id
int64
-30,985
55.9k
text
stringlengths
5
437k
5,634
\frac{1}{x^2} \times \left(i + \left(-1\right)\right) = 1/x \times ((-1) + i)/x
2,933
(X + 3)^3 = X^3 + 9X * X + 27 X + 27 = \left(X^2 + 5X + 7\right) \left(X + 4\right) + (-1)
-1,372
-\frac{1}{72} \cdot 18 = \frac{1}{72 \cdot 1/18} \cdot ((-18) \cdot \dfrac{1}{18}) = -\frac{1}{4}
-29,514
\frac{1}{(4\cdot (-1) + 5)!}\cdot 5! = 120
7,608
t^2\cdot p^2 = (p\cdot t)^2
9,883
1 = 1^{1/2} = ((-1)^2)^{1/2} = (\left(-1\right)^{1/2})^2 = i^2 = -1
22,817
4 + 4 + 3\times \left(-1\right) = 5
9,294
1 + q^4 - 2\cdot q \cdot q = (1 - q \cdot q) \cdot (1 - q \cdot q)
16,785
-(c + b) + d = d - b - c
15,985
2^l \cdot (2^{m - l} + (-1)) = -2^l + 2^m
-7,107
\frac{5}{66} = 5/11 \cdot \frac{1}{12} \cdot 2
-10,019
96\% = 96/100 = 0.96
5,869
-B\cdot C + C\cdot A = (-B + A)\cdot C
-20,021
\frac{1}{4*r + 4*(-1)}*(-9*r + 9) = \frac{(-1) + r}{(-1) + r}*(-9/4)
2,299
\frac{\sqrt{4 - 4*z + z^2}}{z + 2*(-1)} = \frac{1}{z + 2*(-1)}*\sqrt{(z + 2*\left(-1\right))^2} = \frac{|z + 2*\left(-1\right)|}{z + 2*(-1)}
-10,513
-\frac{24}{15 + r \cdot 6} = 3/3 \cdot (-\dfrac{1}{2 \cdot r + 5} \cdot 8)
-6,342
\frac{1}{(z + 6\cdot (-1))\cdot \left(z + 7\cdot \left(-1\right)\right)}\cdot 4 = \tfrac{4}{z^2 - z\cdot 13 + 42}
-18,979
\frac{2}{9} = \dfrac{A_s}{36\times \pi}\times 36\times \pi = A_s
-19,998
\frac91\cdot \frac{-9\cdot l + 3}{-l\cdot 9 + 3} = \frac{1}{3 - l\cdot 9}\cdot (-l\cdot 81 + 27)
-23,275
24\% = -0.01\cdot 76 + 100\%
-9,127
-20 \cdot z + 20 \cdot z^2 = z \cdot z \cdot 2 \cdot 2 \cdot 5 - z \cdot 2 \cdot 2 \cdot 5
19,260
\frac{84}{49 \cdot (-1) + 1} = -7/4
13,315
\frac{1}{4 \times 3} = 1/12
8,663
\frac{1}{2^{10}}*116 = \frac{1}{256}*29 \approx 0.11328125
-22,339
a^2 - 4a - 5 = (a - 5)(a + 1)
-7,744
\left(4 + i\cdot 6\right)/\left(-2\right) = \frac{6}{-2}\cdot i + \frac{4}{-2}
-18,646
-\frac{1}{11}\cdot 28 = -28/11
-20,026
\frac{1}{48 \cdot (-1) + 48 \cdot p} \cdot (56 \cdot p + 56 \cdot (-1)) = \dfrac{7}{6} \cdot \tfrac{8 \cdot p + 8 \cdot (-1)}{8 \cdot \left(-1\right) + p \cdot 8}
19,713
\sin\left(0\right) \cdot \cos(0) = 0
7,488
\sum_{n=1}^\infty \dfrac{n}{n \cdot n} = \sum_{n=1}^\infty \frac{1}{n}
15,127
exp(j + z) = exp(j) exp(z)
-2,514
(1 + 4) \cdot \sqrt{10} = \sqrt{10} \cdot 5
-15,213
\frac{1}{a^4 \cdot k^4} \cdot a^{15} = \frac{1}{k^4 \cdot a^4} \cdot a^5 \cdot (a^5)^2
34,277
b_2\cdot b_1\cdot b_3 = b_1\cdot b_3\cdot b_2
3,997
-Y^2 + A^2 = (A - Y) \cdot (A + Y)
-19,392
\frac{4}{3} \cdot \frac56 = \frac{1/3 \cdot 4}{6 \cdot \frac{1}{5}}
-2,882
-2\cdot \sqrt{6} + 3\cdot \sqrt{6} = -\sqrt{6}\cdot \sqrt{4} + \sqrt{6}\cdot \sqrt{9}
29,125
\cos^2{\psi_1} + \cos^2{\psi_2} + \cos^2{\psi_3} = 3/2 = \sin^2{\psi_1} + \sin^2{\psi_2} + \sin^2{\psi_3}
3,574
\left|{F \cdot A + x}\right| = \left|{x + A \cdot F}\right|
-19,276
\frac{9}{5} 1/2 = 1/\left(5*2/9\right)
-16,003
-6/10*6 + 9*\frac{1}{10}*4 = 0
19,817
\left(-1\right)^{b\cdot d} = (-1)^{d\cdot b}
32,229
\frac{1}{2} (\cos(y\cdot 2) + 1) = \cos^2(y)
-25,012
\frac{1}{25}\cdot 33 = 1.32
1,030
36 \cdot (-1) + z^2 = (6 + z) \cdot (z + 6 \cdot (-1))
-2,414
\sqrt{6} \cdot (2 + 3) = \sqrt{6} \cdot 5
-10,250
-\dfrac{1}{100} \times 43 = -0.43
15,880
x_e*x_d = x_d*x_e
7,729
8 = \frac{4!}{1^1\cdot 1!\cdot 3^1\cdot 1!}
21,028
\sin{2 E} = \sin{E} \cos{E}*2
8,897
n \lt 0 \Rightarrow |n| - n = |n|\times 2
16,816
1=n/n=1/n + ... + 1/n = (1/n)(1+...+1)\to 0
4,042
\sqrt{(1/u)^2 + 1}\cdot u = \sqrt{((\frac{1}{u})^2 + 1)\cdot u^2} = \sqrt{1 + u^2}
-5,460
\dfrac{1}{l^2\cdot 2 + 98\cdot \left(-1\right)}\cdot (l\cdot 6 + 42\cdot \left(-1\right) - l + 7\cdot (-1) + 4\cdot (-1)) = \dfrac{53\cdot (-1) + 5\cdot l}{2\cdot l^2 + 98\cdot (-1)}
17,876
(2 \cdot a^2 + 1)^2 + \left(-1\right) = 4 \cdot a^4 + 4 \cdot a^2 = (2 \cdot a^2)^2 + (2 \cdot a)^2
10,287
1 = \frac{c}{c} \Rightarrow c = 1/(\frac{1}{c})
27,986
2 = \dfrac{1}{3 + 2*(-1)}*2
-3,318
3^{1 / 2} + 9^{\frac{1}{2}} \cdot 3^{\dfrac{1}{2}} = 3^{\dfrac{1}{2}} + 3^{1 / 2} \cdot 3
13,737
9y^2 + 36 (-1) = 3y \cdot y - 6^2 = (3y + 6) (3y + 6\left(-1\right)) = 3(y + 2) (3y + 6(-1)) = 9(y + 2) (y + 2(-1))
19,039
\sin{x} = \sin{2 \cdot x} = \dots = \sin{100 \cdot x}
21,807
d_2^2\cdot d_1\cdot d_2^2 = \frac{1}{d_2\cdot d_1\cdot d_2} = d_1\cdot d_2\cdot d_1
6,859
\left(0 + (-1)\right)^2 + (0 + 2 \times (-1))^2 + (1 + 2 \times (-1))^2 = 6
-9,252
-3\cdot 2\cdot 2 - t\cdot 2\cdot 2\cdot 5 = -20\cdot t + 12\cdot (-1)
12,460
z^2*3 + 6*z + 1 = 2*(-1) + 3*(z + 1)^2
8,373
x + 2 = k\cdot x\cdot 2 + 1\Longrightarrow (2\cdot k + (-1))\cdot x = 1
44,148
\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x^1 + 1}{\mathrm{d}x^1 + 1}
-16,546
\sqrt{8} \cdot 9 = 9 \cdot \sqrt{4 \cdot 2}
17,263
-z^3 + x^3 = (x - z)\cdot (x^2 + x\cdot z + z^2)
22,723
(1 + k)^2 - k^2 = 1 + 2\cdot k
27,481
1 + r^3 - r^2 + r^2 - r + r + (-1) = r^3
11,431
\vartheta x = \vartheta x
13,597
\dfrac{48}{{8 \choose 3}}1 = 6/7
4,033
(2^4)^2 + (2.2^{4.2})^6 + 2^{12} = (2^4)^2 + (2.2^{4.2})^6 + (2^6)^2 = (2^4 + 2^6)^2
30,106
1 - \frac{1}{2^4} = \left(1 - \dfrac{1}{2^2}\right)\cdot \left(\frac{1}{2^2} + 1\right)
25,750
k = \frac{1}{2}\cdot (k\cdot 2 + 0)
28,682
\lim_{x \to 0^+} \sin(\frac1x) = \lim_{x \to \infty} \sin\left(x\right)
-7,792
(-10 + i*20)/5 = i*20/5 - \frac{10}{5}
7,845
x \cdot x^{m + (-1)} \cdot G = x \cdot x^{m + (-1)} \cdot G = x^m \cdot G
16,064
x/s = \frac{x}{1} \cdot 1/s
12,054
-\cos(A + B) + \cos(A - B) = \sin(A)\cdot \sin(B)\cdot 2
25,116
a^2 + 2\cdot a\cdot b + b \cdot b = \left(b + a\right)^2
25,460
3^m - 3^{m + (-1)} = 3^{m + (-1)}*\left(3 + (-1)\right) = 2*3^{m + (-1)}
25,350
-7/4 = 1/4 - 2
37,530
(\sqrt{21} \cdot \sqrt{17})^2 = 21 \cdot 17 = (-1) \cdot 6 = 5
18,429
5 \cdot k + 5 = (1 + k) \cdot 5
-12,319
2^2 \cdot 3 = 12
463
X^2 + (-1) = (X + (-1)) \cdot \left(X + 1\right)
2,923
0 = 3K - 1 rightarrow K = \dfrac{1}{3}
31,226
1 - (1 - p)\cdot (1 - c) = 1 - 1 - p - c + p\cdot c = p + c - c\cdot p
-27,746
\frac{\text{d}}{\text{d}x} (4 \cdot \tan{x}) = 4 \cdot \frac{\text{d}}{\text{d}x} \tan{x} = 4 \cdot \sec^2{x}
7,039
\cos(\pi/2 - a) = \sin a
5,449
s\cdot v_1 + s\cdot v_2 = (v_1 + v_2)\cdot s
-2,054
\frac{\pi}{4} + 7/12 \pi = 5/6 \pi
16,138
x^2/x^3 = 1/x
19,288
1 + 2 + 3 + ... + 21 = \dfrac{21\cdot 22}{2} = 231
-8,061
\frac{-2 + i \cdot 5}{-2 + 5 \cdot i} \cdot \frac{26 + 7 \cdot i}{-2 - 5 \cdot i} = \frac{26 + i \cdot 7}{-2 - 5 \cdot i}
-8,302
-4 = -\dfrac{1}{3} \cdot 12
-30,576
70 (-1) + 40 x = (7(-1) + 4x)*10
22,793
xs + \left(-1\right) - x + s + 2(-1) = xs - x - s + 1 = (x + (-1)) \left(s + (-1)\right)
-23,129
-3/8 = \dfrac{3}{4} \cdot (-1/2)