id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-3,416 | \sqrt{150} - \sqrt{96} = -\sqrt{16 \cdot 6} + \sqrt{25 \cdot 6} |
7,564 | 1/(FG) = \dfrac{1}{GF} |
-4,570 | \frac{1}{2 + x} + \frac{2}{3 + x} = \frac{x*3 + 7}{6 + x^2 + 5x} |
-20,889 | \dfrac122 \frac{2 - n*5}{-n + 10} = \dfrac{-10 n + 4}{-2n + 20} |
13,261 | \sin^2(g) = -\cos^2\left(g\right) + 1 |
17,131 | \dfrac{1}{2} l/2 = l*0.25 |
17,239 | \tfrac1b*a = a/b |
-5,261 | 1.6 \cdot 10 = \frac{1}{10^7} \cdot 16.0 = \frac{1.6}{10^6} |
27,928 | \left(x^2 + x + 1\right)*\left((-1) + x\right) = x^3 + (-1) |
-20,983 | (35\cdot x + 63\cdot (-1))/63 = \frac{1}{7}\cdot 7\cdot \left(5\cdot x + 9\cdot (-1)\right)/9 |
19,718 | (k \cdot 3)^3 + 3 \cdot (k \cdot 3)^2 + 1^2 \cdot k \cdot 3 \cdot 3 + 1 \cdot 1 \cdot 1 = (1 + 3 \cdot k)^3 |
6,896 | \left(n^2 = x^2 \Rightarrow 0 = x \cdot x - n^2\right) \Rightarrow (x + n)\cdot (-n + x) = 0 |
1,334 | {j + m + (-1) \choose 2 \cdot m + (-1)} = {j + m + (-1) \choose j + m + (-1) - 2 \cdot m + (-1)} = {j + m + \left(-1\right) \choose j - m} |
-6,012 | \frac{3}{15 (-1) + 3a} = \frac{1}{3(a + 5\left(-1\right))}3 |
22,333 | \cos{2 \cdot z} = 1 - 2 \cdot \sin^2{z} |
19,608 | s\cdot D = s\cdot D |
23,007 | \frac{B}{f} = fB/f/f |
-20,909 | \frac{1}{7\cdot k + 28\cdot (-1)}\cdot (k + 4\cdot \left(-1\right)) = \frac17\cdot 1 |
23,604 | -14 = -10\cdot 2 + 3\cdot 2 |
-538 | e^{\frac23 \cdot π \cdot i \cdot 19} = \left(e^{\dfrac23 \cdot π \cdot i}\right)^{19} |
-18,483 | 4 \cdot s + 2 = 10 \cdot (3 \cdot s + 7 \cdot \left(-1\right)) = 30 \cdot s + 70 \cdot (-1) |
-24,892 | \dfrac{1}{15}\cdot 2 = s/(12\cdot \pi)\cdot 12\cdot \pi = s |
8,073 | (1 + r + ... + r^n)*\left(r + (-1)\right) = r^{n + 1} + \left(-1\right) |
-20,364 | \dfrac{1}{14\cdot r}\cdot (r\cdot 35 + 35\cdot (-1)) = \dfrac{7}{7}\cdot \left(5\cdot (-1) + 5\cdot r\right)/(r\cdot 2) |
-20,042 | \frac14\times 4\times \frac{9\times (-1) - x\times 3}{6\times x + (-1)} = \frac{1}{4\times \left(-1\right) + x\times 24}\times (36\times (-1) - 12\times x) |
33,484 | 503 = 1512 (-1) + 2015 |
15,244 | \tfrac{1}{(-1) + a} \cdot (1 + a) = 1 + \frac{2}{(-1) + a} |
12,670 | \left(-1\right)^{1 + k} = 3 \cdot (-1)^{k + 1} + 2 \cdot (-1)^k |
9,246 | a^3 - b^2 \cdot b = (-b + a)\cdot (a^2 + b\cdot a + b^2) |
15,280 | (g\cdot k)^x = (g\cdot k)^x |
18,545 | 4*4!/3! = 16 |
43,617 | (b^s)^1 = b^{\frac{1}{1}\times s} |
-13,244 | \frac{6}{4 + 2\cdot (-1)} = 6/2 = 6/2 = 3 |
-12,114 | \frac{13}{18} = \frac{s}{4\cdot \pi}\cdot 4\cdot \pi = s |
22,207 | \frac{1}{E + E\cdot x} = 1/E - \frac{x}{x\cdot E + E}\cdot 1/E\cdot E |
28,845 | (1 + n)^3 + (n + (-1))^3 = n*6 + n^3*2 |
25,568 | 1 = (1 + 2(-1))^2 = \left(-1\right)^2 |
2,216 | -f_1^2 + f_2^2 = (f_2 - f_1) \cdot \left(f_2 + f_1\right) |
13,818 | \cos^{-1}(\cos(4*\pi/3)) = \frac{\pi}{3}*2 |
469 | 1 = 8B \Rightarrow 1/8 = B |
8,165 | \frac12\cdot 2^{1 / 2} = \cos(\pi/4) |
29,610 | \sin^3{z} = ((e^{i\cdot z} - e^{-i\cdot z})/(2\cdot i))^3 = \left(e^{3\cdot i\cdot z} - 3\cdot e^{i\cdot z} + 3\cdot e^{-i\cdot z} - e^{-3\cdot i\cdot z}\right)/(\left(-8\right)\cdot i) |
931 | x = z e^z\Longrightarrow z = e^{-z} x |
240 | 1/4 = -2/3 + \frac{11}{12} |
-10,402 | \dfrac{25}{100 + 20*y} = \frac{5}{20 + 4*y}*5/5 |
32,388 | (-1) + \cos^2(\theta) = -\sin^2(\theta) |
-15,979 | 6*\frac{3}{10} - 10*7/10 = -\dfrac{52}{10} |
31,457 | y + 2 \geq 1 + 2x \Rightarrow 2x \leq y + 1 |
26,103 | \frac{gfx}{(b - h) Jz} = \frac{fJ}{(h - g) xz}b = \frac{fz}{(g - b) xJ}h |
-17,755 | 4 + 73 = 77 |
10,906 | \frac{x \cdot g}{h \cdot f} = \tfrac1f \cdot x \cdot g/h |
-2,443 | \sqrt{13} + \sqrt{13} \sqrt{25} = \sqrt{13} + \sqrt{13}*5 |
19,511 | 50*\dfrac{1}{100}/2 = \tfrac{1}{2*2} = 1/4 |
39,165 | 165 = \binom{\left(-1\right) + 8 + 4}{4 + \left(-1\right)} |
9,232 | (\sqrt{n})^3 = (n^{1/2})^3 = n^{\frac{3}{2}} = \left(n^3\right)^{\frac12} = \sqrt{n^3} |
6,162 | 1 + x y - x - y = \left(y + (-1)\right) \left(x + (-1)\right) |
9,305 | 6 + z^2 - z \cdot 5 = -1/4 + (z - \tfrac{5}{2})^2 |
15,274 | \varphi_g\cdot \varphi_d = \varphi_d\cdot \varphi_g |
544 | x^3 = x \cdot (x \cdot x + 1 + (-1)) |
32,982 | (y + 5)\cdot (2\cdot y + 7\cdot (-1)) = 35\cdot (-1) + y^2\cdot 2 + 3\cdot y |
4,590 | a_1 = b_1,a_2 = b_2 \Rightarrow a_1 + a_2 = b_1 + b_2 |
5,008 | (-k + 100)^2 = 10000 - 200*k + k^2 |
18,884 | (2^m + (-1))*(2^m + 1)*(1 + 2^{2*m}) = 4^{m*2} + (-1) |
15,987 | 680/41 = 16 + \frac{1}{41}24 |
-13,429 | \dfrac{33}{7 + 4} = \frac{1}{11} 33 = \frac{33}{11} = 3 |
27,530 | 4*\frac{9}{2} = 18 |
14,278 | \binom{l}{k} + \binom{l}{k + (-1)} = \binom{l + 1}{k} |
1,677 | \dfrac{1}{x \cdot \tau} = \frac{1}{\tau \cdot x} |
-5,393 | \tfrac{28}{10^6} = \frac{1}{10^6}\cdot 28 |
21,830 | 3 - 1/2 = 6/2 - \dfrac{1}{2} = \frac52 |
30,800 | z^2 + x^2 + x*z = 3/4*z * z + \left(x + z/2\right)^2 |
29,472 | \cos{\pi/6} = \frac{1}{2}\cdot \sqrt{3} |
9,717 | (A + 1)\cdot X = X + X\cdot A |
3,085 | x^3 - 2*x * x + 2*x^2 + 8*(-1) = 8*(-1) + x^3 |
-24,888 | \frac{1}{18} = \dfrac{1}{6\cdot \pi}\cdot q\cdot 6\cdot \pi = q |
17,909 | \sin(-y \cdot a) = -\sin(a \cdot y) |
-23,263 | 3/5 = 1 - \frac{2}{5} |
40,043 | b + b + b + b + b = 5 \cdot b |
-5,271 | \tfrac{3}{10^5} = \frac{3.0}{10^5} |
-15,639 | \frac{1}{s^{20}\cdot \tfrac{1}{s\cdot p^3}} = \frac{\tfrac{1}{s^{20}}\cdot 1/(1/s)}{\frac{1}{p^3}} = \frac{1}{s^{19}}\cdot p^3 = \frac{1}{s^{19}}\cdot p \cdot p \cdot p |
25,304 | \frac{-\sqrt{6} - \sqrt{2}}{2} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2} |
19,180 | y - |\sin{y}| \gt -|\sin{y}| \Rightarrow 0 \lt y |
-19,696 | \frac17 \cdot 27 = \frac{27}{7} \cdot 1 |
12,472 | -(h + 8)^2 + 8^2 = -h \cdot (h + 16) |
-523 | (e^{\frac{i\pi*2}{3}})^{16} = e^{16 \frac{2i\pi}{3}} |
17,137 | -x + n - x = n - 2x |
29,621 | \frac{1}{2}\cdot \left(9 + 3\cdot (-1)\right) = 3 |
7,335 | 2 + \sqrt{3} = \sqrt{\sqrt{3} \cdot 4 + 7} |
20,560 | a^x \times a^z = a^{z + x} |
-14,086 | 8 + 9 \cdot 10 - 7 \cdot 8 = 8 + 90 - 7 \cdot 8 = 98 - 7 \cdot 8 = 98 + 56 \cdot (-1) = 42 |
-9,498 | 30 r + 5 = 5 + 2*3*5 r |
3,396 | (X - A)\cdot (X + A) = -A^2 + X^2 |
-26,661 | (2\cdot p)^2 - (5\cdot q)^2 = (q\cdot 5 + p\cdot 2)\cdot (2\cdot p - 5\cdot q) |
18,022 | \left(x\cdot E = b \Rightarrow \frac{E\cdot x}{E} = b/E\right) \Rightarrow x = b/E |
-26,512 | 64\cdot x^2 = \left(8\cdot x\right)^2 |
18,471 | 15 \cdot (1 + 4 \cdot x)^{14} \cdot 4 = 60 \cdot \left(4 \cdot x + 1\right)^{14} |
6,256 | \frac{1}{2} \cdot 2^{1/2} = \frac{1}{2^{1/2}} |
-9,379 | -2*3 i + 3 = -i*6 + 3 |
-3,040 | 275^{\frac{1}{2}} - 11^{1 / 2} = (25\cdot 11)^{1 / 2} - 11^{1 / 2} |
14,871 | \left(F = d \Rightarrow E = d\right) \Rightarrow d = F\cdot E |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.