id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,903 | 3.65\cdot 10 = 3.65\cdot 10/100 = \frac{3.65}{10} |
222 | 0 = d\cdot 3 + 4\cdot (-1) \Rightarrow \dfrac43 = d |
52,459 | \binom{9}{2} \cdot (\binom{7}{2} \cdot 2! \cdot 2! + 3! \cdot 2! \cdot \binom{7}{3} + ... + 7! \cdot 2! \cdot \binom{7}{7}) = 985824 |
-21,046 | \tfrac33 = 1^{-1} = 1 |
26,080 | B/C = \frac{B*C/C}{C} = C*B/C/C = \frac1C*B |
1,872 | \mathbb{P}(x) = (x + (-1) - 2 \cdot i) \cdot (x + (-1) + 2 \cdot i) = x \cdot x - 2 \cdot x + 5 |
1,099 | \left(-1\right) + n^2 = (n + (-1)) \cdot \left(n + 1\right) |
1,774 | \binom{9}{3}\cdot \binom{6}{3}\cdot \binom{6}{3} = 33600 |
-16,443 | 10\cdot \sqrt{45} = \sqrt{9\cdot 5}\cdot 10 |
-20,018 | \dfrac{p + 6}{9(-1) + p}*5/5 = \dfrac{5p + 30}{5p + 45 (-1)} |
21,613 | \dfrac{1}{2\cdot 4}\cdot (-4 + \sqrt{16 + 64\cdot (-1)}) = \frac{1}{2}\cdot (-1 + \sqrt{-3}) |
5,634 | \frac{(-1) + k}{l * l} = \tfrac{1/l}{l}*(k + (-1)) |
-6,706 | 8/10 + 1/100 = \dfrac{80}{100} + \dfrac{1}{100} |
-14,260 | 1 + \dfrac{60}{10} = 1 + 6 = 7 |
997 | (nx)^2 = n^2 x^2 |
7,181 | \frac{k + 1}{2 + k} = \frac{1}{2 + k} \cdot (k + 1) |
-18,364 | \tfrac{1}{40*(-1) + q^2 - q*3}*(q^2 - 8*q) = \frac{(q + 8*\left(-1\right))*q}{(5 + q)*(8*(-1) + q)} |
12,764 | 29 = 14*2 + 1 |
-20,361 | \frac{1}{(-18) \cdot y} \cdot (y \cdot 9 + 90 \cdot (-1)) = \frac99 \cdot \frac{1}{y \cdot (-2)} \cdot (y + 10 \cdot (-1)) |
-4,093 | 6\cdot t^3/5 = 6/5\cdot t^3 |
-25,235 | \frac{z}{4} = d/dz z^{1/4} |
3,257 | E^2\cdot y + 5\cdot y\cdot E + 4\cdot y = (E^2 + E\cdot 5 + 4)\cdot y |
20,075 | z + 2 \cdot \left(-1\right) + 1 = z + (-1) |
32,789 | k*(1 + x) = x*k + k |
25,476 | \frac{1}{9} + 2/15 = 11/45 |
5,667 | 5^2 + 3^2 = 25 + 9 = 34 = r * r\Longrightarrow r = \sqrt{34} |
-1,219 | 1/5*3/(1/2*3) = 2/3*3/5 |
15,697 | E\left(\omega_l^2\right) E\left(\omega_k\right) = E\left(\omega_l^2 \omega_k\right) |
-7,030 | 5/8*\frac19*6*4/7 = 5/21 |
-28,877 | 6+6+6=18 |
19,953 | z = z/6 + z/12 + z/7 + 5 + \frac12z + 4 \implies z = 84 |
8,934 | 2 \cdot (1 + 2 + \ldots + n) = n \cdot (1 + n) |
266 | 1 = \left(p + t\right) \times \left(p + t\right) = p \times p + 2\times p\times t + t \times t |
15,715 | \cos(-a + a) = \cos(a) \cos(a) + \sin(a) \sin\left(a\right) |
33,087 | 4+8+8+6 =26 |
26,869 | \cos{2\cdot y} = -\sin^2{y}\cdot 2 + 1\Longrightarrow \sin^2{y}\cdot 2 = 1 - \cos{2\cdot y} |
-12,107 | \dfrac{44}{45} = t/(18\cdot \pi)\cdot 18\cdot \pi = t |
22,232 | \frac{1}{26} \cdot 13 \cdot 2 \cdot \frac{12}{25} \cdot 11/24 = \dfrac{11}{50} |
32,046 | (1 + q)^2 - (q + (-1))^2 = 4 \cdot q |
22,613 | 1 + x_0^4 - x_0^2 \cdot 2 = 0 \Rightarrow (x_0 \cdot x_0 + (-1))^2 = 0 |
29,556 | ((-1)\cdot \pi)/2 = -\pi/2 |
11,448 | \frac{z^{-1/2}}{2} \cdot x = z' \implies x = \frac{1}{z^{-\frac12}} \cdot z' \cdot 2 |
-924 | 0 + 0/10 + 1/100 + 9/1000 + \frac{3}{10000} = \frac{1}{10000} \cdot 193 |
13,519 | 0 = (A, H_i) = AH_i - H_i A |
31,994 | 93 = 87 \cdot (-1) + 180 |
13,023 | 3 = \dfrac{4!}{2! \cdot 2^2} |
-23,013 | 50/40 = 5*10/(10*4) |
19,023 | 1/52 = 4\cdot 13/(52\cdot 52) |
-22,318 | \left(3 \cdot (-1) + r\right) \cdot (4 \cdot (-1) + r) = 12 + r^2 - 7 \cdot r |
10,257 | 1 = (a^2 + h \cdot h + f \cdot f)^2 = a^4 + h^4 + f^4 + 2/4 |
8,159 | (\dfrac{1}{2}\cdot \sqrt{12})^2 = 3 |
-7,793 | i \cdot 20/(-4) - 20/(-4) = (i \cdot 20 - 20)/(-4) |
21,861 | 4\cdot \beta + (-1) = (\sqrt{\beta + 2} + 3\cdot (-1)) \cdot (\sqrt{\beta + 2} + 3\cdot (-1)) = \beta + 2 - 6\cdot \sqrt{\beta + 2} + 9 = \beta + 11 - 6\cdot \sqrt{\beta + 2} |
6,413 | 2gb = (1 + 1) gb = gb + gb = gb + gb |
30,337 | 8(-1) + 4\sqrt{3} = 4\sqrt{3} - 8 |
10,633 | (k + 1)\cdot (k + \left(-1\right)) = k^2 + \left(-1\right) |
26,769 | \left(D B\right)^3 = D B D B D B |
27,473 | 2\cdot \sin\left(E\right)\cdot \cos(E) = \sin(E\cdot 2) |
18,275 | y = \tfrac{1}{\frac{1}{y + y} + \frac{1}{y + y}} |
-10,592 | -9 = -5 \times y + 4 + 21 \times (-1) = -5 \times y + 17 \times (-1) |
36,207 | \frac{\mathrm{d}}{\mathrm{d}x} \tan^3(x) - \tan(x)\cdot 3 + x\cdot 3 = \tan^4\left(x\right)\cdot 3 |
29,483 | 3\cdot z = \dfrac{3\cdot z^3}{z \cdot z}\cdot 1 |
52,222 | \varphi_1 = \varphi_1 |
31,822 | 2n * n - (-1) + n * n = n * n + 1 |
21,539 | \operatorname{E}(\theta) + \operatorname{E}(X) = \operatorname{E}(X + \theta) |
-2,333 | -\tfrac{4}{11} + \frac{10}{11} = 6/11 |
20,336 | (f + g)\cdot v_2 + v_1\cdot (f + g) = (f + g)\cdot (v_1 + v_2) |
22,261 | g \cdot G_s = g \cdot G_s |
8,894 | \frac{x}{2} \cdot \eta \cdot \eta^Z = \eta^Z \cdot \eta \cdot x/2 |
-11,258 | (y + h) \cdot (y + h) = (y + h) \cdot (y + h) = y^2 + 2 \cdot h \cdot y + h \cdot h |
17,627 | Y_2 \cdot Y_1^2 = Y_2 \cdot Y_1 \cdot Y_1 |
-3,664 | \frac{9}{n^2} \cdot 1/5 = \frac{9}{n^2 \cdot 5} |
19,440 | \frac{1}{z^4} + 2\cdot z^2 = \dfrac{1}{z^7}\cdot (z^9\cdot 2 + z^3) |
10,440 | \binom{n + 3 + (-1)}{3 + (-1)} = \binom{n + 2}{2} = \frac{1}{2}*(n + 1)*(n + 2) |
13,388 | (l + 1)^2 = l^2 + l\cdot 2 + 1 |
18,634 | e^{1 + |x - y|} = e^{|x - y|} e^1 |
23,805 | 1 + 3 + ... + 2*m + \left(-1\right) = m*(2*m + (-1) + 1)/2 = m^2 |
13,723 | (\sqrt{A} - \sqrt{B})^2 = A + B - 2 \cdot \sqrt{A \cdot B} = 36 - \sqrt{A \cdot B} |
-1,646 | 0 + 13/12 \times \pi = \frac{13}{12} \times \pi |
24,266 | 289 + 1000 \cdot x = 39 + 125 \cdot (2 + 8 \cdot x) |
29,212 | y \cdot y + 2\cdot g\cdot y + h = y^2 + 2\cdot g\cdot y + g \cdot g + h - g^2 = (y + g)^2 - g^2 - h |
32,412 | -2*n + 2^n = 2^n + 2*(-1) - (n + (-1))*2 |
-23,839 | 4 + \tfrac{40}{8} = 4 + 5 = 4 + 5 = 9 |
3,208 | \frac{11}{19}*\frac{12}{20} = \dfrac{132}{380} |
1,018 | \cos{\theta*2} = 2\cos^2{\theta} + \left(-1\right) |
7,076 | 6*x_m = m + \left(-1\right) + \sum_{j=m}^6 \left(-x_j + 1\right) \implies m + \sum_{j=m + 1}^6 \left(-x_j + 1\right) = x_m*7 |
3,162 | \sin(π \cdot 2 + s) = \sin{s} |
10,368 | \frac{1}{m} \cdot ((-1) + m) = 1 \Rightarrow m + (-1) = m |
8,344 | x\cdot 1/y/z = \frac{x\cdot 1/z}{y}\cdot 1 = x/\left(y\cdot z\right) |
-4,955 | 45 \cdot 10^{1 + 6} = 10^7 \cdot 45 |
-9,353 | -44*q = -2*2*11*q |
23,270 | 1 - \sin^2(\rho) = \cos^2\left(\rho\right) |
15,572 | 6 + z^2 - 5z = \left(3(-1) + z\right) (z + 2(-1)) |
18,970 | 37 (-1) + (1 + 10)*10/2 = 18 |
7,970 | x^3 - 1 + x\cdot 3 - x \cdot x\cdot 3 = \left(x + (-1)\right)^2 \cdot (x + (-1)) |
29,382 | -6*(4*d - 2*f + h) + 2 = 1 \Rightarrow -4*d + 2*f + 1/6 = h |
7,775 | n^2\cdot 4 = -(\left(-1\right) + n^2)^2 + (n^2 + 1)^2 |
42,430 | f^{2^5} = f^{32} = f \cdot f |
233 | y \cdot y + x^2 + y \cdot x = (\frac{y}{2} + x) \cdot (\frac{y}{2} + x) + y^2 \cdot 3/4 |
-11,136 | \left(x + 9*(-1)\right)^2 + b = (x + 9*(-1))*(x + 9*(-1)) + b = x^2 - 18*x + 81 + b |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.