id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
2,480 | g + 0 + 0 = ( g, ( 0, 0)) = ( g, 0) = g |
42,377 | (10 + (-1))*3 = 27 |
5,524 | {x \choose 2} - x + 2 \left(-1\right) = 1 + {x + \left(-1\right) \choose 2} |
1,876 | \frac{1}{4} + \frac{1}{5}\cdot \vartheta = (5 + 4\cdot \vartheta)/20 |
10,940 | \frac{1}{1/2 \sqrt{H}}(A_H - \frac{H}{2}) = (2A_H - H)/(\sqrt{H}) |
29,934 | (3^2 + 2^2)^{1 / 2} = 13^{1 / 2} |
9,658 | (z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) ((-1) + z) = (-1) + z^7 |
51,695 | \frac {30} 3 - 1 = 10 -1 = 9 |
7,615 | 375 = {6 \choose 4} \cdot 5^2 |
1,245 | z_2 + (-1) = z_1 + (-1) \Rightarrow z_1 = z_2 |
22,989 | \dfrac{p}{z} + z = q\Longrightarrow \frac{1}{2}*(q \pm \left(-4*p + q^2\right)^{1/2}) = z |
21,051 | \frac{dC}{dx} = \frac{4C^2}{4Cx}1 = C/x |
-20,201 | 5/7 \cdot \frac{1}{(-1) + a} \cdot (a + \left(-1\right)) = \frac{1}{a \cdot 7 + 7 \cdot \left(-1\right)} \cdot (5 \cdot a + 5 \cdot (-1)) |
6,805 | d d b^2 c c = b c c d b d |
53,094 | 22 = 10 + 8 + 4 |
-9,628 | 8\% = 8/100 = \tfrac{2}{25} |
-3,971 | \frac{1}{n^4}\cdot n = \dfrac{n}{n\cdot n\cdot n\cdot n} = \dfrac{1}{n^3} |
-19,338 | \frac{2}{3} \cdot 4/7 = \frac{4 \cdot 1/7}{3 \cdot 1/2} |
43,045 | 204.68 = 51.17 \cdot 4 |
29,657 | 30 = {5 \choose 4}\cdot {3 \choose 3}\cdot {4 \choose 2} |
33,138 | Z_l\cdot Z_k = Z_l\cdot Z_k |
-15,423 | \frac{x^2 \cdot 1/y}{(x \cdot y^3) \cdot (x \cdot y^3)} = \tfrac{x^2 \cdot 1/y}{y^6 \cdot x^2} |
-3,222 | 2^{\frac{1}{2}}*(5 + 3) = 2^{\dfrac{1}{2}}*8 |
-3,620 | \tfrac{a}{a^5}\cdot 84/120 = \tfrac{84\cdot a}{120\cdot a^5}\cdot 1 |
7,355 | \frac{m}{\sqrt{1 + m^4}} + 0 \cdot (-1) + 0 - 0 \cdot \dotsm = \frac{m}{\sqrt{m^4 + 1}} |
20,608 | i^2 + \left(-1\right) = (i + 1) \cdot \left((-1) + i\right) |
1,641 | -i\cdot π = π\cdot i\cdot 2\cdot (-\frac{1}{2}) |
16,359 | \sin(-H + D) = \sin(D)\cdot \cos(H) - \cos(D)\cdot \sin(H) |
15,633 | \sin^{-1}{1/2} = \frac{1}{6} \cdot \pi |
-15,916 | \tfrac{5}{10} - \frac{1}{10}\cdot 9\cdot 7 = -\dfrac{1}{10}\cdot 58 |
23,124 | \frac{x\cdot x^2}{4} + \dfrac{x \cdot x \cdot x}{4}\cdot 1 + C = \dfrac12\cdot x \cdot x \cdot x + C |
-6,211 | \tfrac{1}{(3\cdot (-1) + t)\cdot 5} = \frac{1}{15\cdot (-1) + 5\cdot t} |
-8,015 | -\frac{4}{-2}i - \frac{4}{-2} = (-i*4 - 4)/\left(-2\right) |
35,307 | (b + a) \cdot 3 = b \cdot 3 + 3a |
22,346 | 0 = D^2 - 2\cdot D\Longrightarrow D = 0, 2 |
40,961 | d/c \coloneqq d/c |
19,442 | 11 \times (74 + 7 \times (-1)) + 7 \times \left(-111 + 11\right) = 11 \times 74 + 7 \times (-111) + 77 \times (-1) + 77 = 11 \times 74 - 7 \times 111 = 37 |
38,875 | 1/\left(\dfrac{1}{0}\right) = 1/\left(1/0\right) |
41,157 | 3^2 + 2 \cdot 2 = 13 |
-10,700 | \dfrac{3}{3}\cdot \dfrac{9}{6 + 10\cdot x} = \tfrac{27}{18 + 30\cdot x} |
14,347 | 1/2 = -\frac{1}{1 + 3\cdot (-1)} = -1 + 3\cdot (-1) + 9\cdot (-1) + 27\cdot (-1) - \cdots |
18,355 | 2\cdot 32\cdot 4^4 + 8\cdot 28\cdot 4^4 = 73728 |
21,876 | 58 = 50 + 1 - 2\cdot (-7) + 1^2 - 2\cdot 2\cdot (-1) + 2\cdot (-7) + 2^2 + 2\cdot \left(-1\right) |
14,403 | 4^2 + 6^2 + 12^2 = 7 \cdot 7 \cdot 4 |
14,032 | Y\cdot 2 + X = Y + X + Y |
19,204 | \frac{x}{1/d \cdot c} \cdot 1/b = \frac{d \cdot x}{c \cdot b} |
-20,079 | \frac{r \cdot (-4)}{r \cdot (-4)} \cdot \left(-\frac14\right) = \frac{r \cdot 4}{(-16) \cdot r} |
-19,421 | \dfrac{\frac{1}{5}}{1/6} \cdot 2 = \frac{2}{5} \cdot \frac{6}{1} |
15,216 | (x^2 + w*x + w^2)*(-w + x) = -w^3 + x^3 |
-9,346 | y \cdot 10 + 50 (-1) = 2 \cdot 5 y - 2 \cdot 5 \cdot 5 |
30,352 | 3 = \frac{1}{1 + 3} \cdot (3 + 3^2) |
-29,318 | -7*i + 6 = 4 + 2 - i*7 |
11,665 | Cov[x + C,x - C] = Cov[x,x] - Cov[x, C] + Cov[x,C] - Cov[C,C] = VAR[x] - VAR[C] |
32,787 | R_a R_b = R_a R_b |
8,394 | 229^2 \cdot 229 - 192^3 = 4931101 = 102 \cdot 102 \cdot 102 + 157^3 = 76 \cdot 76 \cdot 76 + 165 \cdot 165^2 |
-23,810 | \dfrac{63}{5 + 2} = \dfrac{63}{7} = 63/7 = 9 |
-16,940 | 5 = 5*2*a + 5*(-4) = 10*a - 20 = 10*a + 20*(-1) |
6,300 | x*d = d^{1 / 2} * d^{1 / 2}*(x^{\frac{1}{2}})^2 |
-5,825 | \frac{n\cdot 3}{n^2 + n + 42\cdot (-1)}\cdot 1 = \frac{n\cdot 3}{(n + 6\cdot (-1))\cdot (n + 7)} |
2,580 | b^2 + a^2 - ab\cdot 2 = (a - b) (a - b) |
-5,318 | 10^1 \cdot 7.1 = 10^{-4 + 5} \cdot 7.1 |
28,890 | \sin\left(e + c\right) = \sin{c}*\cos{e} + \cos{c}*\sin{e} |
23,280 | a^T ax = a^T ax |
-20,632 | \frac{t\cdot (-27)}{72 t} = t\cdot 9/(t\cdot 9) (-3/8) |
6,265 | r^2+r-15=0\implies r=\frac{-1\pm\sqrt{61}}{2} |
6,467 | i*2 + (-1) = 1 + 2(i + (-1)) |
-19,685 | \frac{6\times 3}{7} = 18/7 |
-2,684 | 5 \sqrt{5} = (2 + 3) \sqrt{5} |
44,191 | 64 = 2 \cdot 4 \cdot 8 |
19,660 | 8 \cdot (-1) + x^3 + x \cdot 7 \leq 0 \Rightarrow 1 \geq x |
18,932 | z + 2 z + z\cdot 4 + 8 ... = z |
-21,036 | 8/8 (-7/9) = -\dfrac{1}{72} 56 |
11,713 | 1 - \frac{2}{e^x + 1} = \frac{e^x + (-1)}{e^x + 1} < x/2 |
10,538 | (1 + z)^{n + (-1)}\cdot (1 + z) = \left(z + 1\right)^n |
30,186 | m\cdot 2 + 1 = (1 + m) \cdot (1 + m) - m^2 |
16,849 | \int \frac{1}{1 + x^2}\cdot \left(1 + x^4 + (-1)\right)\,\mathrm{d}x = \int \frac{1}{1 + x^2}\cdot x^4\,\mathrm{d}x |
-10,362 | \frac{12}{12} \cdot (-\dfrac{1}{x \cdot 3} \cdot 6) = -\frac{72}{x \cdot 36} |
16,405 | (x + 2*\left(-1\right))*(1 + x) = x * x - x + 2*(-1) |
8,612 | u \times x := x \times u |
-20,622 | \dfrac{1}{k \cdot 30} \cdot (-40 \cdot k + 20 \cdot (-1)) = \frac{1}{6 \cdot k} \cdot (4 \cdot (-1) - k \cdot 8) \cdot 5/5 |
-22,716 | 60/90 = \frac{2\cdot 30}{2\cdot 45} = \frac{10}{2\cdot 3\cdot 15}\cdot 2\cdot 3 = \frac{2}{2\cdot 3\cdot 5\cdot 3}\cdot 2\cdot 3\cdot 5 = 2/3 |
-4,442 | x^2-2x-8 = (x-4)(x+2) |
1,467 | \frac{3}{7}*(16 + 12) = (30 + 12)*2/7 |
-22,340 | 30 + r^2 - 11 \cdot r = (5 \cdot (-1) + r) \cdot (r + 6 \cdot (-1)) |
1,707 | \tan\left(E\right) = y \implies \operatorname{atan}(y) = E |
24,671 | -2\cdot a + x^2 + x\cdot 2 - a^2 = \left(x - a\right)\cdot 2 + x^2 - a^2 |
29,569 | 3/5\cdot \dfrac{3}{5} = 9/25 |
47,877 | \cos^2{0} + \sin^2{0} = 1 |
32,339 | 49 = 23 + 2*(b*f + d*b + d*f) \implies 13 = f*b + b*d + d*f |
-27,624 | -4 + 5 (-1) + 4 + 5 \left(-1\right) = -4 + 4 + 5 (-1) + 5 (-1) = 0 + 10 (-1) = -10 |
16,012 | \left(\frac{1}{1 + \frac{5}{13}} \cdot 2\right)^{1/2} = \frac13 \cdot 13^{1/2} |
23,036 | |-w\cdot \left(-1\right) + z| = |z + w| |
34,969 | a^{54} \cdot a^{54} = a^{108} |
14,959 | |B\cdot Y - I\cdot x| = |Y\cdot B - x\cdot I| |
32,861 | |x - c| = -(x - c) = c - x |
-17,403 | 117.3/100 = 1.173 |
-25,372 | \sec^2\left(y\right) = d/dy \tan(y) |
34,947 | y \approx x \Rightarrow x \approx y |
-29,541 | 34 = 36 + 2 \cdot \left(-1\right) |
20,347 | a^n - d^n = (a - d) \cdot (a^{n + (-1)} + d \cdot a^{2 \cdot (-1) + n} + \cdots + d^{2 \cdot \left(-1\right) + n} \cdot a + d^{\left(-1\right) + n}) |
Subsets and Splits