Datasets:

ArXiv:
DOI:
License:
ssynth_data / ssynth_data.py
evsizikova's picture
Upload ssynth_data.py with huggingface_hub
430d827 verified
# Copyright 2022 for msynth dataset
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Custom dataset-builder for ssynth dataset
'''
import os
import datasets
import glob
import re
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{kim2024ssynth,
title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
author={Kim, Andrea and Saharkhiz, Niloufar and Sizikova, Elena and Lago, Miguel, and Sahiner, Berkman and Delfino, Jana G., and Badano, Aldo},
journal={International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)},
volume={},
pages={},
year={2024}
}
"""
_DESCRIPTION = """\
S-SYNTH is an open-source, flexible skin simulation framework to rapidly generate synthetic skin models and images using digital rendering of an anatomically inspired multi-layer, multi-component skin and growing lesion model. It allows for generation of highly-detailed 3D skin models and digitally rendered synthetic images of diverse human skin tones, with full control of underlying parameters and the image formation process.
Curated by: Andrea Kim, Niloufar Saharkhiz, Elena Sizikova, Miguel Lago, Berkman Sahiner, Jana Delfino, Aldo Badano
License: Creative Commons 1.0 Universal License (CC0)
"""
_HOMEPAGE = "https://github.com/DIDSR/ssynth-release?tab=readme-ov-file"
_REPO = "https://huggingface.co/datasets/didsr/ssynth_data/resolve/main"
# Initialize an empty list to store the file paths
_CROPPED = True
_URLS = {
"synthetic_data": f"{_REPO}/data/synthetic_dataset/output_10k.zip",
"read_me": f"{_REPO}/README.md"
}
DATA_DIR = {"all_data": "output_10k"}
class ssynth_dataConfig(datasets.BuilderConfig):
"""ssynth dataset"""
def __init__(self, name, **kwargs):
super(ssynth_dataConfig, self).__init__(
version=datasets.Version("1.0.0"),
name=name,
description="ssynth_data",
**kwargs,
)
class ssynth_data(datasets.GeneratorBasedBuilder):
"""ssynth dataset."""
DEFAULT_WRITER_BATCH_SIZE = 256
BUILDER_CONFIGS = [
ssynth_dataConfig("output_10k"),
]
def _info(self):
if self.config.name == "output_10k":
# Define dataset features and keys
features = datasets.Features(
{
"Cropped": datasets.Features({
"image": datasets.Value("string"),
"mask": datasets.Value("string")
}),
"Uncropped": datasets.Features({
"image": datasets.Value("string"),
"mask": datasets.Value("string")
})
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.utils.download_manager.DownloadManager):
if self.config.name == "output_10k":
data_dir = dl_manager.download_and_extract(_URLS['synthetic_data'])
return [
datasets.SplitGenerator(
name="output_10k",
gen_kwargs={
"files": data_dir,
"name": "all_data",
},
),
]
def get_all_file_paths(self, root_directory):
file_paths = [] # List to store file paths
# Walk through the directory and its subdirectories using os.walk
for folder, _, files in os.walk(root_directory):
for file in files:
if file == "cropped_image.png":
# Get the full path of the file
file_path = os.path.join(folder, file)
file_paths.append(file_path)
return file_paths
def get_other_images(self, cropped_image_path, file_name):
other_image_paths = []
# Get the directory containing the cropped_image.png
directory = os.path.dirname(cropped_image_path)
# Walk through the directory to find other image files
for file in os.listdir(directory):
if file == file_name:
# Get the full path of the other image file
file_path = os.path.join(directory, file)
#other_image_paths.append(file_path)
return file_path
return None
def _generate_examples(self, files, name):
if self.config.name == "output_10k":
key = 0
data_paths = self.get_all_file_paths(os.path.join(files, DATA_DIR[name]))
cropped_images = []
uncropped_images = []
for path in data_paths:
res_dic = {}
cropped_image = path
cropped_mask = self.get_other_images(path,"cropped_mask.png")
image = self.get_other_images(path,"image.png")
mask = self.get_other_images(path,"mask.png")
cropped_data = {
"image": cropped_image,
"mask": cropped_mask
}
uncropped_data = {
"image": image,
"mask": mask
}
res_dic["Cropped"] = cropped_data
res_dic["Uncropped"] = uncropped_data
yield key, res_dic
key += 1