id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
16,321 | \left(\dfrac{x^{\sigma}}{x}\right)^{\sigma} = (\dfrac1x)^{\sigma}\times x = \frac{1}{1/x\times x^{\sigma}} |
28,963 | 0 = E(X^4) \implies E(X \cdot X) = 0 |
-9,326 | p \cdot 2 \cdot 2 \cdot 2 = p \cdot 8 |
-25,807 | \frac{1 \cdot 2}{7 \cdot 6} = 2/42 |
24,009 | 9 \cdot (-1) + 2 \cdot 10 = 11 |
31,918 | (-4\cdot z + 8)/2 = -z\cdot 2 + 4 |
722 | 5 \cdot 5 + 5^2 = 1 \cdot 1 + 7^2 |
31,446 | 151200 = \frac{7!\cdot 6!}{2!\cdot 3!\cdot 2!} |
9,610 | (c + g\cdot i)\cdot (c - g\cdot i) = c^2 - g^2\cdot i \cdot i = c^2 + g \cdot g |
22,946 | 125/6\cdot \tfrac34 = \frac{125}{8} |
-16,370 | 117^{\frac{1}{2}} \cdot 5 = \left(9 \cdot 13\right)^{1 / 2} \cdot 5 |
5,711 | b\cdot z + a = a + b\cdot z |
-11,467 | i \times 12 + 0 + 20 \times (-1) = -20 + 12 \times i |
7,350 | (x * x - x*6 + 13) (1 + x) = 13 + x^3 - x * x*5 + 7x |
5,367 | 16 + x * x^2 - 12*x = \left(x * x + 2*x + 8*(-1)\right)*(x + 2*(-1)) |
-3,659 | 5*\frac16/s = \dfrac{5}{6*s} |
16,201 | \frac{((-1) + p)!}{p + \left(-1\right)} = (2 \cdot \left(-1\right) + p)! |
-20,017 | \tfrac{1}{-14}\cdot (b\cdot 7 + 42\cdot (-1)) = 7/7\cdot \frac{1}{-2}\cdot \left(b + 6\cdot \left(-1\right)\right) |
36,786 | x \cdot x + I = x^2 + x \cdot x + x + I = x + I |
-22,711 | \frac{1}{77} \cdot 110 = \frac{110}{11 \cdot 7} \cdot 1 |
30,866 | \tfrac26 = \frac13 |
10,172 | \frac{1}{\left(y + (-1)\right)\cdot (y + \left(-1\right))} = \dfrac{1}{(\left(-1\right) + y)\cdot (y + (-1))} |
-26,477 | 2 \times 7 \times x \times 5 = 70 \times x |
44,460 | 2\cdot x + 5 + 3 = 2\cdot x + 8 = 46 + 3\cdot x |
-4,512 | \frac{1}{x^2 - x + 12\cdot \left(-1\right)}\cdot (20 + 2\cdot x) = -\frac{2}{x + 3} + \dfrac{4}{x + 4\cdot (-1)} |
26,494 | -t^2 + d^2 = (d - t)\cdot \left(t + d\right) |
-30,931 | 90 = 15\cdot 3\cdot 2 |
-3,924 | \frac{6 \cdot t^4}{22 \cdot t^5} \cdot 1 = \dfrac{1}{t^5} \cdot t^4 \cdot \frac{6}{22} |
26,672 | 1 = -2 \cdot 2^2 + 3^2 |
18,103 | \dfrac72\cdot 2 = 7 |
7,669 | -(k - t)\cdot 4 = \left(-k + t\right)\cdot 4 |
47,183 | S + S = S\cdot 2 |
32,569 | \frac{1}{2}*3*6 = 9 |
-7,410 | 6/10\cdot \frac{2}{9} = \frac{2}{15} |
24,227 | (-1) + y^{10} = (y + 1)*(y^8 + y^6 + y^4 + y^2 + 1)*\left(y + (-1)\right) |
-20,944 | -\frac{36}{81} = -4/9*\dfrac{9}{9} |
663 | 2^k + (-1) = \frac{1}{1 + 2 (-1)} (1 - 2^k) |
8,455 | \frac{1}{3} = 0.33333\cdot \ldots |
-22,725 | 35/15 = \dfrac{7}{3*5}*5 |
22,917 | -(2 + \frac{1}{5} \cdot 3) = -\dfrac{3}{5} - 2 |
27,190 | 2^{n + (-1)}*2^{n + (-1)} = 2^{n + (-1)} * 2^{n + (-1)} = 2^{2*(n + (-1))} = (2^2)^{n + (-1)} |
-7,839 | \frac{1}{4 - 5 \cdot i} \cdot (-1 + 32 \cdot i) \cdot \frac{4 + 5 \cdot i}{i \cdot 5 + 4} = \tfrac{32 \cdot i - 1}{4 - 5 \cdot i} |
10,180 | ((-1) + x) (1 + x) = \left(-1\right) + x \cdot x |
14,879 | y + 2\cdot (-1) + i = y - 2 - i |
4,556 | y \geq z,y \leq z\Longrightarrow y = z |
-20,153 | -\frac{1}{2} 7 \frac{1}{r \cdot (-3)} (r \cdot \left(-3\right)) = \frac{r \cdot 21}{r \cdot (-6)} |
-20,437 | \dfrac{15}{-3} = -3/(-3) (-\frac{1}{1} 5) |
11,310 | z^2 = 1 + (1 + z) \cdot (z + (-1)) |
36,161 | 16 = 4 \times 2 + 2 \times 4 |
21,973 | x^2 + \frac{1}{x^2} + 2 \cdot (-1) = \frac{1}{x^2} \cdot (x^4 - 2 \cdot x^2 + 1) = \dfrac{1}{x^2} \cdot (x \cdot x + (-1)) \cdot (x \cdot x + (-1)) |
28,445 | 1 + t^2 + t/4 = (t + 1/8)^2 - 1/64 + 1 |
37,811 | \frac18\cdot \sqrt{24} = \frac{2\cdot \sqrt{6}}{8}\cdot 1 = \dfrac{\sqrt{6}}{4} = \sqrt{6}/4 |
-12,128 | 31/36 = s/\left(18 \pi\right) \cdot 18 \pi = s |
-4,415 | 4 + x \cdot x + x \cdot 5 = \left(1 + x\right) \left(x + 4\right) |
3,940 | \sum_{i=3}^n i \cdot i = \sum_{i=1}^n i \cdot i - 1^2 + 2 \cdot 2 = \sum_{i=1}^n i^2 + 5 \cdot (-1) |
6,253 | d/dx \operatorname{asin}(x) = \frac{1}{\sqrt{-x \times x + 1}} |
501 | 0 = z*x + x*y'' + y'*2 rightarrow y''*x * x + x*y'*2 + x^2*z = 0 |
11,862 | 6*n + 3 = (1 + 2*n)*3 |
12,887 | x + 5 - 4/(-1) = \frac{1}{1 \cdot \left(1 + 2 \cdot (-1)\right)} \cdot (7 + 2) \cdot (2 + 5 \cdot (-1)) \Rightarrow x = 18 |
33,176 | \frac{1}{Y + 2 + \lambda_j}(2 + 2Y) = -\frac{-Y + \lambda_j}{Y + 2 + \lambda_j} + 1 |
-15,684 | \dfrac{{(z^{3}p^{3})^{-3}}}{{(z^{5}p^{-3})^{-1}}} = \dfrac{{z^{-9}p^{-9}}}{{z^{-5}p^{3}}} |
-23,100 | 1/\left(4\cdot 16\right) = \frac{1}{64} |
26,916 | 0 = 10\cdot \left(-1\right) + 4^1 + 6 |
13,937 | 4 + y^2 \cdot 36 + 24 \cdot y = (2 + y \cdot 6)^2 |
-12,737 | \frac{1}{8.5}85 = 10 |
22,089 | \frac{1}{2^x} \cdot 2^{2 \cdot x} = 2^{2 \cdot x - x} = 2^x |
1,493 | 0 = \left(\lambda\times x - A\right)^2\times v_2 = (\lambda\times x - A)\times (\lambda\times x - A)\times v_2 |
52,446 | {4n \choose 2n} = \frac{1}{(2n)!^2}(4n)! = \frac{(4n)!}{{2n \choose n}^2 n!^4} |
-20,886 | 7/7 \cdot \dfrac{1}{a \cdot (-2)} \cdot (a + 9) = \frac{7 \cdot a + 63}{a \cdot (-14)} |
31,925 | A - X \cup Y = A \cap X \cup Y^c = X^c \cap (A \cap Y^c) = Y^c \cap \left(A \cap X^c\right) = A - X - Y |
-9,322 | 18 - 42 r = -2*3*7 r + 2*3*3 |
7,059 | \frac{1}{F_2\cdot F_1} = \tfrac{1}{F_2\cdot F_1} |
35,739 | 1 = 2^x\Longrightarrow x = 0 |
21,963 | 1/2 + \frac13 + 1/12 = \dfrac{11}{12} |
-5,462 | \frac{1}{r*3 + 30}*2 = \tfrac{1}{\left(10 + r\right)*3}*2 |
2,050 | -\pi/4 + 7\cdot \pi/12 = \dfrac{\pi}{3} |
6,673 | \cos{2 u} = \left(-1\right) + 2 \cos^2{u} |
-23,104 | -3\cdot (-\frac{1}{3}\cdot 4) = 4 |
-1,770 | \dfrac32*\pi = \pi*\tfrac16*11 - \pi/3 |
-10,368 | \frac{10}{10}*(-\frac{4*x}{x*2}*1) = -40*x/(x*20) |
-8,369 | -\frac{1}{3}6 = -2 |
1,707 | \tan{A} = x \implies \tan^{-1}{x} = A |
-23,348 | 1/3 = \frac19\cdot 4\cdot 3/4 |
654 | 1/8 + 3/8 = \frac{1}{2} |
8,945 | 2 = (1 + \frac{1}{3}) \cdot \tfrac12 \cdot 3 |
27,790 | \frac{1}{1/6\cdot 48} = 1/8 |
5,801 | 48 = 72 + 24 \cdot \left(-1\right) |
36,311 | a^{m + x} = a^m \cdot a^x |
23,058 | 2^x |X^{|x|}| = |X^{|x|}| = |X|^{|x|} |
23,803 | E\left[X + x\right] = x + E\left[X\right] |
9,048 | \left( 5, 9, 0\right) = ( 2, 1, -5) + ( x, y, z)\Longrightarrow \left( 5, 9, 0\right) = ( x + 2, y + 1, z + 5\cdot (-1)) |
14,120 | (2 g + 1) (2 g + 1) + 73 = 2\cdot (2 g^2 + g\cdot 2 + 37) |
5,569 | (b + a)^2 + (a - b) * (a - b) = (b^2 + a^2)*2 |
12,576 | \tfrac{1}{F_1 \cdot F_2} = \frac{1}{F_2 \cdot F_1} |
-24,278 | \dfrac{19}{10 + 9} = \dfrac{19}{19} = 19/19 = 1 |
17,636 | e^y = -y^2 + y*2 + 5\Longrightarrow e^y + y^2 - 2*y = 5 |
-19,306 | 3/2 \cdot \frac15 \cdot 8 = \frac{8 \cdot \dfrac{1}{5}}{\dfrac{1}{3} \cdot 2} |
-24,356 | 9 + \frac{1}{10}\cdot 60 = 9 + 6 = 15 |
28,831 | \frac{1}{\sinh(1)*2}*(e + 4) = \dfrac{e*4 + 1}{e^2 - 1} + 1 |
2,942 | ((-1) + z^2) (z * z + 3(-1)) = 3 + z^4 - 4z^2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.