id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,555 | \left(3 + x\right)*(x + 5*(-1)) = 15*(-1) + x^2 - 2*x |
21,042 | \pi*5/12 = \dfrac{5*\pi}{12} |
2,179 | 1 \times 1 + 2^2 + ... + n^2 = n + ((-1) + n) \times 3 + 5 \times (2 \times (-1) + n) + ... + 2 \times (3 \times (-1) + 2 \times n) + n \times 2 + (-1) |
-7,823 | \left(36 - 54 \cdot i + 36 \cdot i + 54\right)/18 = (90 - 18 \cdot i)/18 = 5 - i |
12,271 | 7875000 = {6 \choose 1}*5^6 {9 \choose 3} |
1,560 | 6 = (-(-5)^{\frac{1}{2}} + 1) (1 + (-5)^{1 / 2}) |
10,459 | -\frac14 + (1/2 + x)^2 = x * x + x |
4,592 | 3 + 4\cdot n^2 + 7\cdot n = 4\cdot n^2 - n + n\cdot 8 + 3 |
-29,060 | 5^7 = 5^5\cdot 5^2 |
-7,760 | \dfrac{1}{41} \cdot \left(-36 + 4 \cdot i - 45 \cdot i + 5 \cdot (-1)\right) = \dfrac{1}{41} \cdot (-41 - 41 \cdot i) = -1 - i |
4,385 | (y + 2 \cdot z)^2 = y \cdot y + z \cdot z \cdot 4 + y \cdot z \cdot 4 |
10,775 | x^2 + x + 1 = \frac{1}{(-1) + x}\cdot (\left(-1\right) + x^3) |
22,389 | (x + \delta) \cdot (x + \delta) - x^2 = \delta^2 + x\delta \cdot 2 |
12,173 | (-3 \cdot 3 + 4 \cdot 4)^{1 / 2} = 7^{\frac{1}{2}} |
25,141 | \left(C \cdot C\right)^X = (C\cdot C)^X = C^X\cdot C^X = (C^X)^2 |
7,945 | x_n^{n + (-1)} = \frac{x_n^n}{x_n} |
13,714 | 8! = 40320 = 2^7 \times 3^2 \times 5 \times 7 |
9,753 | -12 x + 1 = 0 \Rightarrow x = \frac{1}{12} |
1,015 | ( -x(t)*z(t), -y(t)*z\left(t\right), -z^2(t) + 1) = ( \frac{\mathrm{d}}{\mathrm{d}t} x(t), \frac{\mathrm{d}}{\mathrm{d}t} y(t), \frac{\mathrm{d}}{\mathrm{d}t} z(t)) |
-12,337 | 2 \sqrt{5} = \sqrt{20} |
16,271 | 2^{a\cdot k} + (-1) = \left(2^a\right)^k + (-1) = (2^a + (-1))\cdot ((2^a)^{k + (-1)} + (2^a)^{k + (-1)} + ... + 1) |
11,679 | 1/2 \cdot 4 \cdot a \cdot a \cdot 4 = a \cdot a \cdot 8 |
-7,148 | \frac29 \cdot 4/10 = \frac{1}{45} \cdot 4 |
15,642 | \dfrac{1}{1 + x^2}\cdot (1 + 2\cdot x) = \frac{1}{(1 + x^2)\cdot 2}\cdot (-x^2 + x\cdot 4 + 1) + 1/2 |
-20,424 | \tfrac19(x + 5)*5/5 = \frac{1}{45}(x*5 + 25) |
-9,177 | -3\cdot 2\cdot 3 + 2\cdot 3\cdot 3\cdot 3\cdot z = 54\cdot z + 18\cdot (-1) |
19,168 | \frac{l\times ((-1) + j)}{(l - j + 1)^2} = \frac{1}{\left(l - j + 1\right)^2}\times l^2 - \frac{l}{l - j + 1} |
4,656 | 3*\left(6*(-1) + 1006\right)/10 = 300 |
-10,826 | \frac{136}{8} = 17 |
-11,990 | \frac{2}{15} = s/(12 \pi)*12 \pi = s |
9,147 | x^5 = x^2 \cdot x \cdot x^2 = \tfrac{1}{3} \cdot x \cdot x \cdot x \cdot 3 \cdot x^2 |
37,239 | 3 \cdot (S + z) = 3 \cdot S + z \cdot 3 |
37,726 | \frac1b\cdot h = \dfrac{1}{b}\cdot h |
2,521 | 1 - y \gt 0 \Rightarrow y < 1 |
27,057 | \frac{1}{e^{\left(-1\right)\cdot \left((-2)\cdot 1.0\cdot 10^{-10}\right)\cdot 1000}}\cdot 2 = 2\cdot 0.999999 = 1.99999 |
-11,884 | 0.002478 = 2.478\times 0.001 |
17,220 | \tfrac{1}{1/U} = U |
-8,974 | 50.4\% = \frac{1}{100}\cdot 50.4 |
9,754 | s \cdot p^i \cdot p^x = p^i \cdot s \cdot p^x |
2,126 | \operatorname{E}\left[\tfrac{R}{R}\right] = \operatorname{E}\left[1\right] = 1 = \operatorname{E}\left[R\right]/\operatorname{E}\left[R\right] |
38,950 | -\pi/4 + 1 = -\frac{\pi}{4} + 1^{-1} |
53,916 | d/dx (e^x + e^{-x}) = \frac{dx}{dx} \cdot e^x + d/dx \left(-x\right) \cdot e^{-x} = e^x - e^{-x} |
-856 | 734/10000 = \dfrac{4}{10000} + 0 + 0/10 + \frac{7}{100} + 3/1000 |
23,263 | \tfrac{1}{12} = \tfrac{1}{3 \cdot 4} |
-18,849 | -4 = -\frac82 |
36,049 | \frac{a}{d} = a/d |
-1,587 | -\frac{\pi}{2} = -\pi*5/4 + \pi*3/4 |
993 | z \cdot y \cdot x = 1 rightarrow 1 = x, y = 1, z = 1 |
16,022 | a\cdot d = 2\cdot (a + d)\cdot \ldots\cdot \ldots\cdot \ldots\cdot \ldots |
16,770 | 287 = 1 + 2*\left(53 + 6 + 18 + 36\right) + 60 |
15,485 | x*3 + x*3 = 6x |
-23,348 | \frac{1}{9}4*3/4 = \dfrac13 |
28,546 | \sin{z} = \cos(z + \dfrac{1}{2}*3*\pi) |
28,091 | \sin{H_2} \cos{H_1} + \sin{H_1} \cos{H_2} = \sin(H_2 + H_1) |
19,340 | \tfrac{720}{3 \cdot 2}1 = \binom{10}{3} |
25,843 | 5 \cdot \pi/3 = 2 \cdot \pi/3 + \frac{\pi}{2} + \pi/2 |
-560 | e^{i \cdot \pi/12 \cdot 3} = e^{\frac{\pi}{12} \cdot i} \cdot (e^{\frac{\pi}{12} \cdot i})^2 |
-4,052 | 100/40 \frac{x}{x} = \dfrac{x*100}{x*40} |
10,420 | (5^n + (-1))\cdot (1 + 5^n) = 5^{2\cdot n} + (-1) |
15,078 | 3/A + 2 \cdot (-1) = 3 \cdot (-1) + \frac{1}{A} \cdot (3 + A) |
22,529 | \operatorname{atan}(\tan(z - \pi)) = z - \pi = \operatorname{atan}\left(\tan(z)\right) |
-15,317 | \dfrac{\frac{1}{z^{25}}*f^{20}}{\tfrac{1}{f^8}*z^4}*1 = \frac{1}{\dfrac{1}{\dfrac{1}{z^4}*f^8}}*(\frac{f^4}{z^5})^5 |
-10,264 | 3/3*(-\frac{1}{5 + z}) = -\frac{3}{15 + 3*z} |
24,483 | \frac{1}{3}\times 2/9 + \frac{2}{9}\times 1/3 + \frac{1}{3}\times 2\times 0 = \frac{4}{27} |
-27,489 | 2\cdot 2\cdot 7\cdot c\cdot c = c \cdot c\cdot 28 |
25,928 | x^2 + 5 \cdot x + 6 = (3 + x) \cdot (x + 2) |
6,051 | -z^k + x^k = (x - z)\cdot (x^{\left(-1\right) + k} + z\cdot x^{2\cdot (-1) + k} + ... + z^{k + 2\cdot \left(-1\right)}\cdot x + z^{k + (-1)}) |
-19,421 | 2/5\cdot \frac{6}{1} = \dfrac{2}{1/6}\cdot 1/5 |
24,167 | \frac{2\cdot \pi}{12} = \frac{\pi}{6} \approx 0.5236 |
-22,955 | 18/24 = \frac{6\cdot 3}{4\cdot 6} |
-22,128 | \dfrac{30}{35} = \frac67 |
6,738 | x! - N! = N!\cdot (\frac{x!}{N!} + (-1)) |
22,476 | 8^3 - 5^3 - 3^3 = 512 + 125 \left(-1\right) + 27 (-1) = 360 |
28,623 | \log_e(14623) = \tfrac{1}{0.434}4.176 = 9.616 |
-1,464 | \frac{1}{1/4}*((-1)*\frac13) = -\frac{1}{3}*\dfrac41 |
28,280 | 4/3 x^{1/3} = x^{4/3} \cdot \frac{4}{3x} |
9,329 | \int 1/y\,dy = \left(\log_e(y)\right)! = \log_e(y) |
11,816 | \frac{1}{1 + (1 + x) \cdot 2} = \frac{1}{3 + 2 x} |
47,056 | -\left(\lambda+\frac{Y''}{Y}\right) = -k_x^2 \;\Rightarrow\; Y'' + (\lambda-k_x^2)Y = 0 |
1,194 | (f - h) \cdot (f^{(-1) + l} + f^{2 \cdot (-1) + l} \cdot h + \dotsm + f \cdot h^{2 \cdot (-1) + l} + h^{l + (-1)}) = -h^l + f^l |
-3,794 | \frac{20}{12} x^4/x = \frac{x^4}{x} \frac{4 \cdot 5}{3 \cdot 4} |
7,535 | (a^2 + f^2) \cdot \left(d^2 + c^2\right) = (c \cdot a + d \cdot f)^2 + (a \cdot d - c \cdot f) \cdot (a \cdot d - c \cdot f) |
23,007 | B/c = \frac{c\cdot B/c}{c} |
-8,074 | \frac{1}{8} \times (20 + 4 \times i - 20 \times i + 4) = \tfrac{1}{8} \times \left(24 - 16 \times i\right) = 3 - 2 \times i |
-24,117 | \dfrac{1}{7 + 4} \cdot 99 = 99/11 = 99/11 = 9 |
31,936 | 2 \cdot \pi \cdot x \cdot x = \sqrt{2 \cdot \pi} \cdot x \cdot x \cdot \sqrt{2 \cdot \pi} |
21,426 | \frac{19}{20} = \frac{95}{100} |
38,612 | \infty*(0 + \left(-1\right)) = \infty*\left(-1\right) = -\infty |
9,413 | T - T*0 = T |
7,122 | t^2 + 2 \cdot h \cdot t + h^2 = (h + t)^2 |
27,610 | \arctan{\infty} = \frac{\pi}{2} |
-6,707 | \frac{1}{10}3 + \frac{5}{100} = 30/100 + \dfrac{5}{100} |
-8,328 | -1 = \frac{8}{-8} |
29,727 | d/dz \sec(z) = \tan(z)\cdot \sec\left(z\right) |
30,215 | 0 = \dfrac13*(a + 2) \Rightarrow a = -2 |
-2,629 | 3^{1 / 2}\times (5 + 2 + 4\times \left(-1\right)) = 3^{1 / 2}\times 3 |
6,894 | \dfrac{1}{2^n\cdot \frac12} = \frac{2^1}{2^n} = \frac{2}{2^n} |
-2,455 | \sqrt{2}\cdot (3 + 5) = 8 \sqrt{2} |
16,990 | m = \left\{m, \ldots, 2, 1\right\} |
50,156 | 4\times 5 + 880 + 2\times 85 + 3\times 30 = 1160 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.