id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
6,499 | \frac{\pi}{6} \cdot 5 - \frac{\pi}{6} = 2 \cdot \pi/3 > 2 |
17,159 | n*\frac{1}{100}*60 = n*3/5 |
30,262 | 0.1*z = z*\frac{10}{100} |
25,371 | \pi*4 + 8*\pi + \pi*8 = 20*\pi |
-2,827 | 4\cdot \sqrt{5} + \sqrt{5}\cdot 5 = \sqrt{5}\cdot \sqrt{25} + \sqrt{16}\cdot \sqrt{5} |
-27,508 | 12\cdot a^2 = 2\cdot a\cdot a\cdot 3\cdot 2 |
31,153 | 1 = z_1 * z_1 - j^2 z_2^2 \implies (z_1 - jz_2) \left(z_1 + jz_2\right) = 1 |
-9,747 | 0.01 (-84) = -\frac{1}{100}84 = -\frac{21}{25} |
-20,055 | \frac{(-9)\cdot k}{(-9)\cdot k}\cdot (-4/9) = k\cdot 36/((-81)\cdot k) |
-3,067 | 16^{1/2}*6^{1/2} - 6^{1/2} = -6^{1/2} + 4*6^{1/2} |
33,229 | z^3 = z*z^2 = z*z = z^2 = z |
25,516 | x^4 - b \cdot x^3 + x \cdot b + (-1) = (x + 1) \cdot (x^2 - x \cdot b + 1) \cdot (x + (-1)) |
18,537 | \frac{1}{3}\cdot (f + 2) = 2\Longrightarrow f = 4 |
8,779 | m^4 \cdot 4 + y^4 = (y^2 - y \cdot m \cdot 2 + 2 \cdot m^2) \cdot (2 \cdot m^2 + y^2 + 2 \cdot m \cdot y) |
25,367 | f*h*g = \frac{1}{h}*f*g = f/h*g = \tfrac{f*g}{h} |
1,693 | 2(\frac12 \cdot 147 \cdot 2 + 1/2 \cdot 74 \cdot 3 + \frac{1}{2} \cdot 146 \cdot 2) = 808 |
7,399 | 56 = -3*62 + 242 |
18,470 | Z \cdot D \cdot D + Z \cdot D^2 = D \cdot D \cdot Z \cdot 2 |
18,632 | h^{x + n} = h^n*h^x |
-15,301 | \frac{x^4}{\tfrac{1}{x^{15}} \times \frac{1}{y^{10}}} = \frac{x^4}{\tfrac{1}{x^{15} \times y^{10}}} |
27,305 | 10836 = 2^2 \cdot 3 3 \cdot 7 \cdot 43 |
10,588 | \cos\left(-\beta + x\right) = \sin{x}*\sin{\beta} + \cos{\beta}*\cos{x} |
28,952 | \dfrac{1}{2}*45 = 22.5 |
8,804 | T^{n + m} = T^n \cdot T^m |
9,107 | \dfrac{1}{l + 4*\left(-1\right)}*7 + l + 4 = \tfrac{l^2 + 9*(-1)}{l + 4*(-1)} |
-29,209 | 2 \cdot \left(-1\right) + 0 \cdot \left(-1\right) + 0 \cdot 2 = -2 |
-16,055 | 7\cdot 6\cdot 5\cdot 4 = \dfrac{7!}{\left(7 + 4 (-1)\right)!} = 840 |
21,008 | Y\cdot Y^W = Y\cdot Y^W |
14,084 | \sin{x} = \sin((2n + 1) \pi - x) = \sin(x + 2n\pi) |
1,173 | 4 = b*y + 4*z\Longrightarrow y = -4/b*z + 4/b |
21,722 | 1/10 + \frac{1}{15} = \frac{1}{30}3 + 2/30 = \dfrac{5}{30} |
-5,535 | \frac{4}{(x + 2 \cdot (-1)) \cdot 3} = \frac{1}{3 \cdot x + 6 \cdot (-1)} \cdot 4 |
36,832 | \int_0^k 1 \cdot 2 \cdot x\,\mathrm{d}x = 0.5 = \int\limits_k^{12} x\,\mathrm{d}x |
30,906 | k = (-1) + 2 \cdot k \Rightarrow 1 = k |
-10,460 | 5/5 \cdot \frac{1}{k \cdot 10 + 10} \cdot (k \cdot 5 + 7 \cdot (-1)) = \frac{1}{k \cdot 50 + 50} \cdot (k \cdot 25 + 35 \cdot (-1)) |
-25,362 | d/dy \cot\left(y\right) = -\dfrac{1}{\sin^2(y)} |
15,132 | (3 + y \cdot 5) \cdot 2 - 5 \cdot (2 y + 1) = 1 \Rightarrow ( 3 + 5 y, 1 + 2 y) = 1 |
36,705 | 133=7\cdot 19 |
29,270 | 1 + 2\cdot (2^l + \left(-1\right)) = 2^{l + 1} + (-1) |
15,148 | x_0 - -x_0 = 2 \cdot x_0 |
21,752 | \frac{10}{20}\cdot 2 = 1 |
21,058 | \frac{x^2}{4\cdot x} = x/4 |
-2,688 | \sqrt{3}\cdot \left(3 + (-1) + 2\right) = \sqrt{3}\cdot 4 |
8,762 | \{E,B\} \implies \{E, B\} |
12,365 | (n + 1)*n! + n! = n!*\left(n + 1 + 1\right) = n!*\left(n + 2\right) |
-12,368 | \sqrt{28} = 2 \cdot \sqrt{7} |
21,470 | \frac{1}{49} = \frac{1}{2 \times (-1) + 100} \times 2 |
-20,640 | 3/3 \cdot \dfrac{1}{j \cdot 6 + 8} \cdot 2 = \dfrac{6}{24 + 18 \cdot j} |
24,244 | \dfrac{1}{d^\psi} = d^{-\psi} |
5,099 | B \cdot x \cdot g = B \cdot x \cdot g |
12,399 | z^4 + 5 \cdot z + 1 = \left(z^2 + 1\right) \cdot (z^2 + (-1)) + 5 \cdot z + 5 \cdot (-1) = \left(z + (-1)\right) \cdot (z^3 + z^2 + z + 6) |
-29,426 | \frac{36}{5} = 3*12/5 |
16,939 | \sin(Y)/\sin(Y/2) = 2 \cos(Y/2) |
-1,264 | -5/3*7/9 = \frac{1/9*7}{1/5 (-3)} |
-15,858 | 8 \cdot \frac{1}{10} \cdot 7 - 9 \cdot \frac{3}{10} = \frac{29}{10} |
-9,482 | 3(-1) + a*2*2*3 = 12 a + 3(-1) |
-18,691 | 0.2257 = \left(-1\right) \cdot 0.5 + 0.7257 |
17,893 | \sin\left(z\right)*2 = y \implies z = \operatorname{asin}(\frac{y}{2}) |
8,614 | y^4 + \left(-1\right) = \left(y^2 + (-1)\right)\times (y \times y + 1) |
682 | \frac{1}{z^6} = (1/z)^6 |
17,618 | (1 + x)^n\cdot (1 + x)^n = (1 + x)^{2\cdot n} |
1,880 | \int x * x * x*\sqrt{2^2 - x^2}\,dx = \int x * x^2*\sqrt{(x + 2)*(-x + 2)}\,dx |
-19,348 | \tfrac{1/6*5}{\dfrac{1}{9}*2} = \frac{9}{2}*5/6 |
9,407 | \tfrac{5}{6}\times 1/6 + \dfrac16 = \frac{11}{36} |
-2,142 | \frac{7}{6}*\pi + \pi/2 = \frac53*\pi |
30,725 | (-24) \cdot 9 + 3 \cdot \left(-1\right) = -219 |
1,711 | \frac{5}{5+4}\frac{6}{6+3} = \frac{30}{81} \approx 0.37 |
27,682 | \frac12 = \cos{\frac13\times \pi} |
-11,072 | \left(y + a\right)^2 = (y + a) (y + a) = y^2 + 2a y + a^2 |
28,164 | \binom{2}{1}*\binom{13}{1} = 26 |
-4,268 | \frac{d^4}{d^2 * d} = \frac{d*d*d*d}{d*d*d} = d |
19,077 | -7^3 + 3042 - 12 \cdot 12^2 = 971 |
8,659 | a + z = w \Rightarrow z = w - a |
30,702 | -d_1 + f + d_2 = -(d_1 - d_2) + f |
6,473 | \dfrac{1}{2} \cdot (\frac{1}{1 + l} \cdot (y + 1) + \frac{y}{l + 1}) = \dfrac{2 \cdot y + 1}{2 + 2 \cdot l} |
4,571 | x \cap ((B' \cap U) \cup (U \cap x)) = (U \cap x) \cup (U \cap \left(B' \cap x\right)) |
-6,102 | \frac{1}{2*\left(p + 4*(-1)\right)} = \tfrac{1}{p*2 + 8*\left(-1\right)} |
-15,999 | \dfrac{1}{10}*5 = 6*5/10 - 5*\frac{5}{10} |
27,145 | (2\sqrt{x}) * (\sqrt{x}*2)^2 = x^{\frac{3}{2}}*8 |
14,473 | z^2 \cdot 4 = \left(z \cdot 2\right) \cdot \left(z \cdot 2\right) |
-5,413 | 10^{(-2)*\left(-1\right) - 2}*1.4 = 10^0*1.4 |
13,141 | L + \epsilon \gt a rightarrow a - \epsilon \lt L |
6,800 | -c^2 + x \cdot c \cdot 2 = b \cdot b - a^2 \Rightarrow x = \tfrac{1}{c \cdot 2} \cdot \left(b^2 - a^2 + c^2\right) |
-18,872 | 6 = \frac{1}{2} \cdot 12 |
17,467 | -2 = 3 (-1) + 1^2 |
-8,016 | \frac13 \cdot (12 + 6 \cdot i) = \tfrac{6}{3} \cdot i + \frac{12}{3} |
2,186 | p = p^2 = (-p)^2 = -p |
27,464 | 2\times a\times b = b\times (a + a) |
8,409 | z\cdot (3939 - 6\cdot 606) = z\cdot 303 |
17,926 | r = -n^3 + \frac{s}{3*n} \Rightarrow 0 = n^6 + n^3*r - \tfrac{s^3}{27} |
37,539 | 330 + 15 \left(-1\right) = 315 |
43,912 | 771 = 3 \cdot 257 |
10,768 | b \gt c rightarrow c^2 = c*c \lt c*b < b*b = b^2 |
1,192 | \cos(-\beta + \alpha) = \cos{\beta}*\cos{\alpha} + \sin{\alpha}*\sin{\beta} |
3,592 | -z_1 + z_3 = 2 X \sin{Z} \cos{30} \Rightarrow \dfrac{1}{3^{1/2}} (-z_1 + z_3) = \sin{Z} X |
14,400 | \dfrac{1}{\sqrt{z^2 + 1}} = \cos(\operatorname{atan}\left(z\right)) |
6,514 | \frac13 = \dfrac{1/36}{1/36*3} 1 |
18,665 | (11 + \sqrt{10})*(11 - \sqrt{10}) = 3*37 |
33,630 | r^9 = \left(r \cdot r \cdot r\right)^3 = (r + 1)^3 = r^2 \cdot r + 1 = r + 2 = r + (-1) |
4,861 | g*C = g*C |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.