|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
Custom dataset-builder for ssynth dataset |
|
''' |
|
|
|
import os |
|
import datasets |
|
import glob |
|
import re |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@article{kim2024ssynth, |
|
title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses}, |
|
author={Kim, Andrea and Saharkhiz, Niloufar and Sizikova, Elena and Lago, Miguel, and Sahiner, Berkman and Delfino, Jana G., and Badano, Aldo}, |
|
journal={International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)}, |
|
volume={}, |
|
pages={}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
S-SYNTH is an open-source, flexible skin simulation framework to rapidly generate synthetic skin models and images using digital rendering of an anatomically inspired multi-layer, multi-component skin and growing lesion model. It allows for generation of highly-detailed 3D skin models and digitally rendered synthetic images of diverse human skin tones, with full control of underlying parameters and the image formation process. |
|
Curated by: Andrea Kim, Niloufar Saharkhiz, Elena Sizikova, Miguel Lago, Berkman Sahiner, Jana Delfino, Aldo Badano |
|
License: Creative Commons 1.0 Universal License (CC0) |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/DIDSR/ssynth-release?tab=readme-ov-file" |
|
|
|
_REPO = "https://huggingface.co/datasets/didsr/ssynth_data/resolve/main" |
|
|
|
|
|
_CROPPED = True |
|
|
|
_URLS = { |
|
"synthetic_data": f"{_REPO}/data/synthetic_dataset/output_10k.zip", |
|
"read_me": f"{_REPO}/README.md" |
|
} |
|
|
|
DATA_DIR = {"all_data": "output_10k"} |
|
|
|
class ssynth_dataConfig(datasets.BuilderConfig): |
|
"""ssynth dataset""" |
|
def __init__(self, name, **kwargs): |
|
super(ssynth_dataConfig, self).__init__( |
|
version=datasets.Version("1.0.0"), |
|
name=name, |
|
description="ssynth_data", |
|
**kwargs, |
|
) |
|
|
|
class ssynth_data(datasets.GeneratorBasedBuilder): |
|
"""ssynth dataset.""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 256 |
|
BUILDER_CONFIGS = [ |
|
ssynth_dataConfig("output_10k"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "output_10k": |
|
|
|
features = datasets.Features( |
|
{ |
|
"Cropped": datasets.Features({ |
|
"image": datasets.Value("string"), |
|
"mask": datasets.Value("string") |
|
}), |
|
"Uncropped": datasets.Features({ |
|
"image": datasets.Value("string"), |
|
"mask": datasets.Value("string") |
|
}) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.utils.download_manager.DownloadManager): |
|
|
|
if self.config.name == "output_10k": |
|
data_dir = dl_manager.download_and_extract(_URLS['synthetic_data']) |
|
return [ |
|
datasets.SplitGenerator( |
|
name="output_10k", |
|
gen_kwargs={ |
|
"files": data_dir, |
|
"name": "all_data", |
|
}, |
|
), |
|
] |
|
|
|
def get_all_file_paths(self, root_directory): |
|
file_paths = [] |
|
|
|
|
|
for folder, _, files in os.walk(root_directory): |
|
for file in files: |
|
if file == "cropped_image.png": |
|
|
|
file_path = os.path.join(folder, file) |
|
file_paths.append(file_path) |
|
return file_paths |
|
|
|
def get_other_images(self, cropped_image_path, file_name): |
|
other_image_paths = [] |
|
|
|
|
|
directory = os.path.dirname(cropped_image_path) |
|
|
|
|
|
for file in os.listdir(directory): |
|
if file == file_name: |
|
|
|
file_path = os.path.join(directory, file) |
|
|
|
return file_path |
|
return None |
|
|
|
|
|
def _generate_examples(self, files, name): |
|
if self.config.name == "output_10k": |
|
key = 0 |
|
data_paths = self.get_all_file_paths(os.path.join(files, DATA_DIR[name])) |
|
|
|
cropped_images = [] |
|
uncropped_images = [] |
|
for path in data_paths: |
|
res_dic = {} |
|
cropped_image = path |
|
cropped_mask = self.get_other_images(path,"cropped_mask.png") |
|
image = self.get_other_images(path,"image.png") |
|
mask = self.get_other_images(path,"mask.png") |
|
cropped_data = { |
|
"image": cropped_image, |
|
"mask": cropped_mask |
|
} |
|
uncropped_data = { |
|
"image": image, |
|
"mask": mask |
|
} |
|
res_dic["Cropped"] = cropped_data |
|
res_dic["Uncropped"] = uncropped_data |
|
|
|
yield key, res_dic |
|
key += 1 |
|
|
|
|
|
|