id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
10,346 | 1 - \sin^2{d} \cdot 2 = \cos{2 \cdot d} |
29,981 | 0 = z_1 - z_2 + 3*\left(-1\right) \Rightarrow z_1 + 3*(-1) = z_2 |
12,553 | \mathbb{E}(N*X) = \mathbb{E}(N)*\mathbb{E}(X) |
5,091 | -\dfrac{1}{2} + \frac{3}{y} = \frac{6}{y\cdot 2} - y/(y\cdot 2) |
10,035 | \binom{5}{2}\cdot 2! = \frac{\binom{5}{2}\cdot 3!}{3} |
1,057 | A \cdot g' \cdot f \coloneqq f \cdot g' \cdot A |
16,248 | a_3\cdot 3 = 1 rightarrow a_3 = 1/3 |
7,265 | (l + k) \cdot (-k + l) = l^2 - k^2 |
-4,183 | \dfrac{2}{8} \cdot \dfrac{1}{z^4} \cdot z^4 = \frac{2 \cdot z^4}{z^4 \cdot 8} |
-4,410 | (x + (-1)) \cdot (4 + x) = x^2 + 3 \cdot x + 4 \cdot (-1) |
16,170 | 2*h*((-1) + 2^{\frac{1}{2}}) = 2*h*2^{1 / 2} + h - 3*h |
-3,264 | (2 + 5 + 3 (-1)) \sqrt{5} = 4 \sqrt{5} |
27,656 | \lim_{h \to 0} (e^{x + h} - e^x)/h = \lim_{h \to 0} (e^x\cdot e^h - e^x)/h = \lim_{h \to 0} e^x\cdot \left(e^h + (-1)\right)/h = e^x\cdot \lim_{h \to 0} (e^h + (-1))/h |
17,484 | 1 + \left((-1) + m\right)^3 + 3(m + (-1)) \cdot (m + (-1)) + 3\left((-1) + m\right) = m \cdot m^2 |
33,223 | |1/z| = \tfrac{1}{|z|} |
-530 | (e^{\dfrac{\pi}{12} \cdot i})^{19} = e^{\frac{\pi}{12} \cdot i \cdot 19} |
3,776 | \left(2^0 + 2^x = 2\Longrightarrow 2^x = 1\right)\Longrightarrow x = 0 |
12,396 | (\left(\left(-1\right) + m\right)/m)^1*2*\left(\frac1m\right)^2 = \frac{1}{m^3}*\left(m*2 + 2*(-1)\right) |
-18,506 | 5*c + 10 = 6*(2*c + 2) = 12*c + 12 |
8,148 | 1 + i + \left(-1\right) + d + (-1) = i + d + (-1) |
28,847 | \tan^{-1}{-1} = -\pi/4 |
22,508 | (x^2 + x\cdot 0 + 1)\cdot (x + 0) = 0 + x^3 + x^2\cdot 0 + x |
-7,195 | \dfrac{2}{9} = \frac{1}{9}\cdot 4\cdot 5/10 |
11,356 | \frac{1}{n^2}*n^{\frac12} = \frac{1}{n^{3/2}} |
-4,618 | \frac{5}{y + 4} + \dfrac{2}{1 + y} = \frac{y \cdot 7 + 13}{4 + y^2 + 5 \cdot y} |
28,317 | 3 = \frac{1}{1 - 2/3} |
10,770 | k\cdot (1 - 0.6) = k\cdot 0.4 |
10,631 | j = 14 (-1) + j \cdot 9 \Rightarrow \dfrac{1}{4} 7 = j |
1,470 | (2^{7\%}*5) * (2^{7\%}*5) = \left(128\%*5\right)^2 = 3^2 = 9 |
28,300 | 23 + w^2 + 6*w = 14 + (w + 3)^2 |
10,812 | \frac{x^2}{\left(-x + 1\right)^2} = (x + x^2 + \dots + x^{15})^2 |
25,108 | 10^h \cdot 10^g = 10^{g + h} |
28,113 | \left(44086^4 - 18748^4\right)\cdot 967 = 251477^4 - 146927^4 |
2,393 | \binom{3}{2} \binom{1}{1} \binom{5}{2} \binom{7}{2} = \frac{7!}{1!\cdot 2!\cdot 2!\cdot 2!} |
2,028 | 65/81 = 1 - (\frac{1}{3}\cdot 2)^4 |
2,250 | r^{n + 3 \cdot (-1)} \cdot \left(r + r^0\right) = r^{3 \cdot \left(-1\right) + n} \cdot \left(1 + r\right) |
15,689 | b \times 3 = 9 + 3 \times \left(3 \times (-1) + b\right) |
6,828 | \pi\cdot k = \pi\cdot Q/3 \Rightarrow Q = 3\cdot k |
14,394 | \dfrac{W^{12}}{W^{10}} = W^2 |
31,995 | \left(z_2 + z_1\right)^2 = (z_1 + z_2) \cdot (z_1 + z_2) |
14,442 | \mathbb{E}[Z_1^t\cdot Z_2^x] = \mathbb{E}[Z_1^t]\cdot \mathbb{E}[Z_2^x] |
-2,980 | 8^{1 / 2} + 50^{\dfrac{1}{2}} = (25\cdot 2)^{1 / 2} + (4\cdot 2)^{\frac{1}{2}} |
49,414 | \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{5}{3} |
-7,646 | \frac{-5 + 2i}{-5 + i*2} \dfrac{4 + 19 i}{-5 - i*2} = \frac{i*19 + 4}{-5 - 2i} |
21,501 | (-l + x)^2 = l^2 + x^2 - 2xl |
34,098 | \frac{z^2\cdot 3}{z^3} = 3/z |
16,145 | \dfrac42 = \frac63 |
31,594 | |z| \lt 1 \Rightarrow 1 - z + z^2 - z^3 + \cdots = \frac{1}{z + 1} |
25,913 | v_1^T\cdot v_2 = (H\cdot v_1)^T\cdot H\cdot v_2 = v_1^T\cdot H^T\cdot H\cdot v_2 |
10,727 | n!^2/(2\cdot n) = \frac{n!^2}{2\cdot n\cdot 2}\cdot 2 |
12,253 | \tfrac{2}{3}\cdot 1/3\cdot \frac23 = \frac{1}{27}4 |
375 | y + 144 = (9 + y)\times 11 \Rightarrow y + 144 = y\times 11 + 99 |
36,755 | \frac{1}{0\cdot (-1) + 6.04}\cdot (0 + 6\cdot (-1)) = -6/6.04 |
31,527 | r\cdot g\cdot s^2\cdot \left(-h_t + h_b\right) = g\cdot r\cdot s \cdot s\cdot (-h_t + h_b) |
23,311 | \left(2 + 1 rightarrow 1 = \cos(C)*l + \sin\left(C\right)*x\right) rightarrow (l*\cos(C))^2 = \left(1 - x*\sin(C)\right)^2 |
-29,109 | 8\cdot 10^2\cdot 3/10 = 3/10\cdot 800 |
-3,161 | -3\cdot \sqrt{11} + \sqrt{11}\cdot 4 + \sqrt{11} = -\sqrt{11}\cdot \sqrt{9} + \sqrt{16}\cdot \sqrt{11} + \sqrt{11} |
1,842 | 2/3 = \frac23*0 + 1/3 + \dfrac{1}{3} |
28,741 | (3a' - b')*4 = 6*(2a' - b') |
-5,637 | \frac{(q + 8\cdot (-1))\cdot 25}{15\cdot (q + 4\cdot (-1))\cdot (q + 8\cdot (-1))} = \frac{5}{3\cdot \left(q + 4\cdot (-1)\right)}\cdot \frac{(q + 8\cdot (-1))\cdot 5}{5\cdot (q + 8\cdot (-1))} |
-7,984 | \frac{-13 + i}{i \cdot 2 - 1} = \dfrac{-i \cdot 2 - 1}{-1 - i \cdot 2} \cdot \frac{1}{2 \cdot i - 1} \cdot (-13 + i) |
31,750 | 13^2 \cdot 5 \cdot 5 \cdot 17 \cdot 29 \cdot 37 \cdot 41 = 3159797225 |
26,309 | x^T Yx = x^T Y^T x = -x^T Y |
-1,374 | 1/(7/4\cdot 7) = 4\cdot \frac{1}{7}/7 |
11,337 | 1 + ((-1) + p)/2 = \left(1 + p\right)/2 |
5,934 | z = \frac{1}{R}\cdot H\cdot r\Longrightarrow z\cdot \tfrac{R}{H} = r |
-20,381 | -7/5 \cdot \dfrac{1}{-n + 5 \cdot (-1)} \cdot (-n + 5 \cdot (-1)) = \frac{n \cdot 7 + 35}{25 \cdot (-1) - 5 \cdot n} |
4,857 | \dfrac{40}{7} = 6 - 2/7 |
-6,133 | \dfrac{3}{(k + 9*\left(-1\right))*(k + 5*\left(-1\right))}*\dfrac{1}{4}*4 = \dfrac{12}{4*(5*\left(-1\right) + k)*(9*(-1) + k)} |
28,970 | \dfrac{1}{x + g}\cdot (x + f) + (-1) = \frac{1}{x + g}\cdot (x + f - x + g) = \frac{1}{x + g}\cdot (f - g) |
595 | \dfrac{5}{5 + 3}\cdot ((-1)\cdot 0.4 + 1)\cdot 0.4\cdot \tfrac{4}{8 + 4} = \frac{1}{20} |
22,413 | \frac{1}{C\cdot B} = \frac{1}{C\cdot B} |
26,815 | 50 = 5^2 \cdot 2 + 0^2 |
15,734 | \left\{g\right\} = \cdots = \left\{g\right\} |
-5,264 | 1.62*10 = 1.62*10*10^{11} = 1.62*10^{12} |
10,871 | 5/6 = ((-1) + 3!)/3! |
17,693 | 0 = z^2 - \dfrac{1}{6} \cdot 5 \cdot z + 1/6 = \left(z - \frac{1}{2}\right) \cdot \left(z - \frac{1}{3}\right) |
-5,747 | \frac{2}{2p + 18} = \dfrac{2}{2\left(p + 9\right)} |
27,551 | x_1 \overline{r_1} + \dotsm + \overline{r_n} x_n = r_1 x_1 + \dotsm + r_n x_n |
17,636 | -U^2 + U\cdot 2 + 5 = e^U \Rightarrow U^2 - 2\cdot U + e^U = 5 |
-6,688 | \dfrac{9}{100} + \frac{6}{10} = \tfrac{60}{100} + \frac{1}{100}\cdot 9 |
-5,487 | \frac{4}{5*(x + 2*(-1))} = \frac{1}{5*x + 10*(-1)}*4 |
9,659 | 6 + 4 = \frac{1}{35}(50 + 15 (-1)) (10 + 4(-1)) + 4 |
21,477 | \dfrac{1}{5400}2362.5 = 0.4375 = 7/16 |
35,753 | \frac{1}{f_2^2} \cdot f_1 = \frac{1}{f_2^2} \cdot f_1 |
-5,261 | 1.6 \times 10 = \frac{10}{10^7} \times 1.6 = \dfrac{1}{10^6} \times 1.6 |
49,012 | 2 = -(1 + 0) + 3 |
14,094 | 0 = 15 \cdot (-1) + 3 \cdot w \cdot x \Rightarrow \dfrac{5}{w} = x |
-21,030 | \frac{5}{5} \cdot \frac{1}{z + 4} \cdot \left((-1) + 5 \cdot z\right) = \frac{5 \cdot (-1) + z \cdot 25}{5 \cdot z + 20} |
18,567 | x^2\cdot 4 = 2^2\cdot x^2 |
14,954 | \frac{6000*n}{z} = \tan(\theta) \implies \cos(\theta)/\sin(\theta)*n*6000 = z |
51,542 | 16 = 2\cdot 6 + 4 |
19,780 | a_{l*2 + 2} = \left(a_{1 + 2 l}^2 + (-1)\right)/(a_{2 l}) \Rightarrow a_{l*2 + 1}^2 = a_{2 + l*2} a_{l*2} + 1 |
-7,828 | \frac{1}{-(-2*i)^2 + 3^2}*(-3 + 15*i)*(2*i + 3) = \tfrac{(15*i - 3)*(3 + i*2)}{(3 + i*2)*(-i*2 + 3)} |
5,498 | t - \dfrac{t}{3} = t \cdot 2/3 |
4,363 | 1 + \cos(y) = 1 + 2*\cos^2(\frac{y}{2}) + (-1) = 2*\cos^2\left(\tfrac{y}{2}\right) |
26,341 | (g^2 + a^2 - a\cdot g)\cdot (a + g) = g^3 + a^3 |
9,633 | \left(\left(-1\right) + 5^l\right)*5 + 4 = \left(-1\right) + 5^{l + 1} |
16,006 | \dfrac{a*f}{x*t} = a/x*\frac{f}{t} |
6,937 | 2(-1) + x \cdot x + y \cdot y - x \cdot 2 - 2y = 14 + x^2 + y \cdot y - 6x - 6x\Longrightarrow 4 = x + y |