id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
5,634 | \frac{1}{x^2} \times \left(i + \left(-1\right)\right) = 1/x \times ((-1) + i)/x |
2,933 | (X + 3)^3 = X^3 + 9X * X + 27 X + 27 = \left(X^2 + 5X + 7\right) \left(X + 4\right) + (-1) |
-1,372 | -\frac{1}{72} \cdot 18 = \frac{1}{72 \cdot 1/18} \cdot ((-18) \cdot \dfrac{1}{18}) = -\frac{1}{4} |
-29,514 | \frac{1}{(4\cdot (-1) + 5)!}\cdot 5! = 120 |
7,608 | t^2\cdot p^2 = (p\cdot t)^2 |
9,883 | 1 = 1^{1/2} = ((-1)^2)^{1/2} = (\left(-1\right)^{1/2})^2 = i^2 = -1 |
22,817 | 4 + 4 + 3\times \left(-1\right) = 5 |
9,294 | 1 + q^4 - 2\cdot q \cdot q = (1 - q \cdot q) \cdot (1 - q \cdot q) |
16,785 | -(c + b) + d = d - b - c |
15,985 | 2^l \cdot (2^{m - l} + (-1)) = -2^l + 2^m |
-7,107 | \frac{5}{66} = 5/11 \cdot \frac{1}{12} \cdot 2 |
-10,019 | 96\% = 96/100 = 0.96 |
5,869 | -B\cdot C + C\cdot A = (-B + A)\cdot C |
-20,021 | \frac{1}{4*r + 4*(-1)}*(-9*r + 9) = \frac{(-1) + r}{(-1) + r}*(-9/4) |
2,299 | \frac{\sqrt{4 - 4*z + z^2}}{z + 2*(-1)} = \frac{1}{z + 2*(-1)}*\sqrt{(z + 2*\left(-1\right))^2} = \frac{|z + 2*\left(-1\right)|}{z + 2*(-1)} |
-10,513 | -\frac{24}{15 + r \cdot 6} = 3/3 \cdot (-\dfrac{1}{2 \cdot r + 5} \cdot 8) |
-6,342 | \frac{1}{(z + 6\cdot (-1))\cdot \left(z + 7\cdot \left(-1\right)\right)}\cdot 4 = \tfrac{4}{z^2 - z\cdot 13 + 42} |
-18,979 | \frac{2}{9} = \dfrac{A_s}{36\times \pi}\times 36\times \pi = A_s |
-19,998 | \frac91\cdot \frac{-9\cdot l + 3}{-l\cdot 9 + 3} = \frac{1}{3 - l\cdot 9}\cdot (-l\cdot 81 + 27) |
-23,275 | 24\% = -0.01\cdot 76 + 100\% |
-9,127 | -20 \cdot z + 20 \cdot z^2 = z \cdot z \cdot 2 \cdot 2 \cdot 5 - z \cdot 2 \cdot 2 \cdot 5 |
19,260 | \frac{84}{49 \cdot (-1) + 1} = -7/4 |
13,315 | \frac{1}{4 \times 3} = 1/12 |
8,663 | \frac{1}{2^{10}}*116 = \frac{1}{256}*29 \approx 0.11328125 |
-22,339 | a^2 - 4a - 5 = (a - 5)(a + 1) |
-7,744 | \left(4 + i\cdot 6\right)/\left(-2\right) = \frac{6}{-2}\cdot i + \frac{4}{-2} |
-18,646 | -\frac{1}{11}\cdot 28 = -28/11 |
-20,026 | \frac{1}{48 \cdot (-1) + 48 \cdot p} \cdot (56 \cdot p + 56 \cdot (-1)) = \dfrac{7}{6} \cdot \tfrac{8 \cdot p + 8 \cdot (-1)}{8 \cdot \left(-1\right) + p \cdot 8} |
19,713 | \sin\left(0\right) \cdot \cos(0) = 0 |
7,488 | \sum_{n=1}^\infty \dfrac{n}{n \cdot n} = \sum_{n=1}^\infty \frac{1}{n} |
15,127 | exp(j + z) = exp(j) exp(z) |
-2,514 | (1 + 4) \cdot \sqrt{10} = \sqrt{10} \cdot 5 |
-15,213 | \frac{1}{a^4 \cdot k^4} \cdot a^{15} = \frac{1}{k^4 \cdot a^4} \cdot a^5 \cdot (a^5)^2 |
34,277 | b_2\cdot b_1\cdot b_3 = b_1\cdot b_3\cdot b_2 |
3,997 | -Y^2 + A^2 = (A - Y) \cdot (A + Y) |
-19,392 | \frac{4}{3} \cdot \frac56 = \frac{1/3 \cdot 4}{6 \cdot \frac{1}{5}} |
-2,882 | -2\cdot \sqrt{6} + 3\cdot \sqrt{6} = -\sqrt{6}\cdot \sqrt{4} + \sqrt{6}\cdot \sqrt{9} |
29,125 | \cos^2{\psi_1} + \cos^2{\psi_2} + \cos^2{\psi_3} = 3/2 = \sin^2{\psi_1} + \sin^2{\psi_2} + \sin^2{\psi_3} |
3,574 | \left|{F \cdot A + x}\right| = \left|{x + A \cdot F}\right| |
-19,276 | \frac{9}{5} 1/2 = 1/\left(5*2/9\right) |
-16,003 | -6/10*6 + 9*\frac{1}{10}*4 = 0 |
19,817 | \left(-1\right)^{b\cdot d} = (-1)^{d\cdot b} |
32,229 | \frac{1}{2} (\cos(y\cdot 2) + 1) = \cos^2(y) |
-25,012 | \frac{1}{25}\cdot 33 = 1.32 |
1,030 | 36 \cdot (-1) + z^2 = (6 + z) \cdot (z + 6 \cdot (-1)) |
-2,414 | \sqrt{6} \cdot (2 + 3) = \sqrt{6} \cdot 5 |
-10,250 | -\dfrac{1}{100} \times 43 = -0.43 |
15,880 | x_e*x_d = x_d*x_e |
7,729 | 8 = \frac{4!}{1^1\cdot 1!\cdot 3^1\cdot 1!} |
21,028 | \sin{2 E} = \sin{E} \cos{E}*2 |
8,897 | n \lt 0 \Rightarrow |n| - n = |n|\times 2 |
16,816 | 1=n/n=1/n + ... + 1/n = (1/n)(1+...+1)\to 0 |
4,042 | \sqrt{(1/u)^2 + 1}\cdot u = \sqrt{((\frac{1}{u})^2 + 1)\cdot u^2} = \sqrt{1 + u^2} |
-5,460 | \dfrac{1}{l^2\cdot 2 + 98\cdot \left(-1\right)}\cdot (l\cdot 6 + 42\cdot \left(-1\right) - l + 7\cdot (-1) + 4\cdot (-1)) = \dfrac{53\cdot (-1) + 5\cdot l}{2\cdot l^2 + 98\cdot (-1)} |
17,876 | (2 \cdot a^2 + 1)^2 + \left(-1\right) = 4 \cdot a^4 + 4 \cdot a^2 = (2 \cdot a^2)^2 + (2 \cdot a)^2 |
10,287 | 1 = \frac{c}{c} \Rightarrow c = 1/(\frac{1}{c}) |
27,986 | 2 = \dfrac{1}{3 + 2*(-1)}*2 |
-3,318 | 3^{1 / 2} + 9^{\frac{1}{2}} \cdot 3^{\dfrac{1}{2}} = 3^{\dfrac{1}{2}} + 3^{1 / 2} \cdot 3 |
13,737 | 9y^2 + 36 (-1) = 3y \cdot y - 6^2 = (3y + 6) (3y + 6\left(-1\right)) = 3(y + 2) (3y + 6(-1)) = 9(y + 2) (y + 2(-1)) |
19,039 | \sin{x} = \sin{2 \cdot x} = \dots = \sin{100 \cdot x} |
21,807 | d_2^2\cdot d_1\cdot d_2^2 = \frac{1}{d_2\cdot d_1\cdot d_2} = d_1\cdot d_2\cdot d_1 |
6,859 | \left(0 + (-1)\right)^2 + (0 + 2 \times (-1))^2 + (1 + 2 \times (-1))^2 = 6 |
-9,252 | -3\cdot 2\cdot 2 - t\cdot 2\cdot 2\cdot 5 = -20\cdot t + 12\cdot (-1) |
12,460 | z^2*3 + 6*z + 1 = 2*(-1) + 3*(z + 1)^2 |
8,373 | x + 2 = k\cdot x\cdot 2 + 1\Longrightarrow (2\cdot k + (-1))\cdot x = 1 |
44,148 | \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x^1 + 1}{\mathrm{d}x^1 + 1} |
-16,546 | \sqrt{8} \cdot 9 = 9 \cdot \sqrt{4 \cdot 2} |
17,263 | -z^3 + x^3 = (x - z)\cdot (x^2 + x\cdot z + z^2) |
22,723 | (1 + k)^2 - k^2 = 1 + 2\cdot k |
27,481 | 1 + r^3 - r^2 + r^2 - r + r + (-1) = r^3 |
11,431 | \vartheta x = \vartheta x |
13,597 | \dfrac{48}{{8 \choose 3}}1 = 6/7 |
4,033 | (2^4)^2 + (2.2^{4.2})^6 + 2^{12} = (2^4)^2 + (2.2^{4.2})^6 + (2^6)^2 = (2^4 + 2^6)^2 |
30,106 | 1 - \frac{1}{2^4} = \left(1 - \dfrac{1}{2^2}\right)\cdot \left(\frac{1}{2^2} + 1\right) |
25,750 | k = \frac{1}{2}\cdot (k\cdot 2 + 0) |
28,682 | \lim_{x \to 0^+} \sin(\frac1x) = \lim_{x \to \infty} \sin\left(x\right) |
-7,792 | (-10 + i*20)/5 = i*20/5 - \frac{10}{5} |
7,845 | x \cdot x^{m + (-1)} \cdot G = x \cdot x^{m + (-1)} \cdot G = x^m \cdot G |
16,064 | x/s = \frac{x}{1} \cdot 1/s |
12,054 | -\cos(A + B) + \cos(A - B) = \sin(A)\cdot \sin(B)\cdot 2 |
25,116 | a^2 + 2\cdot a\cdot b + b \cdot b = \left(b + a\right)^2 |
25,460 | 3^m - 3^{m + (-1)} = 3^{m + (-1)}*\left(3 + (-1)\right) = 2*3^{m + (-1)} |
25,350 | -7/4 = 1/4 - 2 |
37,530 | (\sqrt{21} \cdot \sqrt{17})^2 = 21 \cdot 17 = (-1) \cdot 6 = 5 |
18,429 | 5 \cdot k + 5 = (1 + k) \cdot 5 |
-12,319 | 2^2 \cdot 3 = 12 |
463 | X^2 + (-1) = (X + (-1)) \cdot \left(X + 1\right) |
2,923 | 0 = 3K - 1 rightarrow K = \dfrac{1}{3} |
31,226 | 1 - (1 - p)\cdot (1 - c) = 1 - 1 - p - c + p\cdot c = p + c - c\cdot p |
-27,746 | \frac{\text{d}}{\text{d}x} (4 \cdot \tan{x}) = 4 \cdot \frac{\text{d}}{\text{d}x} \tan{x} = 4 \cdot \sec^2{x} |
7,039 | \cos(\pi/2 - a) = \sin a |
5,449 | s\cdot v_1 + s\cdot v_2 = (v_1 + v_2)\cdot s |
-2,054 | \frac{\pi}{4} + 7/12 \pi = 5/6 \pi |
16,138 | x^2/x^3 = 1/x |
19,288 | 1 + 2 + 3 + ... + 21 = \dfrac{21\cdot 22}{2} = 231 |
-8,061 | \frac{-2 + i \cdot 5}{-2 + 5 \cdot i} \cdot \frac{26 + 7 \cdot i}{-2 - 5 \cdot i} = \frac{26 + i \cdot 7}{-2 - 5 \cdot i} |
-8,302 | -4 = -\dfrac{1}{3} \cdot 12 |
-30,576 | 70 (-1) + 40 x = (7(-1) + 4x)*10 |
22,793 | xs + \left(-1\right) - x + s + 2(-1) = xs - x - s + 1 = (x + (-1)) \left(s + (-1)\right) |
-23,129 | -3/8 = \dfrac{3}{4} \cdot (-1/2) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.