cdot 26.9 |
10,281 | \dfrac{dda}{d^2} = da/d |
11,029 | b\cdot a - a - b = \left((-1) + b\right)\cdot a + b\cdot (-1) |
-26,505 | b^2 + a a + 2 a b = (a + b) (a + b) |
15,886 | 3\cdot \left(\left(-1\right) + y\cdot 2\right) + 1 = 6\cdot y + 2\cdot (-1) |
11,397 | \frac{1 - -1}{2.25 - 1.5} = \frac{2}{0.75} = \frac83 \approx 2.7 |
349 | 2/3 \cdot h + h = 5/3 \cdot h |
-1,576 | \pi = \frac{13}{12}\cdot \pi - \frac{1}{12}\cdot \pi |
-19,069 | \frac{17}{40} = \tfrac{C_t}{64\cdot \pi}\cdot 64\cdot \pi = C_t |
17,258 | 171600 = r_2 \cdot r_1 - r_2 + r_1 + 1 = 172451 - r_2 + r_1 + 1 |
19,346 | (z^{1/2})^2 = \left(z \cdot z\right)^{1/2} = z |
19,040 | \frac{h^2}{c + h} = -\frac{h}{c + h}c + h |
19,806 | \frac{3y - ny^3}{2} = y - \frac{n y^2 - 1}{2}y |
10,708 | Y^T\cdot Y = Y\cdot Y^T |
20,881 | d/dx (y^3 \times 4) = y^2 \times \frac{dy}{dx} \times 12 |
14,237 | L = L\cdot 2 \Rightarrow L = 0 |
-7,008 | 3/8\cdot 6/7 = 9/28 |
15,281 | \left(y + x \cdot z\right)/x = z + \frac{y}{x} |
44,047 | 1^3 + 6\times 1^2 + 11 + 6 = 24 = 3\times 8 |
24,610 | \dfrac{89}{55} = 1 + \frac{34}{55} |
7,583 | k = 1/(\dfrac{1}{k}) |
1,897 | 10 = p^4 + 35/p \geq 2 \cdot \left(35 \cdot p \cdot p \cdot p\right)^{\frac{1}{2}} |
8,530 | \frac{1}{x^x}*(x + \left(-1\right))^x = \left((x + (-1))/x\right)^x = (1 - \frac{1}{x})^x |
3,460 | 126 + 5 (-1) + 15 (-1) + 0 = 106 |
23,477 | \sin(y + h) = \sin{y} \cdot \cos{h} + \cos{y} \cdot \sin{h} |
-17,440 | 68 + 38\cdot (-1) = 30 |
2,282 | -3 \cdot \left(y^2 + (-1)\right) + (y \cdot y + 1) \cdot 3 = -2 \cdot (3 \cdot (-1) + 2 \cdot y) + y \cdot 4 |
13,000 | p^2 + (-1) = (p + 1) ((-1) + p) |
7,525 | \sin\left((-x)^2\right) = \sin(x^2) |
-1,887 | \frac14 \cdot \pi = -\pi + \frac14 \cdot 5 \cdot \pi |
10,004 | \tan^2\left(A\right) + 1 = \frac{1}{\cos^2(A)} |
-17,242 | -\frac{5}{3} = -\frac13 \cdot 5 |
-27,629 | -8 + 3*(-1) + 8 + 3*(-1) = -8 + 8 + 3*(-1) + 3*(-1) = 0 + 6*(-1) = -6 |
-14,725 | 91 = \tfrac{910}{10} |
-2,852 | \sqrt{24} + \sqrt{54} - \sqrt{6} = \sqrt{4\cdot 6} + \sqrt{9\cdot 6} - \sqrt{6} |
30,598 | \cos(\cos{90*0^{\dfrac{1}{2}}}) = \cos{1} \approx 0.54 |
33,413 | \dfrac{f^2 + 1}{x^2 + 1} = x/f \implies f = x |
15,295 | \sin(u - v) + \sin(v + u) = \cos{v}\cdot \sin{u}\cdot 2 |
23,875 | x_n = x_{n + (-1)} + g_n \implies g_n = -x_{\left(-1\right) + n} + x_n |
-30,855 | \frac{7}{z + 3 \cdot (-1)} = \frac{28 + 7 \cdot z}{z^2 + z + 12 \cdot (-1)} |
-13,103 | -10.6 \div 20 = -0.53 |
-28,935 | \dfrac{285}{5} = 57 = 3 \cdot 19 |
14,521 | 9*37 = 333 |
8,397 | \left(3 + (-1)\right)/2 = 1 |
25,520 | f*(3*W + 2) = 80 \Rightarrow 80/\left(3*f\right) - 2/3 = W |
10,944 | l!/m! = ((3 + l)*(l + 1)*(l + 2)*\dotsm*(m + 2*(-1))*((-1) + m)*m)^{-1} |
18,796 | (aH)(bH) = (ab)H = (ba)H = (bH)(aH) |
14,898 | \frac23\cdot 5/7 = \frac{15}{21}\cdot 2/3 |
-27,919 | \frac{\mathrm{d}}{\mathrm{d}z} \sec(z) = \sec(z) \tan\left(z\right) |
14,223 | 0 = (-1) + t\cos{\theta}*2 \Rightarrow t\cos{\theta} = 1/2 |
-20,785 | 10*x/\left(x*35\right) = \frac27*5*x/(5*x) |
-20,008 | \frac{1}{-4\cdot f + 2}\cdot (-4\cdot f + 2) = \dfrac{1}{-f\cdot 4 + 2}\cdot \left(-f\cdot 4 + 2\right)/1 |
6,091 | 1 = \left[a, b\right] \Rightarrow ( b a, b + a) = 1 |
32,393 | 24 - 24 \times (-1) + 47 = 24 \times 2 + 47 \times \left(-1\right) |
30,016 | \tfrac12 \cdot (1 - \cos(t \cdot 2)) = \sin^2\left(t\right) |
12,122 | \dfrac{1}{x^n y^n}(x^n + y^n) = \tfrac{1}{x^n} + \dfrac{1}{y^n} |
26,480 | A^2*B^2 = (A*B) * (A*B) |
7,394 | \frac{1 / 50}{1000} \cdot 1 = \frac{1}{50000} |
-1,367 | 1/9 \cdot 7/9 = \frac{1}{9 \cdot 9/7} |
22,373 | \left(10*b\right)^2*n*0.09 = n*b^2*9 |
18,098 | \frac{\partial}{\partial x} x^a = a \cdot x^{a + \left(-1\right)} |
4,591 | 15 j = 3j \cdot 5 |
24,208 | B'\cdot C + D'\cdot A + A'\cdot B + x\cdot D = (D + A + B + C)\cdot (D' + A' + B' + x) |
-16,531 | 5\cdot \sqrt{9}\cdot \sqrt{7} = 5\cdot 3\cdot \sqrt{7} = 15\cdot \sqrt{7} |
-3,858 | \dfrac{z^5 \cdot 63}{z^5 \cdot 54} = \frac{z^5}{z^5} \cdot \frac{63}{54} |
5,748 | \dfrac{1}{x \cdot x + (-1)}x = \frac{1}{1 + x}1/2 + \frac{\dfrac12}{\left(-1\right) + x} |
23,832 | 50 \cdot x + 20 \cdot y = 1020 \implies 102 = 2 \cdot y + x \cdot 5 |
9,007 | p = \frac1p*\left(p^2 + 1\right) = p + 1/p |
-23,496 | \frac{1}{3} = 5/9\cdot \tfrac{3}{5} |
25,120 | 42/132 + \dfrac{20}{132} = \frac{1}{132}\cdot 62 = 31/66 |
5,506 | 544320 = \binom{7}{2} \cdot \binom{9}{2} \cdot 6! |
12,273 | \frac{1}{x + 2 \cdot (-1)} = -\frac{1}{2 \cdot (1 - x/2)} |
7,181 | \dfrac{x + 1}{2 + x} = \frac{1}{x + 2}*(x + 1) |
-12,142 | \frac{1}{30} = \frac{q}{20\cdot \pi}\cdot 20\cdot \pi = q |
-25,791 | \dfrac{10}{28} = \dfrac{10}{7 \times 4} |
37,774 | 8/17 = \sin(\alpha) \Rightarrow \frac{1}{17}\cdot 15 = \cos(\alpha) |
4,427 | 6 + x^2 - 5\cdot x = \left(x + 3\cdot \left(-1\right)\right)\cdot (x + 2\cdot \left(-1\right)) |
-20,126 | \dfrac{1}{6 + 3 \cdot m} \cdot (27 \cdot (-1) + m \cdot 24) = \frac13 \cdot 3 \cdot \frac{1}{m + 2} \cdot (m \cdot 8 + 9 \cdot (-1)) |
28,463 | \tan(a) = \tan(2 \cdot a/2) = \frac{2 \cdot \tan(a/2)}{1 - \tan^2(\frac{a}{2})} \cdot 1 |
24,499 | k = r \cdot n + d \Rightarrow n \cdot r = k - d |
1,777 | (a\cdot x + b)\cdot x = b\cdot x + a\cdot x^2 |
19,683 | \int \sum_{k=1}^\infty x_k\,d\mu = \sum_{k=1}^\infty \int x_k\,d\mu |
25,578 | A\cdot Y = I_m rightarrow Y\cdot A = I_m |
-26,061 | \dfrac{1}{5}(-2 - 16 i + i + 8(-1)) = (-10 - 15 i)/5 = -2 - 3i |
14,834 | {n \choose k} = \frac{n!}{(-k + n)! k!} |
13,834 | x^{\left(-1\right) + K} x = x^K |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.