id
int64
-30,985
55.9k
text
stringlengths
5
437k
-3,416
\sqrt{150} - \sqrt{96} = -\sqrt{16 \cdot 6} + \sqrt{25 \cdot 6}
7,564
1/(FG) = \dfrac{1}{GF}
-4,570
\frac{1}{2 + x} + \frac{2}{3 + x} = \frac{x*3 + 7}{6 + x^2 + 5x}
-20,889
\dfrac122 \frac{2 - n*5}{-n + 10} = \dfrac{-10 n + 4}{-2n + 20}
13,261
\sin^2(g) = -\cos^2\left(g\right) + 1
17,131
\dfrac{1}{2} l/2 = l*0.25
17,239
\tfrac1b*a = a/b
-5,261
1.6 \cdot 10 = \frac{1}{10^7} \cdot 16.0 = \frac{1.6}{10^6}
27,928
\left(x^2 + x + 1\right)*\left((-1) + x\right) = x^3 + (-1)
-20,983
(35\cdot x + 63\cdot (-1))/63 = \frac{1}{7}\cdot 7\cdot \left(5\cdot x + 9\cdot (-1)\right)/9
19,718
(k \cdot 3)^3 + 3 \cdot (k \cdot 3)^2 + 1^2 \cdot k \cdot 3 \cdot 3 + 1 \cdot 1 \cdot 1 = (1 + 3 \cdot k)^3
6,896
\left(n^2 = x^2 \Rightarrow 0 = x \cdot x - n^2\right) \Rightarrow (x + n)\cdot (-n + x) = 0
1,334
{j + m + (-1) \choose 2 \cdot m + (-1)} = {j + m + (-1) \choose j + m + (-1) - 2 \cdot m + (-1)} = {j + m + \left(-1\right) \choose j - m}
-6,012
\frac{3}{15 (-1) + 3a} = \frac{1}{3(a + 5\left(-1\right))}3
22,333
\cos{2 \cdot z} = 1 - 2 \cdot \sin^2{z}
19,608
s\cdot D = s\cdot D
23,007
\frac{B}{f} = fB/f/f
-20,909
\frac{1}{7\cdot k + 28\cdot (-1)}\cdot (k + 4\cdot \left(-1\right)) = \frac17\cdot 1
23,604
-14 = -10\cdot 2 + 3\cdot 2
-538
e^{\frac23 \cdot π \cdot i \cdot 19} = \left(e^{\dfrac23 \cdot π \cdot i}\right)^{19}
-18,483
4 \cdot s + 2 = 10 \cdot (3 \cdot s + 7 \cdot \left(-1\right)) = 30 \cdot s + 70 \cdot (-1)
-24,892
\dfrac{1}{15}\cdot 2 = s/(12\cdot \pi)\cdot 12\cdot \pi = s
8,073
(1 + r + ... + r^n)*\left(r + (-1)\right) = r^{n + 1} + \left(-1\right)
-20,364
\dfrac{1}{14\cdot r}\cdot (r\cdot 35 + 35\cdot (-1)) = \dfrac{7}{7}\cdot \left(5\cdot (-1) + 5\cdot r\right)/(r\cdot 2)
-20,042
\frac14\times 4\times \frac{9\times (-1) - x\times 3}{6\times x + (-1)} = \frac{1}{4\times \left(-1\right) + x\times 24}\times (36\times (-1) - 12\times x)
33,484
503 = 1512 (-1) + 2015
15,244
\tfrac{1}{(-1) + a} \cdot (1 + a) = 1 + \frac{2}{(-1) + a}
12,670
\left(-1\right)^{1 + k} = 3 \cdot (-1)^{k + 1} + 2 \cdot (-1)^k
9,246
a^3 - b^2 \cdot b = (-b + a)\cdot (a^2 + b\cdot a + b^2)
15,280
(g\cdot k)^x = (g\cdot k)^x
18,545
4*4!/3! = 16
43,617
(b^s)^1 = b^{\frac{1}{1}\times s}
-13,244
\frac{6}{4 + 2\cdot (-1)} = 6/2 = 6/2 = 3
-12,114
\frac{13}{18} = \frac{s}{4\cdot \pi}\cdot 4\cdot \pi = s
22,207
\frac{1}{E + E\cdot x} = 1/E - \frac{x}{x\cdot E + E}\cdot 1/E\cdot E
28,845
(1 + n)^3 + (n + (-1))^3 = n*6 + n^3*2
25,568
1 = (1 + 2(-1))^2 = \left(-1\right)^2
2,216
-f_1^2 + f_2^2 = (f_2 - f_1) \cdot \left(f_2 + f_1\right)
13,818
\cos^{-1}(\cos(4*\pi/3)) = \frac{\pi}{3}*2
469
1 = 8B \Rightarrow 1/8 = B
8,165
\frac12\cdot 2^{1 / 2} = \cos(\pi/4)
29,610
\sin^3{z} = ((e^{i\cdot z} - e^{-i\cdot z})/(2\cdot i))^3 = \left(e^{3\cdot i\cdot z} - 3\cdot e^{i\cdot z} + 3\cdot e^{-i\cdot z} - e^{-3\cdot i\cdot z}\right)/(\left(-8\right)\cdot i)
931
x = z e^z\Longrightarrow z = e^{-z} x
240
1/4 = -2/3 + \frac{11}{12}
-10,402
\dfrac{25}{100 + 20*y} = \frac{5}{20 + 4*y}*5/5
32,388
(-1) + \cos^2(\theta) = -\sin^2(\theta)
-15,979
6*\frac{3}{10} - 10*7/10 = -\dfrac{52}{10}
31,457
y + 2 \geq 1 + 2x \Rightarrow 2x \leq y + 1
26,103
\frac{gfx}{(b - h) Jz} = \frac{fJ}{(h - g) xz}b = \frac{fz}{(g - b) xJ}h
-17,755
4 + 73 = 77
10,906
\frac{x \cdot g}{h \cdot f} = \tfrac1f \cdot x \cdot g/h
-2,443
\sqrt{13} + \sqrt{13} \sqrt{25} = \sqrt{13} + \sqrt{13}*5
19,511
50*\dfrac{1}{100}/2 = \tfrac{1}{2*2} = 1/4
39,165
165 = \binom{\left(-1\right) + 8 + 4}{4 + \left(-1\right)}
9,232
(\sqrt{n})^3 = (n^{1/2})^3 = n^{\frac{3}{2}} = \left(n^3\right)^{\frac12} = \sqrt{n^3}
6,162
1 + x y - x - y = \left(y + (-1)\right) \left(x + (-1)\right)
9,305
6 + z^2 - z \cdot 5 = -1/4 + (z - \tfrac{5}{2})^2
15,274
\varphi_g\cdot \varphi_d = \varphi_d\cdot \varphi_g
544
x^3 = x \cdot (x \cdot x + 1 + (-1))
32,982
(y + 5)\cdot (2\cdot y + 7\cdot (-1)) = 35\cdot (-1) + y^2\cdot 2 + 3\cdot y
4,590
a_1 = b_1,a_2 = b_2 \Rightarrow a_1 + a_2 = b_1 + b_2
5,008
(-k + 100)^2 = 10000 - 200*k + k^2
18,884
(2^m + (-1))*(2^m + 1)*(1 + 2^{2*m}) = 4^{m*2} + (-1)
15,987
680/41 = 16 + \frac{1}{41}24
-13,429
\dfrac{33}{7 + 4} = \frac{1}{11} 33 = \frac{33}{11} = 3
27,530
4*\frac{9}{2} = 18
14,278
\binom{l}{k} + \binom{l}{k + (-1)} = \binom{l + 1}{k}
1,677
\dfrac{1}{x \cdot \tau} = \frac{1}{\tau \cdot x}
-5,393
\tfrac{28}{10^6} = \frac{1}{10^6}\cdot 28
21,830
3 - 1/2 = 6/2 - \dfrac{1}{2} = \frac52
30,800
z^2 + x^2 + x*z = 3/4*z * z + \left(x + z/2\right)^2
29,472
\cos{\pi/6} = \frac{1}{2}\cdot \sqrt{3}
9,717
(A + 1)\cdot X = X + X\cdot A
3,085
x^3 - 2*x * x + 2*x^2 + 8*(-1) = 8*(-1) + x^3
-24,888
\frac{1}{18} = \dfrac{1}{6\cdot \pi}\cdot q\cdot 6\cdot \pi = q
17,909
\sin(-y \cdot a) = -\sin(a \cdot y)
-23,263
3/5 = 1 - \frac{2}{5}
40,043
b + b + b + b + b = 5 \cdot b
-5,271
\tfrac{3}{10^5} = \frac{3.0}{10^5}
-15,639
\frac{1}{s^{20}\cdot \tfrac{1}{s\cdot p^3}} = \frac{\tfrac{1}{s^{20}}\cdot 1/(1/s)}{\frac{1}{p^3}} = \frac{1}{s^{19}}\cdot p^3 = \frac{1}{s^{19}}\cdot p \cdot p \cdot p
25,304
\frac{-\sqrt{6} - \sqrt{2}}{2} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2}
19,180
y - |\sin{y}| \gt -|\sin{y}| \Rightarrow 0 \lt y
-19,696
\frac17 \cdot 27 = \frac{27}{7} \cdot 1
12,472
-(h + 8)^2 + 8^2 = -h \cdot (h + 16)
-523
(e^{\frac{i\pi*2}{3}})^{16} = e^{16 \frac{2i\pi}{3}}
17,137
-x + n - x = n - 2x
29,621
\frac{1}{2}\cdot \left(9 + 3\cdot (-1)\right) = 3
7,335
2 + \sqrt{3} = \sqrt{\sqrt{3} \cdot 4 + 7}
20,560
a^x \times a^z = a^{z + x}
-14,086
8 + 9 \cdot 10 - 7 \cdot 8 = 8 + 90 - 7 \cdot 8 = 98 - 7 \cdot 8 = 98 + 56 \cdot (-1) = 42
-9,498
30 r + 5 = 5 + 2*3*5 r
3,396
(X - A)\cdot (X + A) = -A^2 + X^2
-26,661
(2\cdot p)^2 - (5\cdot q)^2 = (q\cdot 5 + p\cdot 2)\cdot (2\cdot p - 5\cdot q)
18,022
\left(x\cdot E = b \Rightarrow \frac{E\cdot x}{E} = b/E\right) \Rightarrow x = b/E
-26,512
64\cdot x^2 = \left(8\cdot x\right)^2
18,471
15 \cdot (1 + 4 \cdot x)^{14} \cdot 4 = 60 \cdot \left(4 \cdot x + 1\right)^{14}
6,256
\frac{1}{2} \cdot 2^{1/2} = \frac{1}{2^{1/2}}
-9,379
-2*3 i + 3 = -i*6 + 3
-3,040
275^{\frac{1}{2}} - 11^{1 / 2} = (25\cdot 11)^{1 / 2} - 11^{1 / 2}
14,871
\left(F = d \Rightarrow E = d\right) \Rightarrow d = F\cdot E