id
int64
-30,985
55.9k
text
stringlengths
5
437k
16,035
-6/5 + \tfrac43 = \dfrac{1}{15}\cdot 2
11,392
(c - f) (f + c) = -f f + c c
-26,459
\left(3 \cdot z\right)^2 = z \cdot z \cdot 9
10,386
(a + f)/6 = (f + c)/7 = \frac{1}{8}\cdot (c + a) = \dfrac{1}{6 + 7 + 8}\cdot (a + f + f + c + c + a) = (a + f + c)/10.5
23,427
4\cdot 3/2 = 1 + 2 + 3
32,468
\sin{x} \lt 0 rightarrow \sin{x} = -\frac{3}{\sqrt{13}}
29,822
\sin{w} = 2\cdot \cos{w/2}\cdot \sin{\frac{w}{2}}
8,616
\frac{x}{g} = \tfrac{x}{g}
9,774
1 = y \cdot \frac{1}{z} \cdot y^2 \cdot z^2 = y \cdot z \cdot y^4 \cdot z \cdot y/z = y \cdot \frac{z}{z} \cdot z \cdot y^{16} \cdot y = z \cdot y^{21}
12,953
11\cdot (10 + z) = z + 160 \Rightarrow 160 + z = 110 + z\cdot 11
-5,309
0.45\cdot 10^{\left(-1\right)\cdot (-1) + 5} = 0.45\cdot 10^6
30,968
\operatorname{asec}(2) = \pi/3
33,988
10 + 140 - 50 + 30 \implies 70 = 10 + 60
33,912
-\cos{Z}*\sin{C} + \cos{C}*\sin{Z} = \sin(-C + Z)
19,339
1/6 = 1/6\cdot 2/2
19,671
\sum_{k=1}^n (-k! + (k + 1)!) = \sum_{k=1}^n (1 + k)! - \sum_{k=1}^n k!
22,161
0 = (1 - \tfrac{1}{a\cdot c})\cdot \left(c - a\right) = \dfrac{1}{a\cdot c}\cdot (c - a)\cdot \left(a\cdot c + \left(-1\right)\right)
-20,896
\frac{1}{10}\times 3\times \left(-2/(-2)\right) = -6/(-20)
22,600
(L + 1)/3 = L \implies \tfrac12 = L
6,234
(2/l + 1)^{3l} = ((1 + 2/l)^l)^3
7,508
\left(x + Y\right)\cdot v = x\cdot v + Y\cdot v
20,059
-\sin{x} = \cos(\pi/2 + x)
-16,498
\sqrt{175}*2 = \sqrt{25*7}*2
-24,443
9 + 6\cdot 8 = 9 + 48 = 9 + 48 = 57
34,432
\dfrac{1}{1 - \frac{b}{y}} \cdot (\frac{1}{y} \cdot b + 1) = \frac{1}{y - b} \cdot (y + b)
10,643
|b_n a_n - LM| = |b_n a_n - a_n M + a_n M - LM|
-7,532
\frac{1}{3}\cdot (-12\cdot i + 6) = -i\cdot 12/3 + \frac13\cdot 6
31,375
0 = \frac{4}{a^3} + \tfrac{2}{a} - \frac{1}{a^2} \cdot b = \frac{1}{a^3} \cdot \left(4 + 2 \cdot a^2 - b \cdot a\right)
28,900
3^{n + 1} + (-1) = 3\cdot 3^n + (-1) = 2\cdot 3^n + 3^n + \left(-1\right)
8,570
-3^{1/2}/3 + 1 = 1 - \frac{1}{3^{1/2}}
51,853
6 \Rightarrow 1
6,661
v \cdot 2 \cdot 3 \cdot u = u \cdot v \cdot 6
1,445
j^2 + j + 1 = 0 \Rightarrow -j = 1 + j^2
27,754
r^i\cdot q\cdot r^j = q\cdot r^i\cdot r^j
4,313
26*1/9/(13*1/9) = 2 = Y \Rightarrow 2 = Y
-2,110
-\frac{5}{3} \pi + \pi*17/12 = -\frac{\pi}{4}
17,186
1 - u^2 = \left(1 - u\right) \left(u + 1\right)
-18,369
\frac{1}{t^2 + 10 t}\left(t^2 + t + 90 \left(-1\right)\right) = \frac{1}{(10 + t) t}(9(-1) + t) (t + 10)
14,025
(7 + n) \cdot \binom{n + 6}{n} = \binom{7 + n}{n} \cdot 7
-22,283
y^2 - 3y - 70 = (y + 7)(y - 10)
-25,510
\frac{d}{dx} (\dfrac{4}{x + 2}) = -\dfrac{4}{(2 + x)^2}
2,272
s_n - s \lt \epsilon \Rightarrow s_n < \epsilon + s
-9,211
2\cdot 5\cdot 11 - 3\cdot 3\cdot 11 l = -99 l + 110
44,392
\cos(\pi - \theta) = -\cos\left(-\theta\right) = -\cos\left(\theta\right)
14,466
\frac{f_1}{f_1 - f_2} = \tfrac{0(-1) + f_1}{f_1 - f_2}
10,364
0 = y^p + (-1) = (y + \left(-1\right))^p
19,674
a^2 - b*a*2 + b * b = (-b + a)^2
-28,950
(3 + n)*(3*\left(-1\right) + n) = 9*(-1) + n^2
-6,023
\frac{2}{(5 \cdot \left(-1\right) + n) \cdot (10 + n)} = \dfrac{2}{n^2 + 5 \cdot n + 50 \cdot (-1)}
547
-\frac{1}{5}2 = -\frac{2}{5}
32,606
x\cdot \tau = x\cdot \tau
6,836
\tfrac{1}{\beta \cdot x} = \frac{1}{x \cdot \beta}
30,036
\frac{1}{d^2} \cdot x^2 = r rightarrow x^2 = d^2 \cdot r
18,920
(e/2)^n = e^n\cdot (\frac12)^n
16,601
a^{g + c} = a^c*a^g
12,637
6\cdot 5^m + 6\cdot (-1) - 5^m + 5 = \left(-1\right) + (6 + \left(-1\right))\cdot 5^m
-20,614
\frac{-q \times 21 + 49 \times (-1)}{28 \times (-1) - q \times 12} = \frac{1}{-3 \times q + 7 \times (-1)} \times (-q \times 3 + 7 \times \left(-1\right)) \times 7/4
39,091
800 = 6400*13\%
-764
0 + \dfrac{6}{10} + 5/100 + 9/1000 + \frac{1}{10000}\cdot 0 = 6590/10000
-20,157
\dfrac{z + 8}{z + 8}\cdot (-\tfrac{1}{10}\cdot 7) = \frac{56\cdot (-1) - 7\cdot z}{80 + 10\cdot z}
40,729
-(x - y) = -x + y
-5,098
\frac{6.5}{10000} = 6.5/10000
-10,277
30 = 10 t + 16 + 50 (-1) = 10 t + 34 (-1)
30,362
(-t + 1) \cdot (1 + t) = 1 - t^2
-29,363
(y + 4) \cdot (y + 6) = y^2 + 6 \cdot y + 4 \cdot y + 24 = y^2 + 10 \cdot y + 24
10,592
\frac{717}{999} - 71/99 = (717\cdot ((-1) + 100) - (1000 + (-1))\cdot 71)/(99\cdot 999)
22,530
E(Q - \theta) = E(Q) - E(\theta) = E(Q) - \theta
27,807
\dfrac{x^2 + (-1)}{x + (-1)} = \frac{\left(x + (-1)\right) (x + 1)}{x + (-1)} = x + 1
28,520
1 + z + z^2 + \dotsm*z^{m + (-1)} = \dfrac{1}{1 - z}*(1 - z^m) = \dfrac{1}{1 - z} - \frac{1}{1 - z}*z^m
19,168
\frac{n \cdot n}{(1 + n - l)^2} - \dfrac{1}{1 + n - l}\cdot n = \frac{n}{(n - l + 1)^2}\cdot \left(l + (-1)\right)
5,365
x = 16\cdot x_1^4\cdot x_2^4\cdot \ldots\cdot x_r^4 + 1 = (2\cdot x_1\cdot x_2\cdot \ldots\cdot x_r)^4 + 1
-5,889
\frac{1}{4\cdot (y + 9\cdot (-1))}\cdot 3 = \frac{3}{36\cdot \left(-1\right) + 4\cdot y}
24,908
v\cdot w^3 = v \Rightarrow 0 = (w^3 + \left(-1\right))\cdot v
4,824
-(-\dfrac138 + 5)^2 + 9 = \frac1932
129
\cos(13*\pi/7) = \cos\left(\pi/7\right)
21,472
Cov(y_1,y_2) = \mathbb{E}(y_1 \cdot y_2) - \mathbb{E}(y_1) \cdot \mathbb{E}(y_2) = \mathbb{E}(y_1 \cdot y_2)
-2,679
\sqrt{12} + \sqrt{75} = \sqrt{4 \cdot 3} + \sqrt{25 \cdot 3}
31,127
\dfrac{1}{4 \cdot n} \cdot \operatorname{Var}\left(B^2\right) = \frac{-E\left(B^2\right)^2 + E\left(B^4\right)}{n \cdot 4}
11,841
(-f + g) \left(g + f\right) = -f^2 + g^2
16,343
10 \cdot 10 \cdot 8 \cdot 8 \cdot 8 = 51200
-15,997
5/10 \cdot 9 - \tfrac{1}{10} \cdot 5 \cdot 7 = 10/10
15,199
-\dfrac{1}{5 \cdot (\dfrac45 + (-1))} = -1/(5(-1/5)) = 1
-8,907
(-3) (-3) (-3) = -3^2 * 3
1,234
\alpha,x,x \geq \alpha\Longrightarrow x*\alpha = x
32,276
2 \cdot 1 - 1^3 = 1
23,834
16 \cdot (z^2 + 16) = 100 \cdot z^2 \Rightarrow 256 = 84 \cdot z^2
18,083
-3*(1 + 2 + 3 + 4 + 5 + \cdots) = 1/4
21,898
y + (-1) = (y + (-1))\times (y + 1) \Rightarrow 1 = 1 + y
15,324
2^x\times 5^y\times 6^z = 2^x\times 5^y\times 2^z\times 3^z = 2^{x + z}\times 3^z\times 5^y
24,780
(4^n + 2)*3 = 3*4^n + 6
12,782
\frac{1}{4}(9 + 1) + \frac{1}{9}(4 + 1) = 5/2 + 5/9 \neq \mathbb{N}
-17,274
-\frac{48}{13} = -\frac{48}{13}
-20,054
\frac{81 + x\times 18}{9\times x + 9\times (-1)} = 9/9\times \tfrac{1}{x + (-1)}\times (9 + x\times 2)
39,418
100 = 50 \cdot (-1) + 150
20,743
\dfrac{1}{2}\cdot 6 = 3
10,440
{x + 3 + (-1) \choose 3 + (-1)} = {x + 2 \choose 2} = (x + 2) (x + 1)/2
2,854
(7^2)^{10*m} = (50 + (-1))^{10*m} = (1 + 50*(-1))^{10*m}
8,275
\dfrac{1}{i + 2} \cdot (2 \cdot i^4 + 1) = 1 = i^2
-20,576
\frac{-16*n + 16}{n*10 + 10*(-1)} = \dfrac{1}{n*2 + 2*\left(-1\right)}*(2*n + 2*(-1))*(-8/5)
15,894
m\times g\times k'\times x = m\times g\times x\times k'