|
```py |
|
from PIL import Image |
|
import torch |
|
from muse import PipelineMuse, MaskGiTUViT |
|
from datasets import Dataset, Features |
|
from datasets import Image as ImageFeature |
|
from datasets import Value, load_dataset |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = PipelineMuse.from_pretrained( |
|
transformer_path="valhalla/research-run", |
|
text_encoder_path="openMUSE/clip-vit-large-patch14-text-enc", |
|
vae_path="openMUSE/vqgan-f16-8192-laion", |
|
).to(device) |
|
|
|
pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/research-run-finetuned-journeydb", revision="06bcd6ab6580a2ed3275ddfc17f463b8574457da", subfolder="ema_model").to(device) |
|
pipe.tokenizer.pad_token_id = 49407 |
|
|
|
if device == "cuda": |
|
pipe.transformer.enable_xformers_memory_efficient_attention() |
|
pipe.text_encoder.to(torch.float16) |
|
pipe.transformer.to(torch.float16) |
|
|
|
|
|
import PIL |
|
|
|
|
|
def main(): |
|
print("Loading dataset...") |
|
parti_prompts = load_dataset("nateraw/parti-prompts", split="train") |
|
|
|
print("Loading pipeline...") |
|
seed = 0 |
|
|
|
device = "cuda" |
|
torch.manual_seed(0) |
|
|
|
ckpt_id = "openMUSE/muse-512" |
|
|
|
scale = 10 |
|
|
|
print("Running inference...") |
|
main_dict = {} |
|
for i in range(len(parti_prompts)): |
|
sample = parti_prompts[i] |
|
prompt = sample["Prompt"] |
|
|
|
image = pipe( |
|
prompt, |
|
timesteps=16, |
|
negative_text=None, |
|
guidance_scale=scale, |
|
temperature=(2, 0), |
|
orig_size=(512, 512), |
|
crop_coords=(0, 0), |
|
aesthetic_score=6, |
|
use_fp16=device == "cuda", |
|
transformer_seq_len=1024, |
|
use_tqdm=False, |
|
)[0] |
|
|
|
image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS) |
|
img_path = f"/home/patrick/muse_images/muse_512_{i}.png" |
|
image.save(img_path) |
|
main_dict.update( |
|
{ |
|
prompt: { |
|
"img_path": img_path, |
|
"Category": sample["Category"], |
|
"Challenge": sample["Challenge"], |
|
"Note": sample["Note"], |
|
"model_name": ckpt_id, |
|
"seed": seed, |
|
} |
|
} |
|
) |
|
|
|
def generation_fn(): |
|
for prompt in main_dict: |
|
prompt_entry = main_dict[prompt] |
|
yield { |
|
"Prompt": prompt, |
|
"Category": prompt_entry["Category"], |
|
"Challenge": prompt_entry["Challenge"], |
|
"Note": prompt_entry["Note"], |
|
"images": {"path": prompt_entry["img_path"]}, |
|
"model_name": prompt_entry["model_name"], |
|
"seed": prompt_entry["seed"], |
|
} |
|
|
|
print("Preparing HF dataset...") |
|
ds = Dataset.from_generator( |
|
generation_fn, |
|
features=Features( |
|
Prompt=Value("string"), |
|
Category=Value("string"), |
|
Challenge=Value("string"), |
|
Note=Value("string"), |
|
images=ImageFeature(), |
|
model_name=Value("string"), |
|
seed=Value("int64"), |
|
), |
|
) |
|
ds_id = "diffusers-parti-prompts/muse512" |
|
ds.push_to_hub(ds_id) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |