id
int64
-30,985
55.9k
text
stringlengths
5
437k
-5,666
\frac{1}{6 + 2*i} = \frac{1}{2*(i + 3)}
15,168
h_x + c_x = c_x + h_x
-18,606
3g + 5\left(-1\right) = 6*\left(3g + 4(-1)\right) = 18 g + 24 (-1)
38,118
3249*(-1) + 10000 = 6751
-29,425
\frac{8 \cdot 4}{5 \cdot 3} = \tfrac{32}{15}
14,817
\left(\cos{z} = i \cdot \sin{z} \Rightarrow 0 = \cos{z} - i \cdot \sin{z}\right) \Rightarrow e^{-i \cdot z} = 0
23,390
1008 = 3^2\times 2^4\times 7
-24,170
\tfrac{66}{7 + 4} = \frac{1}{11} \cdot 66 = \tfrac{66}{11} = 6
-5,936
\frac{4}{k^2 - 5 \cdot k + 36 \cdot (-1)} = \frac{1}{(9 \cdot (-1) + k) \cdot (k + 4)} \cdot 4
40,322
(-13)\cdot (-1) + 22 = 35
-11,966
1/20 = r/(20\cdot \pi)\cdot 20\cdot \pi = r
33,752
a \cdot a = 25 \Rightarrow 25^{1/2} = (a \cdot a)^{1/2}
-264
\frac{8!}{\left(3 (-1) + 8\right)!*3!} = {8 \choose 3}
27,765
8y = 90 \implies y = 45/4 = 11.25
28,892
2^{2\cdot 3^{2 + 2(-1)}} = 4 = 3^{2 + (-1)} + 1 + 0\cdot 3^2
42,207
e^{-10/500} = e^{-\frac{1}{50}}
-5,780
\dfrac{1}{m\cdot 5 + 15} = \frac{1}{(3 + m)\cdot 5}
50,373
\int\limits_0^\infty \frac{u^2}{2\cdot u^{\alpha + 1}}\,du = \int_0^\infty u^{1 - \alpha}\,du = \frac{u^{2 - \alpha}}{2 - \alpha}
21,284
\frac{5}{2} = 3/2 + 1
3,251
ac + bc = (b + a) c
3,612
27 - 2\times 7 = 13
1,498
7^2 + (-2)^2 = 49 + 4 = 53 = s^2 \Rightarrow s = \sqrt{53}
2,702
\left(q = -\sin{z} + \tan{z}\Longrightarrow \frac{2 \cdot z^3}{4 - z^2} = q\right)\Longrightarrow 2 \cdot z^3 + z \cdot z \cdot q - q \cdot 4 = 0
37,462
|2 - y| = |-(y + 2\cdot \left(-1\right))| = |y + 2\cdot (-1)|
14,567
50 = \frac{1}{2}*(1 + 99)
15,372
2*\left(h_2/2 + \frac{h_1}{2}\right) = h_1 + h_2
12,989
\frac{1}{2}\cdot 3 - \sqrt{5}/2 = (3 - \sqrt{5})/2
12,538
150 = 3 \cdot (30 + 20)
-18,299
\frac{1}{8\cdot (-1) + a^2 + a\cdot 7}\cdot (a\cdot 8 + a^2) = \frac{a}{\left(8 + a\right)\cdot (a + (-1))}\cdot (8 + a)
34,621
\frac{\binom{71}{11}}{\binom{80}{20}} = \frac{17}{23471690}
27,068
E^{12} + (-1) = \left(E^6 + \left(-1\right)\right) \cdot (1 + E^6)
-25,794
\frac{1}{48}*11 = \tfrac{11}{12*4}
-26,448
(2(-1) + 3m)\cdot 20 = 20 \left(-40/20 + \frac{m}{20}60\right)
5,106
4\cdot x^2 + 9\cdot z^2 = 180 \Rightarrow x^2/45 + z^2/20 = 1
26,861
(4 - y)^2 + y^2 - (-y + 4)\times 2 - 2\times y + 2\times (-1) = 0 \Rightarrow y^2 - 4\times y + 3 = \left(y + (-1)\right)\times (y + 3\times (-1)) = 0
20,881
\frac{\text{d}}{\text{d}x} (y^3 \cdot 4) = \frac{\text{d}y}{\text{d}x} y^2 \cdot 12
19,366
|z| > 1 rightarrow 1 \gt 1/|z|
36,150
6*8*(4 + 1) = 240
45,848
150 = 6 + 144
28,687
\frac{1}{30}1000 = 100/3
29,293
-(\frac{\pi}{14} \cdot \cot\left(\frac{19}{24} \cdot \pi\right) - \pi \cdot \cot(\frac{7}{12} \cdot \pi)/24) = \pi/24 \cdot (\cot(\frac{1}{12} \cdot 7 \cdot \pi) - \cot(\frac{1}{24} \cdot 19 \cdot \pi)) = \cdots = \dfrac{1}{24} \cdot \pi
14,592
{1\over2}\cdot{1\over2}\cdot{1\over2}={1\over8}=.001
13,151
c_1\cdot a + a\cdot c_2 = (c_1 + c_2)\cdot a
15,899
\frac{1}{z \cdot 1/x} = \frac{x}{z}
13,184
d * d + g*d*2 + g * g = (g + d)^2
8,402
\dfrac{1}{10^2} \times 2017 = 20.17
28,143
(K + \left(-1\right)) \cdot (K + (-1)) - 2 \cdot (-1) + K = 3 + K^2 - K \cdot 3
792
x_i\cdot z_j = z_j\cdot x_i
39,230
1 - \sin{2\times F}\times \tan{F} = 1 - 2\times \sin^2{F} = \cos{2\times F}
13,522
y z = 0\Longrightarrow 0 = z\text{ or }y = 0
11,206
(\alpha + 1) \times (\alpha + 1) = \alpha^2 + 1 = \alpha + 1 + 1 = \alpha
2,249
\frac{2}{0} = \frac{1 + 1}{1 + (-1)}
15,374
(x + 1)^{x + 1} = (x + 1)^x*(x + 1)
17,346
w_1/(w_2) = w_1*\frac{1}{w_2}/1
-2,345
9/20 - \frac{1}{20} \cdot 3 = \frac{1}{20} \cdot 6
-26,629
(4*x - 7*y)*(x*4 + y*7) = (x*4)^2 - (7*y)^2
-20,639
\tfrac{1}{12\times (-1) - 4\times r}\times \left(-r + 3\times (-1)\right) = \frac14\times 1
10,961
D^4 + 16 (-1) = D^2 * D^2 - 4^2 = \left(D^2 + 4\right) (D^2 + 4(-1)) = \left(D^2 + 4\right) (D + 2) \left(D + 2(-1)\right)
-20,302
\frac{1}{1}*1 = \dfrac{4 - 4*s}{4 - 4*s}
3,261
\dfrac{\sin{x}}{1 + \cos{x}} = \frac{1}{\sin{x}} \cdot (1 - \cos{x})
14,265
\left(6 (-1) + 3 z^3 - z^2\cdot 2 + z\cdot 9 = 0 \Rightarrow 0 = 3\cdot (3 z + 2 (-1)) + (3 z + 2 \left(-1\right)) z^2\right) \Rightarrow 0 = (3 z + 2 \left(-1\right)) (z^2 + 3)
2,478
\frac{81201}{56660} = 1 + \frac{1}{56660}24541
8,060
c + 2 = n \Rightarrow c = 2 (-1) + n, 4 \left(-1\right) + n = 2 \left(-1\right) + c
12,690
x\cdot 3 = c rightarrow c^2 = 9\cdot x^2 = 3\cdot 3\cdot x^2
27,033
1900 = 5^2 \cdot 2 \cdot 2 \cdot 19
9,272
\frac{1}{\left(-r + x\right)!\cdot r!}\cdot x! = \frac{1}{r!\cdot \left(x - r\right)!}\cdot x!
36,332
3^5 + 10 \cdot 10 - 7^3 = 0
9,848
a \cdot d - b \cdot c = a \cdot d - c \cdot 0 + 0 \cdot d - b \cdot c = a \cdot d - b \cdot c
15,251
{20 \choose 2}*{20 \choose 2}*\dotsm*{20 \choose 2} = {20 \choose 2}^{10}
20,338
5(-1) + 11 r = r*\left(9 - 2r\right) + r^2*2 + r*2 + 5(-1)
31,914
21\cdot y^{5/2} = y \cdot y\cdot 21\cdot y^{1/2}
30,596
s \cdot (s + 1)/2 = 1 + 2 + 3 + \dots + s
-20,125
9/9 \times \dfrac{1}{8 \times x + 2 \times (-1)} \times (8 \times (-1) - x \times 5) = \frac{1}{72 \times x + 18 \times (-1)} \times (-x \times 45 + 72 \times (-1))
20,536
1 = 1/24 + 1/2 + 1/4 + 1/8 + \tfrac{1}{12}
10,949
-(-x + 51) + 50 + x = 2 \cdot x + (-1)
37,361
\vartheta + z - z = z - z + \vartheta
3,734
i = s*g*a = s*a*g
3,718
\left(-1\right) + 3^{12} = (-1) + (3^2)^6
8,751
A^2 x = 0 \Rightarrow A x = 0
9,027
2^{n*2} = \frac{2^{-n * n}}{2^{-n^2 - n*2}}
-8,043
\left(27 + 21\cdot i + 9\cdot i + 7\cdot (-1)\right)/10 = (20 + 30\cdot i)/10 = 2 + 3\cdot i
28,076
2 |x| = \frac{\mathrm{d}}{\mathrm{d}x} (x |x|)
6,612
s*w_1 + e*w_2 + h*w_3 = (s - e + h - h)*w_1 + (e - h)*(w_2 + w_1) + h*(w_1 + w_2 + w_3)
47,723
30*12 = 360
30,433
3 \cdot 3 = (-3)^2
-3,648
\frac{n^4}{n^3} \cdot \frac{1}{144} \cdot 120 = \frac{n^4 \cdot 120}{n^3 \cdot 144}
-2,704
\sqrt{11}\cdot \left(4 + 1\right) = \sqrt{11}\cdot 5
30,303
\mathbb{E}[X \cdot B] = \mathbb{E}[X] \cdot \mathbb{E}[B]
-3,354
(4 + 3 + 2) \cdot \sqrt{13} = \sqrt{13} \cdot 9
15,169
\left(-1\right) + x^3 = \left(x \cdot x + x + 1\right) (x + (-1))
32,592
1 = \cot(x*2) \Rightarrow \tan(x*2) = 1
-9,242
45\cdot q + 117\cdot (-1) = 3\cdot 3\cdot 5\cdot q - 3\cdot 3\cdot 13
15,716
1050 = 210\cdot (4 + 1)
24,234
\dfrac{1}{-a + d} \cdot (\frac{1}{x + a} - \dfrac{1}{x + d}) = \frac{1}{(x + a) \cdot (x + d)}
-26,019
\left(24 - 28 \cdot i - 6 \cdot i + 7 \cdot (-1)\right)/17 = \left(17 - 34 \cdot i\right)/17 = 1 - 2 \cdot i
52,119
4^5=1024
14,065
y^3 + 3y^2 + 6 = (y + 1)^3 - 3y + (-1) + 6 = \left(y + 1\right)^3 - 3\left(y + 1\right) + 8
7,179
f_1 X\cdot 2 L + f_2 L\cdot 2C = 2(Xf_1 + Cf_2) L
25,452
\dfrac{1}{2} \cdot π + π \cdot m = 4 \cdot x \Rightarrow \frac{π}{8} + m \cdot π/4 = x
23,730
i*48 + 240 = (i*3 + 3*i + 30)*16/2