|
--- |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
dataset_info: |
|
features: |
|
- name: utterance_ID |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: speaker |
|
dtype: string |
|
- name: emotion |
|
dtype: string |
|
- name: video_name |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1198989.1453851238 |
|
num_examples: 12529 |
|
- name: test |
|
num_bytes: 104309.85461487627 |
|
num_examples: 1090 |
|
download_size: 614184 |
|
dataset_size: 1303299.0 |
|
--- |
|
# Dataset Card for "SemEval_traindata_emotions" |
|
|
|
Как был получен |
|
|
|
```python |
|
from datasets import load_dataset |
|
import datasets |
|
from torchvision.io import read_video |
|
import json |
|
import torch |
|
import os |
|
from torch.utils.data import Dataset, DataLoader |
|
import tqdm |
|
|
|
dataset_path = "./SemEval-2024_Task3/training_data/Subtask_2_train.json" |
|
|
|
|
|
dataset = json.loads(open(dataset_path).read()) |
|
print(len(dataset)) |
|
|
|
all_conversations = [] |
|
|
|
|
|
for item in dataset: |
|
all_conversations.extend(item["conversation"]) |
|
print(len(all_conversations)) |
|
|
|
all_data = datasets.Dataset.from_list(all_conversations) |
|
all_data = all_data.train_test_split( |
|
test_size=0.08, |
|
seed=42, |
|
) |
|
|
|
all_data.push_to_hub( |
|
"dim/SemEval_training_data_emotions", |
|
token=open("./hf_token").read(), |
|
) |
|
``` |