id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-9,266 | -y*2*3*7 = -42*y |
-4,764 | \frac{7\cdot (-1) + 6\cdot x}{x^2 - 3\cdot x + 2} = \dfrac{1}{x + 2\cdot (-1)}\cdot 5 + \frac{1}{x + (-1)} |
19,778 | \dfrac{1}{\phi^2} = \frac{\phi^2 - \phi}{\phi \cdot \phi} = 1 - (\phi^2 - \phi)/\phi = 2 - \phi |
47,973 | 1/100 = 92/93\cdot 94/95\cdot 97/98\cdot 99/100\cdot 98/99\cdot \frac{96}{97}\cdot 95/96\cdot 93/94\cdot \frac{1}{92}\cdot 91/91 |
29,820 | 3 = z z z \Rightarrow 3 (-1) + z^3 = 0 |
-3,797 | 9/4 \cdot y^2 = y^2 \cdot 9/4 |
3,467 | 5/7\cdot 7 = 5 |
26,383 | 35 = 50 + 3\cdot \left(-1\right) + 12\cdot (-1) |
-2,660 | \sqrt{11}*\sqrt{16} + \sqrt{11} = \sqrt{11} + 4*\sqrt{11} |
5,977 | z^2 - q^2 = 1 rightarrow \sqrt{q^2 + 1} = z |
11,487 | \sqrt{2} \cdot 11 + 9\sqrt{3} = (\sqrt{3} + \sqrt{2})^3 |
27,820 | c*x + x = (-1) - c*3 \Rightarrow c = -\frac{x + 1}{x + 3} |
5,287 | (x^4 + x^2*8 + 3x^2)/12 = 11/12 x * x + \dfrac{x^4}{12} |
14,680 | C\cdot A + A\cdot D + B\cdot C + D\cdot B = (A + B)\cdot (D + C) |
13,658 | 111111111 \cdot \left(-1\right) + 123456789 = 999999999 + 987654321 \cdot (-1) |
456 | 2D'^2 + D \cdot D + D' D\cdot 3 = (D + D'\cdot 2) \left(D' + D\right) |
35,175 | {i \choose x} = {i + (-1) \choose x + (-1)} + {i + (-1) \choose x} = {i + (-1) \choose x + (-1)} + {i + 2 \left(-1\right) \choose x + \left(-1\right)} + {i + 2 \left(-1\right) \choose x} |
-6,564 | \frac{j}{j^2 - j \cdot 10 + 21} = \dfrac{1}{(j + 3 \cdot (-1)) \cdot (7 \cdot (-1) + j)} \cdot j |
17,527 | \sin(2\times \pi/3 + \pi/3) = \sin\left(\pi\right) = 0 |
29,276 | (\sqrt{2} + 3)^3 = 45 + 29 \cdot \sqrt{2} |
20,332 | |g_m|^{\frac1m} \leq 1/t = 1/t\Longrightarrow t^{-m} \geq |g_m| |
39,305 | 1 - (\frac12)^i = 1 - \dfrac{1}{2^i} = \tfrac{1}{2^i}(2^i + (-1)) = \frac{1}{2^{m - x}}(2^{m - x} + (-1)) \Rightarrow \tfrac{-(1/2)^i + 1}{2^{\left(-1\right) + x}} = \frac{1}{2^{m + (-1)}}\left(2^{m - x} + (-1)\right) |
16,961 | h^N h^z = h^{N + z} |
-2,308 | -2/17 + \frac{3}{17} = \frac{1}{17} |
-2,171 | \pi*35/12 = \dfrac12*3*\pi + \frac{1}{12}*17*\pi |
32,878 | (1 + z) \cdot (z + (-1)) = (-1) + z^2 |
49,755 | \sin(2^n) = \sin(2\pi \dfrac{2^n}{2\pi}) = \sin(2\pi \frac{1}{\pi}2^{n + (-1)}) |
27,966 | \dfrac{\sqrt{3}\cdot 16}{9} 1 = \dfrac{16}{3 \sqrt{3}} |
1,421 | 1/((-1)\cdot b) = \frac{1}{(-1)\cdot b} + \frac0b = \frac{1}{(-1)\cdot b} + \frac1b\cdot (1 - 1) = \dfrac{1}{(-1)\cdot b} + 1/b - \frac{1}{b} |
17,919 | 1/2 - 1/8 = 3/8 |
-2,664 | \sqrt{3}\cdot \left(3 + 4 + 5\right) = \sqrt{3}\cdot 12 |
-4,324 | \dfrac{c^4}{10 \cdot c^2} = \tfrac{1}{10} \cdot \frac{1}{c^2} \cdot c^4 |
-19,576 | \dfrac45\cdot \frac15\cdot 2 = 1/5\cdot 2/\left(5\cdot 1/4\right) |
-3,099 | 3 \cdot \sqrt{13} = \sqrt{13} \cdot \left(4 + (-1)\right) |
12,252 | 2^{f_2} \cdot 2^{f_1} = 2^{f_1 + f_2} |
6,747 | \tfrac{1}{(n - x)!}\cdot n! = n\cdot (n + (-1))\cdot \dots\cdot (n - x + 1) |
29,804 | (-\frac{1}{1 + y} + \frac{1}{\left(-1\right) + y}) \frac{y^2}{2} = \dfrac{y^2}{(-1) + y^2} |
-5,000 | 10^9*17.4 = 10^{6 + 3}*17.4 |
3,810 | V^3 = -V + (-1) = 4 \times V + 4 |
18,357 | (12 \cdot 2^{1/2} + 19) \cdot (19 - 12 \cdot 2^{1/2}) = 73 |
4,314 | \tfrac{1}{(2 \times x + (-1)) \times (2 \times x + (-1))} = \frac{1}{(2 \times (x - 1/2))^2} = \frac{1/4}{(x - 1/2)^2} |
2,698 | \left(\frac2x + 1 - x\right)^5 = \frac{1}{x^5}(-x^2 + 2 + x)^5 |
25,357 | (x + Q^{1/2}*y - C^{1/2}*z)*(z*C^{1/2} + x + Q^{1/2}*y) = x^2 + Q*y^2 + 2*Q^{1/2}*y*x - z * z*C |
-15,799 | -6/10*5 + 4/10*6 = -6/10 |
31,194 | \sin{2z} = 2\sin{z} \cos{z} + 0(-1) = 2\sin{z} \cos{z} |
-17,808 | 41 = 56 + 15 (-1) |
-4,047 | \frac{28}{7} \cdot \frac{y^5}{y^2} = \frac{y^5 \cdot 28}{7 \cdot y^2} |
9,086 | \int_1^2 \tfrac{1}{2 \cdot w}\,dw = (\int_1^2 {1/w}\,dw)/2 |
31,414 | 72 = \binom{4}{2}\cdot 2\cdot 3! |
4,162 | x \cdot b = \frac{1}{2} \cdot (x^2 + b^2 - (-b + x)^2) |
48,651 | 16*(-1) + 17 = 1 |
16,181 | \operatorname{E}(Z) - \operatorname{E}(V) = \operatorname{E}(Z - V) |
11,831 | d \cdot E = d \cdot E |
24,425 | 2 \cdot ((-1) + x) \cdot \left(1 + x\right) = 2 \cdot \left(-1\right) + 2 \cdot x^2 |
8,740 | h_2 d_2 + d_1 h_1 = h_1 d_1 + d_2 h_2 |
34,595 | B \cdot C^m = B \cdot C^m |
11,287 | \sin(\frac{5\pi}{2})=\sin(\frac{\pi}{2})=1 |
27,459 | Ax=\lambda x \implies A^{-1}Ax=A^{-1}\lambda x |
18,420 | 2 \cdot (-1) + y \cdot y + y = (y + 2) \cdot ((-1) + y) |
23,592 | \frac{5}{77} = 5/21\cdot \dfrac{1}{22}\cdot 6 |
21,984 | -\frac12 \cdot \pi = (\left(-1\right) \cdot \pi)/2 |
-22,404 | -4 = 6 (-1) + 2 |
31,502 | \frac{1}{y} \cdot (y \cdot y + y) = y + 1 |
27,098 | \cos{\frac{\pi}{2}} = \cos{3*\pi/2} = 0 |
32,190 | \left(1 + y + \dots + y^4\right)^{1 + n} = (1 + y + \dots + y^4)^n\cdot (1 + y + \dots + y^4) |
7,979 | x + 2 (-1) > 0 \implies 2 < x |
33,752 | 25 = f^2\Longrightarrow \sqrt{f \cdot f} = \sqrt{25} |
-1,776 | -5/3\cdot \pi = \pi/4 - \dfrac{1}{12}\cdot 23\cdot \pi |
-2,010 | -\frac{2}{3}*\pi = \dfrac{1}{12}*\pi - \frac{3}{4}*\pi |
46,783 | 1111 = 11 \cdot 101 |
16,312 | \dfrac{n^2}{2^{-\sqrt{n}}} = n^2*2^{\sqrt{n}} |
20,011 | \frac{2}{((-1) + z) (1 + z)} = \frac{1}{((-1) + z) (1 + z)} (-(\left(-1\right) + z) + z + 1) |
1,186 | (2*\tfrac13)^2 + (2*\frac{2}{3})^2 = \dfrac{20}{9} \gt 2 |
19,751 | \frac{\pi}{2^{\frac{1}{2}}} = 2^{1 / 2} \cdot \pi/2 |
4,867 | s^4 - 20*s^2 + 19 = (s * s + 19*\left(-1\right))*((-1) + s * s) |
29,410 | 3 + \frac12 = \frac{7}{2} |
-19 | -5 - 3 = -8 |
30,324 | (h + b)\cdot (1 + h\cdot \chi) = h^2\cdot \chi + h\cdot (1 + b\cdot \chi) + b |
-3,138 | \sqrt{25 \cdot 2} + \sqrt{16 \cdot 2} + \sqrt{9 \cdot 2} = \sqrt{32} + \sqrt{18} + \sqrt{50} |
16,428 | (z^2 - z \cdot 4 + 3) \cdot (4 + z) + 13 \cdot (z + (-1)) = (-1) + z^3 |
28,917 | 0 = -\frac35 + 3/5 |
17,433 | x^i a_i = x^i + (a_i + (-1)) x^i |
28,224 | y \cdot 2 + 5 \cdot y = 7 \cdot y |
17,747 | \dfrac{1}{xx^V} = \frac{1}{xx^V} |
24,103 | {n \choose r} = \dfrac{1}{r!\cdot (n - r)!}\cdot n! |
9,497 | c*a + a*f = (c + f)*a |
10,525 | \pi\cdot 2 - \frac{\pi}{6} = \frac{\pi}{6}\cdot 11 |
1,268 | \left(\mu^2 + n^2\right)^2 - (\mu^2 - n^2) \cdot (\mu^2 - n^2) = (2\mu n) \cdot (2\mu n) = 2 \cdot 2\mu^2 n \cdot n |
15,742 | \dfrac{1}{m^{d_2 - d_1}} = \frac{m^{d_1}}{m^{d_2}} |
38,655 | \sqrt{h} \cdot \sqrt{b} = \sqrt{h \cdot b} = \sqrt{h \cdot b} |
38,423 | (z + 1)*(z + 3) = (z + 1)*z + (z + 3)*3 = z^2 + z + 3*z + 9 = z^2 + 4*z + 9 |
52,561 | 680\times 211=143480=199\times 721+1 |
4,951 | (n \cdot 2 + 1)^2 + ((-1) + 2 \cdot n)^2 = 2 + 8 \cdot n^2 |
-446 | e^{\pi\cdot i\cdot 4/3\cdot 16} = \left(e^{4\cdot \pi\cdot i/3}\right)^{16} |
46,439 | 2\cdot 126 = 252 |
23,282 | C/(E_2) + A/(E_1) = (CE_1 + E_2 A)/(E_2 E_1) |
-3,414 | (3 + 2 + 5) \times 11^{1 / 2} = 11^{\frac{1}{2}} \times 10 |
-10,389 | \frac{100}{60\cdot t + 240\cdot (-1)} = \frac{5}{t\cdot 3 + 12\cdot (-1)}\cdot 20/20 |
-30,322 | 1 = 3\cdot (-1) + 4 |
-17,594 | 84 + 66 \cdot (-1) = 18 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.