modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
LilaBoualili/electra-pre-pair
2021-05-18T15:11:59.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
6
transformers
LilaBoualili/electra-sim-doc
2021-05-18T14:35:56.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
7
transformers
LilaBoualili/electra-sim-pair
2021-05-18T14:13:57.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
6
transformers
At its core it uses an ELECTRA-Base model (google/electra-base-discriminator) fine-tuned on the MS MARCO passage classification task using the Sim-Pair marking strategy that highlights exact term matches between the query and the passage via marker tokens (#). It can be loaded using the TF/AutoModelForSequenceClassification classes but it follows the same classification layer defined for BERT similarly to the TFElectraRelevanceHead in the Capreolus BERT-MaxP implementation. Refer to our [github repository](https://github.com/BOUALILILila/ExactMatchMarking) for a usage example for ad hoc ranking.
LilaBoualili/electra-vanilla
2021-05-18T14:14:35.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
10
transformers
At its core it uses an ELECTRA-Base model (google/electra-base-discriminator) fine-tuned on the MS MARCO passage classification task. It can be loaded using the TF/AutoModelForSequenceClassification classes but it follows the same classification layer defined for BERT similarly to the TFElectraRelevanceHead in the Capreolus BERT-MaxP implementation. Refer to our [github repository](https://github.com/BOUALILILila/ExactMatchMarking) for a usage example for ad hoc ranking.
Linganesan/pegasus_pretrained
2021-05-23T08:42:39.000Z
[]
[ ".gitattributes" ]
Linganesan
0
Lopsy/okay
2021-04-28T12:54:29.000Z
[]
[ ".gitattributes" ]
Lopsy
0
LorenzoDeMattei/GePpeTto
2021-05-21T10:53:18.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "it", "arxiv:2004.14253", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
LorenzoDeMattei
2,004
transformers
--- language: it --- # GePpeTto GPT2 Model 🇮🇹 Pretrained GPT2 117M model for Italian. You can find further details in the paper: Lorenzo De Mattei, Michele Cafagna, Felice Dell’Orletta, Malvina Nissim, Marco Guerini "GePpeTto Carves Italian into a Language Model", arXiv preprint. Pdf available at: https://arxiv.org/abs/2004.14253 ## Pretraining Corpus The pretraining set comprises two main sources. The first one is a dump of Italian Wikipedia (November 2019), consisting of 2.8GB of text. The second one is the ItWac corpus (Baroni et al., 2009), which amounts to 11GB of web texts. This collection provides a mix of standard and less standard Italian, on a rather wide chronological span, with older texts than the Wikipedia dump (the latter stretches only to the late 2000s). ## Pretraining details This model was trained using GPT2's Hugging Face implemenation on 4 NVIDIA Tesla T4 GPU for 620k steps. Training parameters: - GPT-2 small configuration - vocabulary size: 30k - Batch size: 32 - Block size: 100 - Adam Optimizer - Initial learning rate: 5e-5 - Warm up steps: 10k ## Perplexity scores | Domain | Perplexity | |---|---| | Wikipedia | 26.1052 | | ItWac | 30.3965 | | Legal | 37.2197 | | News | 45.3859 | | Social Media | 84.6408 | For further details, qualitative analysis and human evaluation check out: https://arxiv.org/abs/2004.14253 ## Load Pretrained Model You can use this model by installing Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import GPT2Tokenizer, GPT2Model model = GPT2Model.from_pretrained('LorenzoDeMattei/GePpeTto') tokenizer = GPT2Tokenizer.from_pretrained( 'LorenzoDeMattei/GePpeTto', ) ``` ## Example using GPT2LMHeadModel ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, GPT2Tokenizer tokenizer = AutoTokenizer.from_pretrained("LorenzoDeMattei/GePpeTto") model = AutoModelWithLMHead.from_pretrained("LorenzoDeMattei/GePpeTto") text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer) prompts = [ "Wikipedia Geppetto", "Maestro Ciliegia regala il pezzo di legno al suo amico Geppetto, il quale lo prende per fabbricarsi un burattino maraviglioso"] samples_outputs = text_generator( prompts, do_sample=True, max_length=50, top_k=50, top_p=0.95, num_return_sequences=3 ) for i, sample_outputs in enumerate(samples_outputs): print(100 * '-') print("Prompt:", prompts[i]) for sample_output in sample_outputs: print("Sample:", sample_output['generated_text']) print() ``` Output is, ``` ---------------------------------------------------------------------------------------------------- Prompt: Wikipedia Geppetto Sample: Wikipedia Geppetto rosso (film 1920) Geppetto rosso ("The Smokes in the Black") è un film muto del 1920 diretto da Henry H. Leonard. Il film fu prodotto dalla Selig Poly Sample: Wikipedia Geppetto Geppetto ("Geppetto" in piemontese) è un comune italiano di 978 abitanti della provincia di Cuneo in Piemonte. L'abitato, che si trova nel versante valtellinese, si sviluppa nella Sample: Wikipedia Geppetto di Natale (romanzo) Geppetto di Natale è un romanzo di Mario Caiano, pubblicato nel 2012. ---------------------------------------------------------------------------------------------------- Prompt: Maestro Ciliegia regala il pezzo di legno al suo amico Geppetto, il quale lo prende per fabbricarsi un burattino maraviglioso Sample: Maestro Ciliegia regala il pezzo di legno al suo amico Geppetto, il quale lo prende per fabbricarsi un burattino maraviglioso. Il burattino riesce a scappare. Dopo aver trovato un prezioso sacchetto si reca Sample: Maestro Ciliegia regala il pezzo di legno al suo amico Geppetto, il quale lo prende per fabbricarsi un burattino maraviglioso, e l'unico che lo possiede, ma, di fronte a tutte queste prove Sample: Maestro Ciliegia regala il pezzo di legno al suo amico Geppetto, il quale lo prende per fabbricarsi un burattino maraviglioso: - A voi gli occhi, le guance! A voi il mio pezzo! ``` ## Citation Please use the following bibtex entry: ``` @misc{mattei2020geppetto, title={GePpeTto Carves Italian into a Language Model}, author={Lorenzo De Mattei and Michele Cafagna and Felice Dell'Orletta and Malvina Nissim and Marco Guerini}, year={2020}, eprint={2004.14253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## References Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. 2009. The WaCky wide web: a collection of very large linguistically processed webcrawled corpora. Language resources and evaluation, 43(3):209–226.
LoudlySoft/scibert_scivocab_uncased_squad
2021-05-18T21:28:54.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
LoudlySoft
107
transformers
## AllenAI's <i>scibert_scivocab_uncased</i> fine-tuned on SQuAD 2.0 evaluated with F1 = 86.85 #### To load the model: ``` from transformers import BertTokenizerFast from transformers import BertForQuestionAnswering tokenizer = BertTokenizerFast.from_pretrained("LoudlySoft/scibert_scivocab_uncased_squad") model = BertForQuestionAnswering.from_pretrained("LoudlySoft/scibert_scivocab_uncased_squad") ```
Luca-pelicula-completa-ver-online-esp/luca-ver-online
2021-06-16T04:58:55.000Z
[]
[ ".gitattributes" ]
Luca-pelicula-completa-ver-online-esp
0
Luisa/chinese-electra-180g-small-discriminator
2021-05-06T09:18:41.000Z
[]
[ ".gitattributes" ]
Luisa
0
Lujia/backdoored_bert
2021-05-18T21:29:51.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Lujia
6
transformers
This model is created for research study which contains backdoor inside the model. Please use it for academic research, don't use it for business scenarios.
LukasStankevicius/t5-base-lithuanian-news-summaries-175
2021-05-10T10:33:52.000Z
[ "pytorch", "t5", "seq2seq", "lt", "arxiv:2105.03279", "transformers", "Lithuanian", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
LukasStankevicius
159
transformers
--- language: lt tags: - t5 - Lithuanian - summarization widget: - text: "Latvijos krepšinio legenda Valdis Valteris pirmadienį socialiniame tinkle pasidalino statistika, kurios viršūnėje yra Arvydas Sabonis. 1982 metais TSRS rinktinėje debiutavęs 222 cm ūgio vidurio puolėjas su raudona apranga sužaidė 52 rungtynes, per kurias rinko po 15,6 taško. Tai pats aukščiausias rezultatyvumo vidurkis tarp visų sovietų komandai atstovavusių žaidėjų, skaičiuojant tuos, kurie sužaidė ne mažiau nei 50 rungtynių. Antras šioje rikiuotėje kitas buvęs Kauno „Žalgirio“ krepšininkas Rimas Kurtinaitis. Jis debiutavo TSRS rinktinėje vėliau nei Sabas, – 1984 metais, bet irgi sužaidė 52 mačus. R.Kurtinaitis pelnė po 15 taškų. 25-ių rezultatyviausių žaidėjų sąrašu pasidalinęs latvis V.Valteris, pelnęs po 13,8 taško, yra trečias. Ketvirtas yra iš Kazachstano kilęs Valerijus Tichonenka, pelnęs po 13,7 taško per 79 rungtynes. Rezultatyviausią visų laikų TSRS rinktinės penketą uždaro Modestas Paulauskas. Lietuvos krepšinio legenda pelnė po 13,6 taško per 84 mačus. Dešimtuke taip pat yra Oleksandras Volkovas (po 13,5 taško), Sergejus Belovas (12,7), Anatolijus Myškinas (po 12,3), Vladimiras Tkačenka (11,7) ir Aleksandras Salnikovas (11,4). Dvyliktas šiame sąraše yra Valdemaras Chomičius, vidutiniškai rinkęs po 10 taškų, o keturioliktas dar vienas buvęs žalgirietis Sergejus Jovaiša (po 9,8 taško). Šarūno Marčiulionio rezultatyvumo vidurkis turėjo būti aukštesnis, bet jis sužaidė mažiau nei 50 rungtynių. Kaip žinia, Lietuvai išsilaisvinus ir atkūrus Nepriklausomybę, visi minėti mūsų šalies krepšininkai, išskyrus karjerą jau baigusį M.Paulauską, užsivilko žalią aprangą ir atstovavo savo tėvynei. A.Sabonis pagal rezultatyvumo vidurkį yra pirmas – jis Lietuvos rinktinei pelnė po 20 taškų. Antras pagal taškų vidurkį yra Artūras Karnišovas, rinkęs po 18,2 taško ir pelnęs iš viso daugiausiai taškų atstovaujant Lietuvos rinktinei (1453). Tarp žaidėjų, kurie sužaidė bent po 50 oficialių rungtynių Lietuvos rinktinėje, trečią vietą užima Ramūnas Šiškauskas (po 12,9), ketvirtąją Linas Kleiza (po 12,7 taško), o penktas – Saulius Štombergas (po 11,1 taško). Daugiausiai rungtynių Lietuvos rinktinėje sužaidęs ir daugiausiai olimpinių medalių (3) su ja laimėjęs Gintaras Einikis rinko po 9,6 taško, o pirmajame trejete pagal rungtynių skaičių ir pelnytus taškus esantis Šarūnas Jasikevičius pelnė po 9,9 taško." license: apache-2.0 --- This is *t5-base* transformer model trained on Lithuanian news summaries for 175 000 steps. It was created during the work [**Generating abstractive summaries of Lithuanian news articles using a transformer model**](https://arxiv.org/abs/2105.03279). ## Usage ```python from transformers import pipeline name= "LukasStankevicius/t5-base-lithuanian-news-summaries-175" my_pipeline = pipeline(task="text2text-generation", model=name, framework="pt") ``` Given the following article body from [15min](https://www.15min.lt/24sek/naujiena/lietuva/tarp-penkiu-rezultatyviausiu-tsrs-rinktines-visu-laiku-zaideju-trys-lietuviai-875-1380030): ``` text = """ Latvijos krepšinio legenda Valdis Valteris pirmadienį socialiniame tinkle pasidalino statistika, kurios viršūnėje yra Arvydas Sabonis. 1982 metais TSRS rinktinėje debiutavęs 222 cm ūgio vidurio puolėjas su raudona apranga sužaidė 52 rungtynes, per kurias rinko po 15,6 taško. Tai pats aukščiausias rezultatyvumo vidurkis tarp visų sovietų komandai atstovavusių žaidėjų, skaičiuojant tuos, kurie sužaidė ne mažiau nei 50 rungtynių. Antras šioje rikiuotėje kitas buvęs Kauno „Žalgirio“ krepšininkas Rimas Kurtinaitis. Jis debiutavo TSRS rinktinėje vėliau nei Sabas, – 1984 metais, bet irgi sužaidė 52 mačus. R.Kurtinaitis pelnė po 15 taškų. 25-ių rezultatyviausių žaidėjų sąrašu pasidalinęs latvis V.Valteris, pelnęs po 13,8 taško, yra trečias. Ketvirtas yra iš Kazachstano kilęs Valerijus Tichonenka, pelnęs po 13,7 taško per 79 rungtynes. Rezultatyviausią visų laikų TSRS rinktinės penketą uždaro Modestas Paulauskas. Lietuvos krepšinio legenda pelnė po 13,6 taško per 84 mačus. Dešimtuke taip pat yra Oleksandras Volkovas (po 13,5 taško), Sergejus Belovas (12,7), Anatolijus Myškinas (po 12,3), Vladimiras Tkačenka (11,7) ir Aleksandras Salnikovas (11,4). Dvyliktas šiame sąraše yra Valdemaras Chomičius, vidutiniškai rinkęs po 10 taškų, o keturioliktas dar vienas buvęs žalgirietis Sergejus Jovaiša (po 9,8 taško). Šarūno Marčiulionio rezultatyvumo vidurkis turėjo būti aukštesnis, bet jis sužaidė mažiau nei 50 rungtynių. Kaip žinia, Lietuvai išsilaisvinus ir atkūrus Nepriklausomybę, visi minėti mūsų šalies krepšininkai, išskyrus karjerą jau baigusį M.Paulauską, užsivilko žalią aprangą ir atstovavo savo tėvynei. A.Sabonis pagal rezultatyvumo vidurkį yra pirmas – jis Lietuvos rinktinei pelnė po 20 taškų. Antras pagal taškų vidurkį yra Artūras Karnišovas, rinkęs po 18,2 taško ir pelnęs iš viso daugiausiai taškų atstovaujant Lietuvos rinktinei (1453). Tarp žaidėjų, kurie sužaidė bent po 50 oficialių rungtynių Lietuvos rinktinėje, trečią vietą užima Ramūnas Šiškauskas (po 12,9), ketvirtąją Linas Kleiza (po 12,7 taško), o penktas – Saulius Štombergas (po 11,1 taško). Daugiausiai rungtynių Lietuvos rinktinėje sužaidęs ir daugiausiai olimpinių medalių (3) su ja laimėjęs Gintaras Einikis rinko po 9,6 taško, o pirmajame trejete pagal rungtynių skaičių ir pelnytus taškus esantis Šarūnas Jasikevičius pelnė po 9,9 taško. """ text = ' '.join(text.strip().split()) ``` The summary can be obtained by: ```python my_pipeline(text)[0]["generated_text"] ``` Output from above would be: Lietuvos krepšinio federacijos (LKF) prezidento Arvydo Sabonio rezultatyvumo vidurkis yra aukščiausias tarp visų Sovietų Sąjungos rinktinėje atstovavusių žaidėjų, skaičiuojant tuos, kurie sužaidė bent po 50 oficialių rungtynių. ### BibTeX entry and citation info ```bibtex @misc{stankevičius2021generating, title={Generating abstractive summaries of Lithuanian news articles using a transformer model}, author={Lukas Stankevičius and Mantas Lukoševičius}, year={2021}, eprint={2105.03279}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Luyu/bert-base-mdoc-bm25
2021-05-18T21:30:49.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:MS MARCO document ranking", "transformers", "text reranking", "license:apache license 2.0" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Luyu
108
transformers
--- language: - en tags: - text reranking license: Apache License 2.0 datasets: - MS MARCO document ranking --- # BERT Reranker for MS-MARCO Document Ranking ## Model description A text reranker trained for BM25 retriever on MS MARCO document dataset. ## Intended uses & limitations It is possible to work with other retrievers like but using aligned BM25 works the best. We used anserini toolkit's BM25 implementation and indexed with tuned parameters (k1=3.8, b=0.87) following [this instruction](https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-doc.md). #### How to use See our [project repo page](https://github.com/luyug/Reranker). ## Eval results MRR @10: 0.423 on Dev. ### BibTeX entry and citation info ```bibtex @inproceedings{gao2021lce, title={Rethink Training of BERT Rerankers in Multi-Stage Retrieval Pipeline}, author={Luyu Gao and Zhuyun Dai and Jamie Callan}, year={2021}, booktitle={The 43rd European Conference On Information Retrieval (ECIR)}, } ```
Luyu/bert-base-mdoc-hdct
2021-05-18T21:31:46.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:MS MARCO document ranking", "transformers", "text reranking", "license:apache license 2.0" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Luyu
36
transformers
--- language: - en tags: - text reranking license: Apache License 2.0 datasets: - MS MARCO document ranking --- # BERT Reranker for MS-MARCO Document Ranking ## Model description A text reranker trained for HDCT retriever on MS MARCO document dataset. ## Intended uses & limitations It is possible to work with other retrievers like BM25 but using aligned HDCT works the best. #### How to use See our [project repo page](https://github.com/luyug/Reranker). ## Eval results MRR @10: 0.434 on Dev. MRR @10: 0.382 on Eval. ### BibTeX entry and citation info ```bibtex @inproceedings{gao2021lce, title={Rethink Training of BERT Rerankers in Multi-Stage Retrieval Pipeline}, author={Luyu Gao and Zhuyun Dai and Jamie Callan}, year={2021}, booktitle={The 43rd European Conference On Information Retrieval (ECIR)}, } ```
LxvelyLala/Katie
2021-02-08T17:43:58.000Z
[]
[ ".gitattributes" ]
LxvelyLala
0
Lysa/subheading_generator_en
2021-06-13T17:24:28.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
Lysa
55
transformers
Lysa/subheading_generator_nl
2021-06-11T21:15:39.000Z
[ "pytorch", "mbart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
Lysa
39
transformers
Lysa/subheading_generator_nl.v.1.0
2021-06-13T22:45:34.000Z
[]
[ ".gitattributes" ]
Lysa
0
M-CLIP/M-BERT-Base-69
2021-05-18T21:33:14.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
M-CLIP
36
transformers
<br /> <p align="center"> <h1 align="center">M-BERT Base 69</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%2069">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('M-BERT-Base-40') embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?']) print(embeddings.shape) # Yields: torch.Size([3, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [BERT-base-multilingual](https://huggingface.co/bert-base-multilingual-cased) tuned to match the embedding space for [69 languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md), to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 4069languages used during fine-tuning can be found in [SupportedLanguages.md](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md). Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language. All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 69 languages.
M-CLIP/M-BERT-Base-ViT-B
2021-05-18T21:34:39.000Z
[ "pytorch", "tf", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
M-CLIP
463
transformers
<br /> <p align="center"> <h1 align="center">M-BERT Base ViT-B</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%20ViT-B">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('M-BERT-Base-ViT') embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?']) print(embeddings.shape) # Yields: torch.Size([3, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [BERT-base-multilingual](https://huggingface.co/bert-base-multilingual-cased) tuned to match the embedding space for [69 languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md), to the embedding space of the CLIP text encoder which accompanies the ViT-B/32 vision encoder. <br> A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 4069languages used during fine-tuning can be found in [SupportedLanguages.md](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md). Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language. All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 69 languages.
M-CLIP/M-BERT-Distil-40
2021-03-21T15:39:15.000Z
[ "pytorch", "distilbert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
M-CLIP
2,708
transformers
<br /> <p align="center"> <h1 align="center">M-BERT Distil 40</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('M-BERT-Distil-40') embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?']) print(embeddings.shape) # Yields: torch.Size([3, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [distilbert-base-multilingual](https://huggingface.co/distilbert-base-multilingual-cased) tuned to match the embedding space for [40 languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Distil%2040/Fine-Tune-Languages.md), to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 40 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md). Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language. All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages. ## Evaluation [These results can be viewed at Github](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040). <br> A non-rigorous qualitative evaluation shows that for the languages French, German, Spanish, Russian, Swedish and Greek it seemingly yields respectable results for most instances. The exception being that Greeks are apparently unable to recognize happy persons. <br> When testing on Kannada, a language which was included during pre-training but not fine-tuning, it performed close to random
M-CLIP/Swedish-2M
2021-05-18T21:35:44.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
M-CLIP
86
transformers
<br /> <p align="center"> <h1 align="center">Swe-CLIP 2M</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%202M">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('Swe-CLIP-500k') embeddings = model(['Älgen är skogens konung!', 'Alla isbjörnar är vänsterhänta']) print(embeddings.shape) # Yields: torch.Size([2, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> Training data pairs was generated by sampling 2 Million sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish. All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
M-CLIP/Swedish-500k
2021-05-18T21:36:48.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
M-CLIP
10
transformers
<br /> <p align="center"> <h1 align="center">Swe-CLIP 500k</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%20500k">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('Swe-CLIP-500k') embeddings = model(['Älgen är skogens konung!', 'Alla isbjörnar är vänsterhänta']) print(embeddings.shape) # Yields: torch.Size([2, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> Training data pairs was generated by sampling 500k sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish. All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
MaalK/DialoGPT-small-Petyr
2021-06-02T06:34:48.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
MaalK
3
transformers
Mads/wav2vec2-xlsr-large-53-kor-financial-engineering
2021-05-30T09:32:45.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "optimizer.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Mads
16
transformers
# WIP
Mads/xlsr-demo-2
2021-04-29T15:21:29.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Mads
6
transformers
Mads/xlsr-demo-eng
2021-05-06T08:59:50.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Mads
7
transformers
Mads/xlsr-demo
2021-04-29T05:07:07.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", ".gitignore", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Mads
8
transformers
MakarenkoMD/test
2021-02-18T09:44:09.000Z
[]
[ ".gitattributes" ]
MakarenkoMD
0
Makesh/adelectra-base
2021-06-16T20:17:59.000Z
[ "pytorch", "electra", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
Makesh
2
transformers
Makesh/adelectra-large
2021-06-16T21:11:16.000Z
[ "pytorch", "electra", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
Makesh
4
transformers
Makesh/adelectra-small
2021-06-16T20:08:45.000Z
[ "pytorch", "electra", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
Makesh
10
transformers
MalawiUniST/ISO6392.nya.ny
2021-04-07T14:30:00.000Z
[ "pytorch", "longformer", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
MalawiUniST
6
transformers
This model trained on nyanja dataset in Longformer
Maltehb/-l-ctra-danish-electra-small-cased-ner-dane
2021-02-20T12:12:24.000Z
[ "pytorch", "electra", "token-classification", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "transformers", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "license:mit" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Maltehb
4,626
transformers
--- language: "da" tags: - ælæctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW widget: - text: "Chili Jensen, som bor på Danmarksgade 12, køber chilifrugter fra Netto." metrics: - f1 --- # Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-cased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraCasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
Maltehb/-l-ctra-danish-electra-small-cased
2021-01-28T15:42:22.000Z
[ "pytorch", "electra", "pretraining", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "transformers", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Maltehb
247
transformers
--- language: "da" tags: - ælæctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW metrics: - f1 --- # Ælæctra - A Step Towards More Efficient Danish Natural Language Processing **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased") ``` ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane
2021-02-20T12:11:44.000Z
[ "pytorch", "electra", "token-classification", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "transformers", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "license:mit" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Maltehb
18
transformers
--- language: "da" tags: - ælæctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW widget: - text: "Chili Jensen, som bor på Danmarksgade 12, køber chilifrugter fra Netto." metrics: - f1 --- # Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
Maltehb/-l-ctra-danish-electra-small-uncased
2021-01-28T15:42:02.000Z
[ "pytorch", "electra", "pretraining", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "transformers", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Maltehb
587
transformers
--- language: "da" tags: - ælæctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW metrics: - f1 --- # Ælæctra - A Step Towards More Efficient Danish Natural Language Processing **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-cased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-cased") ``` ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-uncased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-uncased") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
Maltehb/danish-bert-botxo-ner-dane
2021-05-18T21:37:43.000Z
[ "pytorch", "jax", "bert", "token-classification", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danish OpenSubtitles", "transformers", "danish", "masked-lm", "botxo", "license:cc-by-4.0", "fill-mask" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Maltehb
965
transformers
--- language: da tags: - danish - bert - masked-lm - botxo license: cc-by-4.0 datasets: - common_crawl - wikipedia - dindebat.dk - hestenettet.dk - danish OpenSubtitles widget: - text: "Chili Jensen, som bor på Danmarksgade 12, køber chilifrugter fra Netto." --- # Danish BERT (version 2, uncased) by [BotXO.ai](https://www.botxo.ai/) finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. All credit goes to [BotXO.ai](https://www.botxo.ai/) who developed Danish BERT. For data and training details see their [GitHub repository](https://github.com/botxo/nordic_bert) or [this article](https://www.botxo.ai/en/blog/danish-bert-model/). It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1). Here is an example on how to load Danish BERT for token classification in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") ``` ### References Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20DanishBERTUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
Maltehb/danish-bert-botxo
2021-05-18T21:39:48.000Z
[ "pytorch", "jax", "bert", "pretraining", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danish OpenSubtitles", "transformers", "danish", "masked-lm", "botxo", "license:cc-by-4.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
Maltehb
9,239
transformers
--- language: da tags: - danish - bert - masked-lm - botxo license: cc-by-4.0 datasets: - common_crawl - wikipedia - dindebat.dk - hestenettet.dk - danish OpenSubtitles pipeline_tag: fill-mask widget: - text: "København er [MASK] i Danmark." --- # Danish BERT (version 2, uncased) by [BotXO.ai](https://www.botxo.ai/) All credit goes to [BotXO.ai](https://www.botxo.ai/) who developed Danish BERT. For data and training details see their [GitHub repository](https://github.com/botxo/nordic_bert) or [this article](https://www.botxo.ai/en/blog/danish-bert-model/). It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1). Here is an example on how to load Danish BERT in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo") model = AutoModelForPreTraining.from_pretrained("Maltehb/danish-bert-botxo") ```
Mamatha/agri-gpt2
2021-05-21T10:54:23.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
Mamatha
14
transformers
hello
Marc/pegasus_xsum_gigaword
2021-03-26T22:49:11.000Z
[ "pytorch", "pegasus", "seq2seq", "dataset:XSUM", "dataset:Gigaword", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "trainer_state.json", "training_args.bin" ]
Marc
15
transformers
--- language: - English - thumbnail: tags: - - - license: datasets: - XSUM - Gigaword metrics: - Rouge - --- # Pegasus XSUM Gigaword ## Model description Pegasus XSUM model finetuned to Gigaword Summarization task, significantly better performance than pegasus gigaword, but still doesn't match model paper performance. ## Intended uses & limitations Produces short summaries with the coherence of the XSUM Model #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination. ## Training data Initialized with pegasus-XSUM ## Training procedure Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters) ## Eval results Evaluated on Gigaword test set (from hugging face using the default parameters) run_summarization.py --model_name_or_path pegasus-xsum/checkpoint-11500/ --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate | Metric | Score | | ----------- | ----------- | | eval_rouge1 | 34.1958 | | eval_rouge2 | 15.4033 | | eval_rougeL | 31.4488 | run_summarization.py --model_name_or_path google/pegasus-gigaword --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate | Metric | Score | | ----------- | ----------- | | eval_rouge1 | 20.8111 | | eval_rouge2 | 8.766 | | eval_rougeL | 18.4431 | ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
Marco127/BertRepertoriDiscorsivi
2021-05-13T09:04:09.000Z
[]
[ ".gitattributes", "README.md" ]
Marco127
0
Margarita/ArmBERTa
2021-05-23T14:58:15.000Z
[ "pytorch", "roberta", "transformers" ]
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
Margarita
20
transformers
Margarita/ArmBERTa1
2021-05-23T14:22:21.000Z
[]
[ ".gitattributes" ]
Margarita
0
MarianaSahagun/testmodel
2021-03-26T17:51:55.000Z
[]
[ ".gitattributes" ]
MarianaSahagun
0
MarshallHo/albertZero-squad2-base-v2
2021-05-02T16:41:46.000Z
[ "arxiv:1909.11942", "arxiv:1810.04805", "arxiv:1806.03822", "arxiv:2001.09694" ]
[ ".gitattributes", "README.md", "albertZero-squad2-base-v2.bin" ]
MarshallHo
0
# albertZero albertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. Based on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning. ## Usage albertZero can be loaded like this: ```python tokenizer = AutoTokenizer.from_pretrained('MarshallHo/albertZero-squad2-base-v2') model = AutoModel.from_pretrained('MarshallHo/albertZero-squad2-base-v2') ``` or ```python from transformers import AlbertModel, AlbertTokenizer, AlbertForQuestionAnswering, AlbertPreTrainedModel mytokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForQuestionAnsweringAVPool.from_pretrained('albert-base-v2') model.load_state_dict(torch.load('albertZero-squad2-base-v2.bin')) ``` ## References The goal of [ALBERT](https://arxiv.org/abs/1909.11942) is to reduce the memory requirement of the groundbreaking language model [BERT](https://arxiv.org/abs/1810.04805), while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. The field of NLP has undergone major improvements in recent years. The replacement of recurrent architectures by attention-based models has allowed NLP tasks such as question-answering to approach human level performance. In order to push the limits further, the [SQuAD2.0](https://arxiv.org/abs/1806.03822) dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset. At the time of writing, near the top of the [SQuAD2.0 leaderboard](https://rajpurkar.github.io/SQuAD-explorer/) is Shanghai Jiao Tong University’s [Retro-Reader](http://arxiv.org/abs/2001.09694). We have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head. ## Acknowledgments Thanks to the generosity of the team at Hugging Face and all the groups referenced above !
Martian/Neo-GPT-Title-Generation-Electric-Car
2021-05-23T08:56:08.000Z
[ "pytorch", "gpt_neo", "causal-lm", "en", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md", ".ipynb_checkpoints/added_tokens-checkpoint.json", ".ipynb_checkpoints/config-checkpoint.json", ".ipynb_checkpoints/merges-checkpoint.txt", ".ipynb_checkpoints/tokenizer_config-checkpoint.json", ".ipynb_checkpoints/vocab-checkpoint.json" ]
Martian
120
transformers
--- language: eo widget: - text: "Tesla range" - text: "Nissan Leaf is" - text: "Tesla for sale" ---
Marxav/wav2vec2-large-xlsr-53-breton
2021-04-01T08:31:24.000Z
[ "pytorch", "wav2vec2", "br", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Marxav
27
transformers
--- language: br datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Breton by Marxav results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice br type: common_voice args: br metrics: - name: Test WER type: wer value: 43.43 --- # wav2vec2-large-xlsr-53-breton The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor lang = "br" test_dataset = load_dataset("common_voice", lang, split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton") model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = re.sub("ʼ", "'", batch["sentence"]) batch["sentence"] = re.sub("’", "'", batch["sentence"]) batch["sentence"] = re.sub('‘', "'", batch["sentence"]) return batch nb_samples = 2 test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:nb_samples], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:nb_samples]) ``` The above code leads to the following prediction for the first two samples: * Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile'] * Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.'] The model can be evaluated as follows on the {language} test data of Common Voice. ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor lang = 'br' test_dataset = load_dataset("common_voice", lang, split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton') model = Wav2Vec2ForCTC.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton') model.to("cuda") chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = re.sub("ʼ", "'", batch["sentence"]) batch["sentence"] = re.sub("’", "'", batch["sentence"]) batch["sentence"] = re.sub('‘', "'", batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(remove_special_characters) test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 43.43% ## Training The Common Voice `train`, `validation` datasets were used for training.
MaryKKeller/model_name
2021-03-20T12:38:13.000Z
[]
[ ".gitattributes", ".idea/.gitignore", ".idea/model_name.iml", ".idea/modules.xml", ".idea/vcs.xml", ".idea/inspectionProfiles/Project_Default.xml", ".idea/inspectionProfiles/profiles_settings.xml" ]
MaryKKeller
0
Math/Learning
2021-02-08T12:18:52.000Z
[]
[ ".gitattributes" ]
Math
0
Matthieu/paraphrase-multilingual-MiniLM-L12-v2-custom
2021-06-09T14:05:17.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "unigram.json" ]
Matthieu
185
sentence-transformers
--- tags: - feature-extraction - sentence-transformers --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: RobertaModel (1) Pooling mean
Matthieu/stsb-xlm-r-multilingual-custom
2021-06-03T06:44:53.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
Matthieu
141
sentence-transformers
--- tags: - feature-extraction - sentence-transformers --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: RobertaModel (1) Pooling mean
Matthieu/stsb-xlm-r-multilingual
2021-05-27T13:10:24.000Z
[ "pytorch", "xlm-roberta", "transformers", "feature-extraction" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
Matthieu
39
transformers
--- tags: - feature-extraction --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: RobertaModel (1) Pooling mean
Max-Harper/test-zero-shot
2020-12-18T22:46:46.000Z
[]
[ ".gitattributes" ]
Max-Harper
0
Maxinstellar/outputs
2021-05-18T21:40:57.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
Maxinstellar
25
transformers
Maya/essai1
2021-04-10T16:32:44.000Z
[ "pytorch", "marian", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "source.spm", "special_tokens_map.json", "target.spm", "tokenizer_config.json", "vocab.json" ]
Maya
8
transformers
hello
Mayukh/vision
2021-03-12T07:47:21.000Z
[]
[ ".gitattributes" ]
Mayukh
0
McKenzie/bert-base-uncased
2021-06-15T13:37:50.000Z
[]
[ ".gitattributes" ]
McKenzie
0
MehdiHosseiniMoghadam/m
2021-04-06T21:17:20.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
MehdiHosseiniMoghadam
7
transformers
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech
2021-03-28T10:48:08.000Z
[ "pytorch", "wav2vec2", "cs", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
MehdiHosseiniMoghadam
8
transformers
--- language: cs datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-Czech by Mehdi Hosseini Moghadam results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice cs type: common_voice args: cs metrics: - name: Test WER type: wer value: 27.047806 --- # wav2vec2-large-xlsr-53-Czech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 27.047806 % ## Training The Common Voice `train`, `validation` datasets were used for training.
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch
2021-03-25T07:30:28.000Z
[ "pytorch", "wav2vec2", "nl", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "optimizer.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
MehdiHosseiniMoghadam
6
transformers
--- language: nl datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-Dutch by Mehdi Hosseini Moghadam results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice nl type: common_voice args: nl metrics: - name: Test WER type: wer value: 26.494162 --- # wav2vec2-large-xlsr-53-Dutch Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Dutch using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "nl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dutch test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "nl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 26.494162 % ## Training The Common Voice `train`, `validation` datasets were used for training.
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French
2021-03-28T19:19:15.000Z
[ "pytorch", "wav2vec2", "fr", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
MehdiHosseiniMoghadam
18
transformers
--- language: fr datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-French by Mehdi Hosseini Moghadam results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 34.856015 --- # wav2vec2-large-xlsr-53-French Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in French using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the French test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fr", split="test[:10%]") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 34.856015 % ## Training 10% of the Common Voice `train`, `validation` datasets were used for training. ## Testing 10% of the Common Voice `Test` dataset were used for training.
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian
2021-03-24T13:32:54.000Z
[ "pytorch", "wav2vec2", "ka", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "optimizer.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
MehdiHosseiniMoghadam
20
transformers
--- language: ka datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-Georgian by Mehdi Hosseini Moghadam results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ka type: common_voice args: ka metrics: - name: Test WER type: wer value: 60.504024 --- # wav2vec2-large-xlsr-53-Georgian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ka", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Georgian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ka", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 60.504024 % ## Training The Common Voice `train`, `validation` datasets were used for training.
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German
2021-03-28T16:25:45.000Z
[ "pytorch", "wav2vec2", "de", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
MehdiHosseiniMoghadam
6
transformers
--- language: de datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-German by Mehdi Hosseini Moghadam results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 25.284593 --- # wav2vec2-large-xlsr-53-German Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in German using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "de", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "de", split="test[:15%]") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.284593 % ## Training 10% of the Common Voice `train`, `validation` datasets were used for training. ## Testing 15% of the Common Voice `Test` dataset were used for training.
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish
2021-03-22T08:39:32.000Z
[ "pytorch", "wav2vec2", "sv-SE", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
MehdiHosseiniMoghadam
9
transformers
--- language: sv-SE datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-Swedish by Mehdi Hosseini Moghadam results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sv-SE type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 41.388337 --- # wav2vec2-large-xlsr-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 41.388337 % ## Training The Common Voice `train`, `validation` datasets were used for training.
Meli/GPT2-Prompt
2021-05-21T10:55:36.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "text-generation", "pipeline_tag:text-generation" ]
text-generation
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Meli
129
transformers
--- language: - en tags: - gpt2 - text-generation pipeline_tag: text-generation widget: - text: "A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt]" - text: "A kid doodling in a math class accidentally creates the world's first functional magic circle in centuries. [endprompt]" --- # GPT-2 Story Generator ## Model description Generate a short story from an input prompt. Put the vocab ` [endprompt]` after your input. Example of an input: ``` A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt] ``` #### Limitations and bias The data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic. ## Training data The data was collected from scraping reddit.
Merlinji/esperantoCL
2021-03-14T23:42:11.000Z
[]
[ ".gitattributes" ]
Merlinji
0
MiBo/SABERT
2021-06-09T21:44:06.000Z
[ "tf", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "tf_model.h5" ]
MiBo
7
transformers
MiBo/SAGPT2
2021-06-14T22:56:57.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
MiBo
7
transformers
Michau/t5-base-en-generate-headline
2020-12-11T21:29:21.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
Michau
1,835
transformers
## About the model The model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article. Sample code with a WikiNews article: ```python import torch from transformers import T5ForConditionalGeneration,T5Tokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline") tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline") model = model.to(device) article = ''' Very early yesterday morning, the United States President Donald Trump reported he and his wife First Lady Melania Trump tested positive for COVID-19. Officials said the Trumps' 14-year-old son Barron tested negative as did First Family and Senior Advisors Jared Kushner and Ivanka Trump. Trump took to social media, posting at 12:54 am local time (0454 UTC) on Twitter, "Tonight, [Melania] and I tested positive for COVID-19. We will begin our quarantine and recovery process immediately. We will get through this TOGETHER!" Yesterday afternoon Marine One landed on the White House's South Lawn flying Trump to Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland. Reports said both were showing "mild symptoms". Senior administration officials were tested as people were informed of the positive test. Senior advisor Hope Hicks had tested positive on Thursday. Presidential physician Sean Conley issued a statement saying Trump has been given zinc, vitamin D, Pepcid and a daily Aspirin. Conley also gave a single dose of the experimental polyclonal antibodies drug from Regeneron Pharmaceuticals. According to official statements, Trump, now operating from the WRNMMC, is to continue performing his duties as president during a 14-day quarantine. In the event of Trump becoming incapacitated, Vice President Mike Pence could take over the duties of president via the 25th Amendment of the US Constitution. The Pence family all tested negative as of yesterday and there were no changes regarding Pence's campaign events. ''' text = "headline: " + article max_len = 256 encoding = tokenizer.encode_plus(text, return_tensors = "pt") input_ids = encoding["input_ids"].to(device) attention_masks = encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids = input_ids, attention_mask = attention_masks, max_length = 64, num_beams = 3, early_stopping = True, ) result = tokenizer.decode(beam_outputs[0]) print(result) ``` Result: ```Trump and First Lady Melania Test Positive for COVID-19```
Mihneo/romanian_bert_news
2021-05-18T20:33:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
Mihneo
16
transformers
MilaBromm/TNGMain
2021-05-21T10:57:16.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
MilaBromm
6
transformers
MilaNLProc/feel-it-italian-emotion
2021-03-19T09:21:29.000Z
[ "pytorch", "tf", "camembert", "text-classification", "it", "transformers", "license:mit", "sentiment", "emotion", "Italian" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin" ]
MilaNLProc
1,677
transformers
--- language: it license: mit tags: - sentiment - emotion - Italian --- # FEEL-IT: Emotion and Sentiment Classification for the Italian Language ## FEEL-IT Python Package You can find the package that uses this model for emotion and sentiment classification **[here](https://github.com/MilaNLProc/feel-it)** it is meant to be a very simple interface over HuggingFace models. ## Abstract Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: **anger, fear, joy, sadness**. By collapsing them, we can also do **sentiment analysis**. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results. We release an [open-source Python library](https://github.com/MilaNLProc/feel-it), so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text. | Model | Download | | ------ | -------------------------| | `feel-it-italian-sentiment` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) | | `feel-it-italian-emotion` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-emotion) | ## Model The *feel-it-italian-emotion* model performs **emotion classification (joy, fear, anger, sadness)** on Italian. We fine-tuned the [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora. ## Data Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (preprint available soon). ## Performance We evaluate our performance using [MultiEmotions-It](http://ceur-ws.org/Vol-2769/paper_08.pdf). This dataset differs from FEEL-IT both in terms of topic variety and considered social media (i.e., YouTube and Facebook). We considered only the subset of emotions present in FEEL-IT. To give a point of reference, we also show the Most Frequent Class (MFC) baseline results. The results show that training on FEEL-IT brings stable performance even on datasets from different contexts. | Training Dataset | Macro-F1 | Accuracy | ------ | ------ |------ | | MFC | 0.20 | 0.64 | | FEEL-IT | **0.57** | **0.73** | ## Usage ```python import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-emotion") model = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-emotion") sentence = 'Oggi sono proprio contento!' inputs = tokenizer(sentence, return_tensors="pt") # Call the model and get the logits labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(**inputs, labels=labels) loss, logits = outputs[:2] logits = logits.squeeze(0) # Extract probabilities proba = torch.nn.functional.softmax(logits, dim=0) proba = np.array(proba.detach().numpy()) # Obtain emotion probabilities (sorted) label_names = ['anger', 'fear', 'joy', 'sadness'] ranking = np.argsort(proba) ranking = ranking[::-1] for i in range(proba.shape[0]): l = label_names[ranking[i]] s = proba[ranking[i]] print(f"{l} {np.round(float(s), 4)}") ``` ## Citation Please use the following bibtex entry if you use this model in your project: ``` @inproceedings{bianchi2021feel, title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}}, author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk", booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis", year = "2021", publisher = "Association for Computational Linguistics", } ```
MilaNLProc/feel-it-italian-sentiment
2021-03-19T09:20:45.000Z
[ "pytorch", "tf", "camembert", "text-classification", "it", "transformers", "license:mit", "sentiment", "Italian" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin" ]
MilaNLProc
2,047
transformers
--- language: it license: mit tags: - sentiment - Italian --- # FEEL-IT: Emotion and Sentiment Classification for the Italian Language ## FEEL-IT Python Package You can find the package that uses this model for emotion and sentiment classification **[here](https://github.com/MilaNLProc/feel-it)** it is meant to be a very simple interface over HuggingFace models. ## Abstract Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: **anger, fear, joy, sadness**. By collapsing them, we can also do **sentiment analysis**. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results. We release an [open-source Python library](https://github.com/MilaNLProc/feel-it), so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text. | Model | Download | | ------ | -------------------------| | `feel-it-italian-sentiment` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) | | `feel-it-italian-emotion` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-emotion) | ## Model The *feel-it-italian-sentiment* model performs **sentiment analysis** on Italian. We fine-tuned the [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora. ## Data Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (preprint available soon). ## Performance We evaluate our performance using [SENTIPOLC16 Evalita](http://www.di.unito.it/~tutreeb/sentipolc-evalita16/). We collapsed the FEEL-IT classes into 2 by mapping joy to the *positive* class and anger, fear and sadness into the *negative* class. We compare three different experimental configurations training on FEEL-IT, SENTIPOLC16, or both by testing on the SENTIPOLC16 test set. The results show that training on FEEL-IT can provide better results on the SENTIPOLC16 test set than those that can be obtained with the SENTIPOLC16 training set. | Training Dataset | Macro-F1 | Accuracy | ------ | ------ |------ | | SENTIPOLC16 | 0.80 | 0.81 | | FEEL-IT | **0.81** | **0.84** | | FEEL-IT+SentiPolc | 0.81 | 0.82 ## Usage ```python import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-sentiment") model = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-sentiment") sentence = 'Oggi sono proprio contento!' inputs = tokenizer(sentence, return_tensors="pt") # Call the model and get the logits labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(**inputs, labels=labels) loss, logits = outputs[:2] logits = logits.squeeze(0) # Extract probabilities proba = torch.nn.functional.softmax(logits, dim=0) # Unpack the tensor to obtain negative and positive probabilities negative, positive = proba print(f"Probabilities: Negative {np.round(negative.item(),4)} - Positive {np.round(positive.item(),4)}") ``` ## Citation Please use the following bibtex entry if you use this model in your project: ``` @inproceedings{bianchi2021feel, title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}}, author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk", booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis", year = "2021", publisher = "Association for Computational Linguistics", } ```
Milian/bert_finetuning_test
2021-05-18T21:41:58.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
Milian
21
transformers
MilkyLatte/q-g-model
2020-08-22T21:45:45.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
MilkyLatte
9
transformers
Mindjacker/DialoGPT
2021-06-17T11:33:31.000Z
[]
[ ".gitattributes" ]
Mindjacker
0
MoaazZaki/machathonmodel
2021-06-03T16:26:46.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
MoaazZaki
14
transformers
MoaazZaki/macmodel
2021-06-03T16:17:31.000Z
[]
[ ".gitattributes", "macmodel" ]
MoaazZaki
0
MohamedHesham/bart_base_subset_cnn
2021-06-13T21:42:12.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
MohamedHesham
0
transformers
MohamedHesham/bart_large_subset_cnn
2021-06-12T14:29:52.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
MohamedHesham
6
transformers
MohamedZaitoon/T5-CNN
2021-06-12T14:56:25.000Z
[ "pytorch", "dataset:CNN/Daily-mail", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
MohamedZaitoon
26
--- tags: - summarization datasets: - CNN/Daily-mail metrics: - ROUGE ---
MohamedZaitoon/bart-fine-tune
2021-06-13T17:27:59.000Z
[ "pytorch", "jax", "bart", "seq2seq", "dataset:CNN/Daily-mail", "transformers", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
MohamedZaitoon
20
transformers
--- tags: - summarization datasets: - CNN/Daily-mail metrics: - ROUGE ---
MoritzLaurer/covid-policy-roberta-21
2021-05-20T12:11:07.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
MoritzLaurer
9
transformers
--- language: - en tags: - text-classification metrics: - accuracy (balanced) - F1 (weighted) widget: - text: "All non-essential work activity will stop in Spain from tomorrow until 9 April but there is some confusion as to which jobs can continue under the new lockdown restrictions" --- # Covid-Policy-RoBERTa-21 This model is currently in development at the Centre for European Policy Studies (CEPS). The model is not yet recommended for use. A more detailed description will follow. If you are interested in using deep learning to identify 20 different types policy measures against COVID-19 in text (NPIs, "non-pharmaceutical interventions") don't hesitate to [contact me](https://www.ceps.eu/ceps-staff/moritz-laurer/).
MoritzLaurer/policy-distilbert-7d
2021-01-04T20:22:18.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
MoritzLaurer
477
transformers
--- language: - en tags: - text-classification metrics: - accuracy (balanced) - F1 (weighted) widget: - text: "70-85% of the population needs to get vaccinated against the novel coronavirus to achieve herd immunity." --- # Policy-DistilBERT-7d ## Model description This model was trained on 129.669 manually annotated sentences to classify text into one of seven political categories: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups'. ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "MoritzLaurer/policy-distilbert-7d" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text = "The new variant first detected in southern England in September is blamed for sharp rises in levels of positive tests in recent weeks in London, south-east England and the east of England" input = tokenizer(text, truncation=True, return_tensors="pt") output = model(input["input_ids"]) # the output corresponds to the following labels: # 0: external relations, 1: freedom and democracy, 2: political system, 3: economy, 4: welfare and quality of life, 5: fabric of society, 6: social groups # output to dictionary prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["external relations", "freedom and democracy", "political system", "economy", "welfare and quality of life", "fabric of society", "social groups"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) #{'external relations': 0.0, 'freedom and democracy': 0.0, 'political system': 0.9, 'economy': 0.4, # 'welfare and quality of life': 98.3, 'fabric of society': 0.3, 'social groups': 0.0} ``` ### Training data Policy-DistilBERT-7d was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2020a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 129.669 sentences from 164 political manifestos from 55 political parties in 8 English-speaking countries (Australia, Canada, Ireland, Israel, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2019. The Manifesto Project mannually annotates individual sentences from political party manifestos in 7 main political domains: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups' - see the [codebook](https://manifesto-project.wzb.eu/down/data/2020b/codebooks/codebook_MPDataset_MPDS2020b.pdf) for the exact definitions of each domain. ### Training procedure `distilbert-base-uncased` was trained using the Hugging Face trainer with the following hyperparameters. The hyperparameters were determined using a hyperparameter search on a 15% validation set. ``` training_args = TrainingArguments( num_train_epochs=5, # total number of training epochs learning_rate=4e-05, per_device_train_batch_size=4, # batch size per device during training per_device_eval_batch_size=4, # batch size for evaluation warmup_steps=500, # number of warmup steps for learning rate scheduler weight_decay=0.02, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using 15% of the sentences (85-15 train-test split). accuracy (balanced) | F1 (weighted) | precision | recall | accuracy (not balanced) -------|---------|----------|---------|---------- 0.745 | 0.773 | 0.772 | 0.771 | 0.771 Please note that the label distribution in the dataset is imbalanced: ``` Welfare and Quality of Life 0.327225 Economy 0.259191 Fabric of Society 0.111800 Political System 0.095081 Social Groups 0.094371 External Relations 0.063724 Freedom and Democracy 0.048608 ``` [Balanced accuracy](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html) and [weighted F1](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html) were therefore used to evaluate model performance. ## Limitations and bias The model was trained on sentences in political manifestos from parties in the 8 countries mentioned above between 1992-2019, manually annotated by the [Manifesto Project](https://manifesto-project.wzb.eu/information/documents/information). The model output therefore reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ### BibTeX entry and citation info ```bibtex @unpublished{ title={Policy-DistilBERT}, author={Moritz Laurer}, year={2020}, note={Unpublished paper} } ```
MoseliMotsoehli/JoBerta
2021-05-20T12:12:08.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "clean.txt", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
MoseliMotsoehli
30
transformers
MoseliMotsoehli/TswanaBert
2021-05-20T12:13:01.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "tn", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
MoseliMotsoehli
11
transformers
--- language: tn --- # TswanaBert Pretrained model on the Tswana language using a masked language modeling (MLM) objective. ## Model Description. TswanaBERT is a transformer model pre-trained on a corpus of Setswana in a self-supervised fashion by masking part of the input words and training to predict the masks by using byte-level tokens. ## Intended uses & limitations The model can be used for either masked language modeling or next word prediction. It can also be fine-tuned on a specific down-stream NLP application. #### How to use ```python >>> from transformers import pipeline >>> from transformers import AutoTokenizer, AutoModelWithLMHead >>> tokenizer = AutoTokenizer.from_pretrained("MoseliMotsoehli/TswanaBert") >>> model = AutoModelWithLMHead.from_pretrained("MoseliMotsoehli/TswanaBert") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker("Ntshopotse <mask> e godile.") [{'score': 0.32749542593955994, 'sequence': '<s>Ntshopotse setse e godile.</s>', 'token': 538, 'token_str': 'Ġsetse'}, {'score': 0.060260992497205734, 'sequence': '<s>Ntshopotse le e godile.</s>', 'token': 270, 'token_str': 'Ġle'}, {'score': 0.058460816740989685, 'sequence': '<s>Ntshopotse bone e godile.</s>', 'token': 364, 'token_str': 'Ġbone'}, {'score': 0.05694682151079178, 'sequence': '<s>Ntshopotse ga e godile.</s>', 'token': 298, 'token_str': 'Ġga'}, {'score': 0.0565204992890358, 'sequence': '<s>Ntshopotse, e godile.</s>', 'token': 16, 'token_str': ','}] ``` #### Limitations and bias The model is trained on a relatively small collection of setwana, mostly from news articles and creative writtings, and so is not representative enough of the language as yet. ## Training data 1. The largest portion of this dataset (10k) sentences of text, comes from the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download) 2. I Then added SABC news headlines collected by Marivate Vukosi, & Sefara Tshephisho, (2020) that is generously made available on [zenoodo](http://doi.org/10.5281/zenodo.3668495 ). This added 185 tswana sentences to my corpus. 3. I went on to add 300 more sentences by scrapping following news sites and blogs that mosty originate in Botswana. I actively continue to expand the dataset. * http://setswana.blogspot.com/ * https://omniglot.com/writing/tswana.php * http://www.dailynews.gov.bw/ * http://www.mmegi.bw/index.php * https://tsena.co.bw * http://www.botswana.co.za/Cultural_Issues-travel/botswana-country-guide-en-route.html * https://www.poemhunter.com/poem/2013-setswana/ https://www.poemhunter.com/poem/ngwana-wa-mosetsana/ ### BibTeX entry and citation info ```bibtex @inproceedings{author = {Moseli Motsoehli}, year={2020} } ```
MoseliMotsoehli/zuBERTa
2021-05-20T12:14:07.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "zu", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
MoseliMotsoehli
12
transformers
--- language: zu --- # zuBERTa zuBERTa is a RoBERTa style transformer language model trained on zulu text. ## Intended uses & limitations The model can be used for getting embeddings to use on a down-stream task such as question answering. #### How to use ```python >>> from transformers import pipeline >>> from transformers import AutoTokenizer, AutoModelWithLMHead >>> tokenizer = AutoTokenizer.from_pretrained("MoseliMotsoehli/zuBERTa") >>> model = AutoModelWithLMHead.from_pretrained("MoseliMotsoehli/zuBERTa") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker("Abafika eNkandla bafika sebeholwa <mask> uMpongo kaZingelwayo.") [ { "sequence": "<s>Abafika eNkandla bafika sebeholwa khona uMpongo kaZingelwayo.</s>", "score": 0.050459690392017365, "token": 555, "token_str": "Ġkhona" }, { "sequence": "<s>Abafika eNkandla bafika sebeholwa inkosi uMpongo kaZingelwayo.</s>", "score": 0.03668094798922539, "token": 2321, "token_str": "Ġinkosi" }, { "sequence": "<s>Abafika eNkandla bafika sebeholwa ubukhosi uMpongo kaZingelwayo.</s>", "score": 0.028774697333574295, "token": 5101, "token_str": "Ġubukhosi" } ] ``` ## Training data 1. 30k sentences of text, came from the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download) of zulu 2018. These were collected from news articles and creative writtings. 2. ~7500 articles of human generated translations were scraped from the zulu [wikipedia](https://zu.wikipedia.org/wiki/Special:AllPages). ### BibTeX entry and citation info ```bibtex @inproceedings{author = {Moseli Motsoehli}, title = {Towards transformation of Southern African language models through transformers.}, year={2020} } ```
Motty/DialogGPT
2021-06-18T17:57:17.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
Motty
0
transformers
Mtaylert/BertSeq
2021-02-26T13:09:38.000Z
[]
[ ".gitattributes" ]
Mtaylert
0
Muennighoff/vilio
2021-01-07T17:30:28.000Z
[]
[ ".gitattributes" ]
Muennighoff
0
Munna/Munna
2021-04-03T18:00:18.000Z
[]
[ ".gitattributes", "Live", "OfficialStreamsTV", "README.md" ]
Munna
0
Musixmatch/umberto-commoncrawl-cased-v1
2021-02-12T11:31:59.000Z
[ "pytorch", "camembert", "masked-lm", "it", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "tokenizer.json" ]
Musixmatch
4,908
transformers
--- language: it --- # UmBERTo Commoncrawl Cased [UmBERTo](https://github.com/musixmatchresearch/umberto) is a Roberta-based Language Model trained on large Italian Corpora and uses two innovative approaches: SentencePiece and Whole Word Masking. Now available at [github.com/huggingface/transformers](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) <p align="center"> <img src="https://user-images.githubusercontent.com/7140210/72913702-d55a8480-3d3d-11ea-99fc-f2ef29af4e72.jpg" width="700"> </br> Marco Lodola, Monument to Umberto Eco, Alessandria 2019 </p> ## Dataset UmBERTo-Commoncrawl-Cased utilizes the Italian subcorpus of [OSCAR](https://traces1.inria.fr/oscar/) as training set of the language model. We used deduplicated version of the Italian corpus that consists in 70 GB of plain text data, 210M sentences with 11B words where the sentences have been filtered and shuffled at line level in order to be used for NLP research. ## Pre-trained model | Model | WWM | Cased | Tokenizer | Vocab Size | Train Steps | Download | | ------ | ------ | ------ | ------ | ------ |------ | ------ | | `umberto-commoncrawl-cased-v1` | YES | YES | SPM | 32K | 125k | [Link](http://bit.ly/35zO7GH) | This model was trained with [SentencePiece](https://github.com/google/sentencepiece) and Whole Word Masking. ## Downstream Tasks These results refers to umberto-commoncrawl-cased model. All details are at [Umberto](https://github.com/musixmatchresearch/umberto) Official Page. #### Named Entity Recognition (NER) | Dataset | F1 | Precision | Recall | Accuracy | | ------ | ------ | ------ | ------ | ------ | | **ICAB-EvalITA07** | **87.565** | 86.596 | 88.556 | 98.690 | | **WikiNER-ITA** | **92.531** | 92.509 | 92.553 | 99.136 | #### Part of Speech (POS) | Dataset | F1 | Precision | Recall | Accuracy | | ------ | ------ | ------ | ------ | ------ | | **UD_Italian-ISDT** | 98.870 | 98.861 | 98.879 | **98.977** | | **UD_Italian-ParTUT** | 98.786 | 98.812 | 98.760 | **98.903** | ## Usage ##### Load UmBERTo with AutoModel, Autotokenizer: ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-commoncrawl-cased-v1") umberto = AutoModel.from_pretrained("Musixmatch/umberto-commoncrawl-cased-v1") encoded_input = tokenizer.encode("Umberto Eco è stato un grande scrittore") input_ids = torch.tensor(encoded_input).unsqueeze(0) # Batch size 1 outputs = umberto(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output ``` ##### Predict masked token: ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="Musixmatch/umberto-commoncrawl-cased-v1", tokenizer="Musixmatch/umberto-commoncrawl-cased-v1" ) result = fill_mask("Umberto Eco è <mask> un grande scrittore") # {'sequence': '<s> Umberto Eco è considerato un grande scrittore</s>', 'score': 0.18599839508533478, 'token': 5032} # {'sequence': '<s> Umberto Eco è stato un grande scrittore</s>', 'score': 0.17816807329654694, 'token': 471} # {'sequence': '<s> Umberto Eco è sicuramente un grande scrittore</s>', 'score': 0.16565583646297455, 'token': 2654} # {'sequence': '<s> Umberto Eco è indubbiamente un grande scrittore</s>', 'score': 0.0932890921831131, 'token': 17908} # {'sequence': '<s> Umberto Eco è certamente un grande scrittore</s>', 'score': 0.054701317101716995, 'token': 5269} ``` ## Citation All of the original datasets are publicly available or were released with the owners' grant. The datasets are all released under a CC0 or CCBY license. * UD Italian-ISDT Dataset [Github](https://github.com/UniversalDependencies/UD_Italian-ISDT) * UD Italian-ParTUT Dataset [Github](https://github.com/UniversalDependencies/UD_Italian-ParTUT) * I-CAB (Italian Content Annotation Bank), EvalITA [Page](http://www.evalita.it/) * WIKINER [Page](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) , [Paper](https://www.sciencedirect.com/science/article/pii/S0004370212000276?via%3Dihub) ``` @inproceedings {magnini2006annotazione, title = {Annotazione di contenuti concettuali in un corpus italiano: I - CAB}, author = {Magnini,Bernardo and Cappelli,Amedeo and Pianta,Emanuele and Speranza,Manuela and Bartalesi Lenzi,V and Sprugnoli,Rachele and Romano,Lorenza and Girardi,Christian and Negri,Matteo}, booktitle = {Proc.of SILFI 2006}, year = {2006} } @inproceedings {magnini2006cab, title = {I - CAB: the Italian Content Annotation Bank.}, author = {Magnini,Bernardo and Pianta,Emanuele and Girardi,Christian and Negri,Matteo and Romano,Lorenza and Speranza,Manuela and Lenzi,Valentina Bartalesi and Sprugnoli,Rachele}, booktitle = {LREC}, pages = {963--968}, year = {2006}, organization = {Citeseer} } ``` ## Authors **Loreto Parisi**: `loreto at musixmatch dot com`, [loretoparisi](https://github.com/loretoparisi) **Simone Francia**: `simone.francia at musixmatch dot com`, [simonefrancia](https://github.com/simonefrancia) **Paolo Magnani**: `paul.magnani95 at gmail dot com`, [paulthemagno](https://github.com/paulthemagno) ## About Musixmatch AI ![Musxmatch Ai mac app icon-128](https://user-images.githubusercontent.com/163333/72244273-396aa380-35ee-11ea-894b-4ea48230c02b.png) We do Machine Learning and Artificial Intelligence @[musixmatch](https://twitter.com/Musixmatch) Follow us on [Twitter](https://twitter.com/musixmatchai) [Github](https://github.com/musixmatchresearch)
Musixmatch/umberto-wikipedia-uncased-v1
2021-02-10T09:53:35.000Z
[ "pytorch", "camembert", "masked-lm", "it", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
Musixmatch
493
transformers
--- language: it --- # UmBERTo Wikipedia Uncased [UmBERTo](https://github.com/musixmatchresearch/umberto) is a Roberta-based Language Model trained on large Italian Corpora and uses two innovative approaches: SentencePiece and Whole Word Masking. Now available at [github.com/huggingface/transformers](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) <p align="center"> <img src="https://user-images.githubusercontent.com/7140210/72913702-d55a8480-3d3d-11ea-99fc-f2ef29af4e72.jpg" width="700"> </br> Marco Lodola, Monument to Umberto Eco, Alessandria 2019 </p> ## Dataset UmBERTo-Wikipedia-Uncased Training is trained on a relative small corpus (~7GB) extracted from [Wikipedia-ITA](https://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/). ## Pre-trained model | Model | WWM | Cased | Tokenizer | Vocab Size | Train Steps | Download | | ------ | ------ | ------ | ------ | ------ |------ | ------ | | `umberto-wikipedia-uncased-v1` | YES | YES | SPM | 32K | 100k | [Link](http://bit.ly/35wbSj6) | This model was trained with [SentencePiece](https://github.com/google/sentencepiece) and Whole Word Masking. ## Downstream Tasks These results refers to umberto-wikipedia-uncased model. All details are at [Umberto](https://github.com/musixmatchresearch/umberto) Official Page. #### Named Entity Recognition (NER) | Dataset | F1 | Precision | Recall | Accuracy | | ------ | ------ | ------ | ------ | ----- | | **ICAB-EvalITA07** | **86.240** | 85.939 | 86.544 | 98.534 | | **WikiNER-ITA** | **90.483** | 90.328 | 90.638 | 98.661 | #### Part of Speech (POS) | Dataset | F1 | Precision | Recall | Accuracy | | ------ | ------ | ------ | ------ | ------ | | **UD_Italian-ISDT** | 98.563 | 98.508 | 98.618 | **98.717** | | **UD_Italian-ParTUT** | 97.810 | 97.835 | 97.784 | **98.060** | ## Usage ##### Load UmBERTo Wikipedia Uncased with AutoModel, Autotokenizer: ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1") umberto = AutoModel.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1") encoded_input = tokenizer.encode("Umberto Eco è stato un grande scrittore") input_ids = torch.tensor(encoded_input).unsqueeze(0) # Batch size 1 outputs = umberto(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output ``` ##### Predict masked token: ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="Musixmatch/umberto-wikipedia-uncased-v1", tokenizer="Musixmatch/umberto-wikipedia-uncased-v1" ) result = fill_mask("Umberto Eco è <mask> un grande scrittore") # {'sequence': '<s> umberto eco è stato un grande scrittore</s>', 'score': 0.5784581303596497, 'token': 361} # {'sequence': '<s> umberto eco è anche un grande scrittore</s>', 'score': 0.33813193440437317, 'token': 269} # {'sequence': '<s> umberto eco è considerato un grande scrittore</s>', 'score': 0.027196012437343597, 'token': 3236} # {'sequence': '<s> umberto eco è diventato un grande scrittore</s>', 'score': 0.013716378249228, 'token': 5742} # {'sequence': '<s> umberto eco è inoltre un grande scrittore</s>', 'score': 0.010662357322871685, 'token': 1030} ``` ## Citation All of the original datasets are publicly available or were released with the owners' grant. The datasets are all released under a CC0 or CCBY license. * UD Italian-ISDT Dataset [Github](https://github.com/UniversalDependencies/UD_Italian-ISDT) * UD Italian-ParTUT Dataset [Github](https://github.com/UniversalDependencies/UD_Italian-ParTUT) * I-CAB (Italian Content Annotation Bank), EvalITA [Page](http://www.evalita.it/) * WIKINER [Page](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) , [Paper](https://www.sciencedirect.com/science/article/pii/S0004370212000276?via%3Dihub) ``` @inproceedings {magnini2006annotazione, title = {Annotazione di contenuti concettuali in un corpus italiano: I - CAB}, author = {Magnini,Bernardo and Cappelli,Amedeo and Pianta,Emanuele and Speranza,Manuela and Bartalesi Lenzi,V and Sprugnoli,Rachele and Romano,Lorenza and Girardi,Christian and Negri,Matteo}, booktitle = {Proc.of SILFI 2006}, year = {2006} } @inproceedings {magnini2006cab, title = {I - CAB: the Italian Content Annotation Bank.}, author = {Magnini,Bernardo and Pianta,Emanuele and Girardi,Christian and Negri,Matteo and Romano,Lorenza and Speranza,Manuela and Lenzi,Valentina Bartalesi and Sprugnoli,Rachele}, booktitle = {LREC}, pages = {963--968}, year = {2006}, organization = {Citeseer} } ``` ## Authors **Loreto Parisi**: `loreto at musixmatch dot com`, [loretoparisi](https://github.com/loretoparisi) **Simone Francia**: `simone.francia at musixmatch dot com`, [simonefrancia](https://github.com/simonefrancia) **Paolo Magnani**: `paul.magnani95 at gmail dot com`, [paulthemagno](https://github.com/paulthemagno) ## About Musixmatch AI ![Musxmatch Ai mac app icon-128](https://user-images.githubusercontent.com/163333/72244273-396aa380-35ee-11ea-894b-4ea48230c02b.png) We do Machine Learning and Artificial Intelligence @[musixmatch](https://twitter.com/Musixmatch) Follow us on [Twitter](https://twitter.com/musixmatchai) [Github](https://github.com/musixmatchresearch)
MutazYoune/Absa_AspectSentiment_hotels
2021-05-18T21:42:54.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "model_args.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
MutazYoune
53
transformers
MutazYoune/Ara_DialectBERT
2021-05-18T21:44:01.000Z
[ "pytorch", "jax", "bert", "masked-lm", "ar", "dataset:HARD-Arabic-Dataset", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
MutazYoune
44
transformers
--- language: ar datasets: - HARD-Arabic-Dataset --- # Ara-dialect-BERT We used a pretrained model to further train it on [HARD-Arabic-Dataset](https://github.com/elnagara/HARD-Arabic-Dataset), the weights were initialized using [CAMeL-Lab](https://huggingface.co/CAMeL-Lab/bert-base-camelbert-msa-eighth) "bert-base-camelbert-msa-eighth" model ### Usage The model weights can be loaded using `transformers` library by HuggingFace. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("MutazYoune/Ara_DialectBERT") model = AutoModel.from_pretrained("MutazYoune/Ara_DialectBERT") ``` Example using `pipeline`: ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="MutazYoune/Ara_DialectBERT", tokenizer="MutazYoune/Ara_DialectBERT" ) fill_mask("الفندق جميل و لكن [MASK] بعيد") ``` ```python {'sequence': 'الفندق جميل و لكن الموقع بعيد', 'score': 0.28233852982521057, 'token': 3221, 'token_str': 'الموقع'} {'sequence': 'الفندق جميل و لكن موقعه بعيد', 'score': 0.24436227977275848, 'token': 19218, 'token_str': 'موقعه'} {'sequence': 'الفندق جميل و لكن المكان بعيد', 'score': 0.15372352302074432, 'token': 5401, 'token_str': 'المكان'} {'sequence': 'الفندق جميل و لكن الفندق بعيد', 'score': 0.029026474803686142, 'token': 11133, 'token_str': 'الفندق'} {'sequence': 'الفندق جميل و لكن مكانه بعيد', 'score': 0.024554792791604996, 'token': 10701, 'token_str': 'مكانه'}
MutazYoune/hotel_reviews
2021-05-18T21:44:59.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "model_args.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
MutazYoune
19
transformers
MutazYoune/testt2
2021-05-18T21:45:57.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
MutazYoune
7
transformers
N8Daawg/chat_bot
2021-06-04T01:24:16.000Z
[ "conversational" ]
conversational
[ ".gitattributes", "README.md" ]
N8Daawg
0
--- tags: - conversational --- # My Awesome Model
NB/bert-base-norwegian-multi-cased
2021-04-09T10:32:41.000Z
[]
[ ".gitattributes" ]
NB
0