modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
PubChimps/dl-bert
2021-05-20T12:18:03.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
PubChimps
11
transformers
PubChimps/dlfBERT
2021-05-20T12:18:47.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
PubChimps
16
transformers
QA/Ab
2021-03-11T17:17:16.000Z
[]
[ ".gitattributes" ]
QA
0
QA/AbkPre
2021-03-12T19:03:48.000Z
[]
[ ".gitattributes" ]
QA
0
QA/Abkh
2021-03-11T17:55:16.000Z
[]
[ ".gitattributes" ]
QA
0
QA/Abkha
2021-03-11T18:11:14.000Z
[]
[ ".gitattributes" ]
QA
0
QA/AbkhazPredict
2021-03-12T19:23:44.000Z
[]
[ ".gitattributes" ]
QA
0
QA/AbkhazPrediction
2021-03-12T19:25:33.000Z
[]
[ ".gitattributes" ]
QA
0
QA/Abkhi
2021-03-11T17:57:58.000Z
[]
[ ".gitattributes" ]
QA
0
QA/abk-eng
2021-03-09T19:02:23.000Z
[]
[ ".gitattributes" ]
QA
0
QA/model_name
2021-03-09T19:05:23.000Z
[]
[ ".gitattributes" ]
QA
0
QA/opus-mt-ab-en
2021-03-15T07:38:19.000Z
[]
[ ".gitattributes" ]
QA
0
QA/your-model-name
2021-03-11T17:33:35.000Z
[]
[ ".gitattributes" ]
QA
0
QCRI/PropagandaTechniquesAnalysis-en-BERT
2021-05-19T11:27:07.000Z
[ "pytorch", "bert", "en", "transformers", "propaganda", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "model.py", "pytorch_model.bin" ]
QCRI
7
transformers
--- language: "en" thumbnail: "https://pbs.twimg.com/profile_images/1092721745994440704/d6R-AHzj_400x400.jpg" tags: - propaganda - bert license: "MIT" datasets: - metrics: - --- Propaganda Techniques Analysis BERT ---- This model is a BERT based model to make predictions of propaganda techniques in news articles in English. The model is described in [this paper](https://propaganda.qcri.org/papers/EMNLP_2019__Fine_Grained_Propaganda_Detection.pdf). ## Model description Please find propaganda definition here: https://propaganda.qcri.org/annotations/definitions.html You can also try the model in action here: https://www.tanbih.org/prta ### How to use ```python >>> from transformers import BertTokenizerFast >>> from .model import BertForTokenAndSequenceJointClassification >>> >>> tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased') >>> model = BertForTokenAndSequenceJointClassification.from_pretrained( >>> "QCRI/PropagandaTechniquesAnalysis-en-BERT", >>> revision="v0.1.0", >>> ) >>> >>> inputs = tokenizer.encode_plus("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> sequence_class_index = torch.argmax(outputs.sequence_logits, dim=-1) >>> sequence_class = model.sequence_tags[sequence_class_index[0]] >>> token_class_index = torch.argmax(outputs.token_logits, dim=-1) >>> tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0][1:-1]) >>> tags = [model.token_tags[i] for i in token_class_index[0].tolist()[1:-1]] ``` ### BibTeX entry and citation info ```bibtex @inproceedings{da-san-martino-etal-2019-fine, title = "Fine-Grained Analysis of Propaganda in News Article", author = "Da San Martino, Giovanni and Yu, Seunghak and Barr{\'o}n-Cede{\~n}o, Alberto and Petrov, Rostislav and Nakov, Preslav", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D19-1565", doi = "10.18653/v1/D19-1565", pages = "5636--5646", abstract = "Propaganda aims at influencing people{'}s mindset with the purpose of advancing a specific agenda. Previous work has addressed propaganda detection at document level, typically labelling all articles from a propagandistic news outlet as propaganda. Such noisy gold labels inevitably affect the quality of any learning system trained on them. A further issue with most existing systems is the lack of explainability. To overcome these limitations, we propose a novel task: performing fine-grained analysis of texts by detecting all fragments that contain propaganda techniques as well as their type. In particular, we create a corpus of news articles manually annotated at fragment level with eighteen propaganda techniques and propose a suitable evaluation measure. We further design a novel multi-granularity neural network, and we show that it outperforms several strong BERT-based baselines.", } ```
QianWeiTech/GPT2-News
2021-05-21T11:02:49.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "all_results.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
QianWeiTech
279
transformers
QianWeiTech/GPT2-Titles
2021-05-21T11:05:09.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "all_results.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
QianWeiTech
94
transformers
QueenIonna/Taeyong
2021-04-18T02:23:36.000Z
[]
[ ".gitattributes" ]
QueenIonna
0
RAPIDS/distilbert-cyberlogs
2020-10-23T19:46:08.000Z
[ "pytorch", "distilbert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
RAPIDS
14
transformers
RAPIDS/electra-cyberlogs
2020-10-23T17:14:35.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
RAPIDS
20
transformers
RTGuo/1st_model
2021-04-22T06:31:30.000Z
[]
[ ".gitattributes", "README.md" ]
RTGuo
0
Rachneet/t5-base-qg-hl-squadv2
2021-03-03T13:03:04.000Z
[ "pytorch", "t5", "seq2seq", "dataset:squad", "arxiv:1910.10683", "transformers", "question-generation", "license:mit", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
Rachneet
673
transformers
--- datasets: - squad tags: - question-generation widget: - text: "<hl> 42 <hl> is the answer to life, the universe and everything. </s>" - text: "Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s>" - text: "Although <hl> practicality <hl> beats purity </s>" license: mit --- ### T5 for question-generation This is [t5-base](https://arxiv.org/abs/1910.10683) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens. You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens and end the text with `</s>`. For example `<hl> 42 <hl> is the answer to life, the universe and everything. </s>` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
RadhikaSatam/CovBert-radhika
2021-05-19T11:27:50.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "model.ckpt.index", "pytorch_model.bin", "vocab.txt" ]
RadhikaSatam
10
transformers
Raghdan/training
2021-05-29T18:08:18.000Z
[]
[ ".gitattributes" ]
Raghdan
0
Rai220/test1
2021-05-21T11:09:03.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
Rai220
10
transformers
Rajan/NepaliBERT
2021-06-07T14:36:58.000Z
[ "pytorch", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
Rajan
20
transformers
# NepaliBERT(Phase 1) NEPALIBERT is a state-of-the-art language model for Nepali based on the BERT model. The model is trained using a masked language modeling (MLM). # Loading the model and tokenizer 1. clone the model repo ``` git lfs install git clone https://huggingface.co/Rajan/NepaliBERT ``` 2. Loading the Tokenizer ``` from transformers import BertTokenizer vocab_file_dir = './NepaliBERT/' tokenizer = BertTokenizer.from_pretrained(vocab_file_dir, strip_accents=False, clean_text=False ) ``` 3. Loading the model: ``` from transformers import BertForMaskedLM model = BertForMaskedLM.from_pretrained('./NepaliBERT') ``` The easiest way to check whether our language model is learning anything interesting is via the ```FillMaskPipeline```. Pipelines are simple wrappers around tokenizers and models, and the 'fill-mask' one will let you input a sequence containing a masked token (here, [mask]) and return a list of the most probable filled sequences, with their probabilities. ``` from transformers import pipeline fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` For more info visit the [GITHUB🤗](https://github.com/R4j4n/NepaliBERT)
Rajaram1996/test_model_flow
2021-03-27T19:14:56.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "config.json", "optimizer.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Rajaram1996
9
transformers
Rajaram1996/wav2vec2-large-xlsr-53-tamil
2021-03-25T21:03:37.000Z
[ "pytorch", "wav2vec2", "ta", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Rajaram1996
8
transformers
--- language: ta datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Rajaram1996/wav2vec2-large-xlsr-tamil results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ta type: common_voice args: ta metrics: - name: Test WER type: wer value: 69.76 --- # Wav2Vec2-Large-XLSR-53-tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 69.76 %
Raksha297/FirstRepo
2021-06-17T12:23:37.000Z
[]
[ ".gitattributes" ]
Raksha297
0
RameshArvind/roberta_long_answer_nq
2021-05-20T12:20:29.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
RameshArvind
20
transformers
RaphBL/great-model
2021-05-27T16:34:11.000Z
[ "pytorch", "camembert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin" ]
RaphBL
6
transformers
GreatModel does not solve any NLP problem ... for exercise purpose only.
Ratul/sci_ner
2021-06-01T08:48:27.000Z
[ "pytorch", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
Ratul
46
transformers
Raychanan/bert-base-chinese-FineTuned-Binary-Best
2021-05-18T21:56:08.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Raychanan
310
transformers
Raychanan/chinese-roberta-wwm-ext-FineTuned-Binary
2021-05-18T21:56:59.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Raychanan
23
transformers
DO NOT USE THIS
Raychanan/chinese-roberta-wwm-ext-FineTuned
2021-05-18T21:57:46.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Raychanan
211
transformers
Raychanan/model_name
2021-05-02T07:48:22.000Z
[]
[ ".gitattributes" ]
Raychanan
0
Raychanan/your_model_name
2021-05-02T07:51:02.000Z
[]
[ ".gitattributes" ]
Raychanan
0
Recognai/bert-base-spanish-wwm-cased-xnli
2021-05-18T21:58:40.000Z
[ "pytorch", "jax", "bert", "text-classification", "es", "dataset:xnli", "transformers", "zero-shot-classification", "nli", "license:mit", "pipeline_tag:zero-shot-classification" ]
zero-shot-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt", "zeroshot_training_script.py" ]
Recognai
431
transformers
--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli license: mit pipeline_tag: zero-shot-classification widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # bert-base-spanish-wwm-cased-xnli ## Model description This model is a fine-tuned version of the [spanish BERT model](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) with the Spanish portion of the XNLI dataset. You can have a look at the [training script](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli/blob/main/zeroshot_training_script.py) for details of the training. ### How to use You can use this model with Hugging Face's [zero-shot-classification pipeline](https://discuss.huggingface.co/t/new-pipeline-for-zero-shot-text-classification/681): ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/bert-base-spanish-wwm-cased-xnli") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['cultura', 'sociedad', 'economia', 'salud', 'deportes'], 'scores': [0.38897448778152466, 0.22997373342514038, 0.1658431738615036, 0.1205764189362526, 0.09463217109441757]} """ ``` ## Eval results Accuracy for the test set: | | XNLI-es | |-----------------------------|---------| |bert-base-spanish-wwm-cased-xnli | 79.9% |
Recognai/distilbert-base-es-multilingual-cased
2021-03-10T20:36:54.000Z
[ "pytorch", "distilbert", "masked-lm", "es", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
Recognai
2,369
transformers
--- language: es license: apache-2.0 datasets: - wikipedia widget: - text: "Mi nombre es Juan y vivo en [MASK]." --- # DistilBERT base multilingual model Spanish subset (cased) This model is the Spanish extract of `distilbert-base-multilingual-cased` (https://huggingface.co/distilbert-base-multilingual-cased), a distilled version of the [BERT base multilingual model](bert-base-multilingual-cased). This model is cased: it does make a difference between english and English. It uses the extraction method proposed by Geotrend described in https://github.com/Geotrend-research/smaller-transformers. The resulting model has the same architecture as DistilmBERT: 6 layers, 768 dimension and 12 heads, with a total of **63M parameters** (compared to 134M parameters for DistilmBERT). The goal of this model is to reduce even further the size of the `distilbert-base-multilingual` multilingual model by selecting only most frequent tokens for Spanish, reducing the size of the embedding layer. For more details visit the paper from the Geotrend team: Load What You Need: Smaller Versions of Multilingual BERT.
RecordedFuture/Swedish-NER
2021-05-24T12:03:54.000Z
[ "pytorch", "bert", "token-classification", "sv", "transformers", "license:mit" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
RecordedFuture
171
transformers
--- language: sv license: mit --- ## Swedish BERT models for sentiment analysis, Sentiment targets. [Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases a Named Entity Recognition(NER) model for entety detection in Swedish. The model is based on [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) and finetuned on data collected from various internet sources and forums. The model has been trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data. The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified. ### Available tags * Location * Organization * Person * Religion * Title ### Evaluation metrics The model had the following metrics when evaluated on test data originating from the same domain as the training data. #### F1-score | Loc | Org | Per | Nat | Rel | Tit | Total | |------|------|------|------|------|------|-------| | 0.91 | 0.88 | 0.96 | 0.95 | 0.91 | 0.84 | 0.92 |
RecordedFuture/Swedish-Sentiment-Fear-Targets
2021-05-24T12:47:21.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "sv", "transformers", "license:mit" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
RecordedFuture
167
transformers
--- language: sv license: mit --- ## Swedish BERT models for sentiment analysis, Sentiment targets. [Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases two language models for target/role assignment in Swedish. The two models are based on the [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased), the models as has been fine tuned to solve a Named Entety Recognition(NER) token classification task. This is a downstream model to be used in conjunction with the [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Violence) or [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Fear). The models are trained to tag parts of sentences that has recieved a positive classification from the upstream sentiment classifier. The model will tag parts of sentences that contains the targets that the upstream model has activated on. The NER sentiment target models do work as standalone models but their recommended application is downstreamfrom a sentence classification model. The models are only trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data. The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified. ### Fear targets The model can be imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets") classifier_fear_targets= BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets") When the model and tokenizer are initialized the model can be used for inference. #### Verification metrics During training the Fear target model had the following verification metrics when using "any overlap" as the evaluation metric. | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.8361 | 0.7903 | 0.8876 | #### Swedish-Sentiment-Violence The model be can imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets") classifier_violence_targets = BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets") When the model and tokenizer are initialized the model can be used for inference. #### Verification metrics During training the Violence target model had the following verification metrics when using "any overlap" as the evaluation metric. | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.7831| 0.9155| 0.8442 |
RecordedFuture/Swedish-Sentiment-Fear
2021-05-18T22:00:42.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "sv", "transformers", "license:mit" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
RecordedFuture
1,811
transformers
--- language: sv license: mit --- ## Swedish BERT models for sentiment analysis [Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases two language models for sentiment analysis in Swedish. The two models are based on the [KB\/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) model and has been fine-tuned to solve a multi-label sentiment analysis task. The models have been fine-tuned for the sentiments fear and violence. The models output three floats corresponding to the labels "Negative", "Weak sentiment", and "Strong Sentiment" at the respective indexes. The models have been trained on Swedish data with a conversational focus, collected from various internet sources and forums. The models are only trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data. The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified. ### Swedish-Sentiment-Fear The model can be imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear") classifier_fear= BertForSequenceClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear") When the model and tokenizer are initialized the model can be used for inference. #### Sentiment definitions #### The strong sentiment includes but are not limited to Texts that: - Hold an expressive emphasis on fear and/ or anxiety #### The weak sentiment includes but are not limited to Texts that: - Express fear and/ or anxiety in a neutral way #### Verification metrics During training, the model had maximized validation metrics at the following classification breakpoint. | Classification Breakpoint | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.45 | 0.8754 | 0.8618 | 0.8895 | #### Swedish-Sentiment-Violence The model be can imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence") classifier_violence = BertForSequenceClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence") When the model and tokenizer are initialized the model can be used for inference. ### Sentiment definitions #### The strong sentiment includes but are not limited to Texts that: - Referencing highly violent acts - Hold an aggressive tone #### The weak sentiment includes but are not limited to Texts that: - Include general violent statements that do not fall under the strong sentiment #### Verification metrics During training, the model had maximized validation metrics at the following classification breakpoint. | Classification Breakpoint | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.35 | 0.7677 | 0.7456 | 0.791 |
RecordedFuture/Swedish-Sentiment-Violence-Targets
2021-05-24T13:02:37.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "sv", "transformers", "license:mit" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
RecordedFuture
140
transformers
--- language: sv license: mit --- ## Swedish BERT models for sentiment analysis, Sentiment targets. [Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases two language models for target/role assignment in Swedish. The two models are based on the [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased), the models as has been fine tuned to solve a Named Entety Recognition(NER) token classification task. This is a downstream model to be used in conjunction with the [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Violence) or [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Fear). The models are trained to tag parts of sentences that has recieved a positive classification from the upstream sentiment classifier. The model will tag parts of sentences that contains the targets that the upstream model has activated on. The NER sentiment target models do work as standalone models but their recommended application is downstreamfrom a sentence classification model. The models are only trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data. The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified. ### Fear targets The model can be imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets") classifier_fear_targets= BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets") When the model and tokenizer are initialized the model can be used for inference. #### Verification metrics During training the Fear target model had the following verification metrics when using "any overlap" as the evaluation metric. | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.8361 | 0.7903 | 0.8876 | #### Swedish-Sentiment-Violence The model be can imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets") classifier_violence_targets = BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets") When the model and tokenizer are initialized the model can be used for inference. #### Verification metrics During training the Violence target model had the following verification metrics when using "any overlap" as the evaluation metric. | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.7831| 0.9155| 0.8442 |
RecordedFuture/Swedish-Sentiment-Violence
2021-05-18T22:02:50.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "sv", "transformers", "license:mit" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
RecordedFuture
1,818
transformers
--- language: sv license: mit --- ## Swedish BERT models for sentiment analysis [Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases two language models for sentiment analysis in Swedish. The two models are based on the [KB\/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) model and has been fine-tuned to solve a multi-label sentiment analysis task. The models have been fine-tuned for the sentiments fear and violence. The models output three floats corresponding to the labels "Negative", "Weak sentiment", and "Strong Sentiment" at the respective indexes. The models have been trained on Swedish data with a conversational focus, collected from various internet sources and forums. The models are only trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data. The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified. ### Swedish-Sentiment-Fear The model can be imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear") classifier_fear= BertForSequenceClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear") When the model and tokenizer are initialized the model can be used for inference. #### Sentiment definitions #### The strong sentiment includes but are not limited to Texts that: - Hold an expressive emphasis on fear and/ or anxiety #### The weak sentiment includes but are not limited to Texts that: - Express fear and/ or anxiety in a neutral way #### Verification metrics During training, the model had maximized validation metrics at the following classification breakpoint. | Classification Breakpoint | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.45 | 0.8754 | 0.8618 | 0.8895 | #### Swedish-Sentiment-Violence The model be can imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence") classifier_violence = BertForSequenceClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence") When the model and tokenizer are initialized the model can be used for inference. ### Sentiment definitions #### The strong sentiment includes but are not limited to Texts that: - Referencing highly violent acts - Hold an aggressive tone #### The weak sentiment includes but are not limited to Texts that: - Include general violent statements that do not fall under the strong sentiment #### Verification metrics During training, the model had maximized validation metrics at the following classification breakpoint. | Classification Breakpoint | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.35 | 0.7677 | 0.7456 | 0.791 |
Reifuku/KK-CB
2021-06-03T03:08:26.000Z
[]
[ ".gitattributes" ]
Reifuku
0
RifsxD/DialoGPT-medium-raifu
2021-06-03T11:27:10.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
RifsxD
64
transformers
--- tags: - conversational --- # My Awesome Model
Roboserg/best_model
2020-12-08T17:22:01.000Z
[]
[ ".gitattributes" ]
Roboserg
0
Rohan-Kurdekar/Arabic_Bert_Model
2021-05-20T12:21:38.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tf_model.h5", "training_args.bin", "vocab.json" ]
Rohan-Kurdekar
103
transformers
Rostlab/prot_albert
2020-08-20T14:54:00.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "spiece.model" ]
Rostlab
405
transformers
Rostlab/prot_bert
2020-12-11T21:30:07.000Z
[ "pytorch", "masked-lm", "protein", "dataset:Uniref100", "transformers", "protein language model", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
Rostlab
5,982
transformers
--- language: protein tags: - protein language model datasets: - Uniref100 --- # ProtBert model Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtBert is based on Bert model which pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between our Bert model and the original Bert version is the way of dealing with sequences as separate documents. This means the Next sentence prediction is not used, as each sequence is treated as a complete document. The masking follows the original Bert training with randomly masks 15% of the amino acids in the input. At the end, the feature extracted from this model revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. ## Intended uses & limitations The model could be used for protein feature extraction or to be fine-tuned on downstream tasks. We have noticed in some tasks you could gain more accuracy by fine-tuning the model rather than using it as a feature extractor. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import BertForMaskedLM, BertTokenizer, pipeline >>> tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False ) >>> model = BertForMaskedLM.from_pretrained("Rostlab/prot_bert") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker('D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T') [{'score': 0.11088453233242035, 'sequence': '[CLS] D L I P T S S K L V V L D T S L Q V K K A F F A L V T [SEP]', 'token': 5, 'token_str': 'L'}, {'score': 0.08402521163225174, 'sequence': '[CLS] D L I P T S S K L V V S D T S L Q V K K A F F A L V T [SEP]', 'token': 10, 'token_str': 'S'}, {'score': 0.07328339666128159, 'sequence': '[CLS] D L I P T S S K L V V V D T S L Q V K K A F F A L V T [SEP]', 'token': 8, 'token_str': 'V'}, {'score': 0.06921856850385666, 'sequence': '[CLS] D L I P T S S K L V V K D T S L Q V K K A F F A L V T [SEP]', 'token': 12, 'token_str': 'K'}, {'score': 0.06382402777671814, 'sequence': '[CLS] D L I P T S S K L V V I D T S L Q V K K A F F A L V T [SEP]', 'token': 11, 'token_str': 'I'}] ``` Here is how to use this model to get the features of a given protein sequence in PyTorch: ```python from transformers import BertModel, BertTokenizer import re tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False ) model = BertModel.from_pretrained("Rostlab/prot_bert") sequence_Example = "A E T C Z A O" sequence_Example = re.sub(r"[UZOB]", "X", sequence_Example) encoded_input = tokenizer(sequence_Example, return_tensors='pt') output = model(**encoded_input) ``` ## Training data The ProtBert model was pretrained on [Uniref100](https://www.uniprot.org/downloads), a dataset consisting of 217 million protein sequences. ## Training procedure ### Preprocessing The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The rare amino acids "U,Z,O,B" were mapped to "X". The inputs of the model are then of the form: ``` [CLS] Protein Sequence A [SEP] Protein Sequence B [SEP] ``` Furthermore, each protein sequence was treated as a separate document. The preprocessing step was performed twice, once for a combined length (2 sequences) of less than 512 amino acids, and another time using a combined length (2 sequences) of less than 2048 amino acids. The details of the masking procedure for each sequence followed the original Bert model as following: - 15% of the amino acids are masked. - In 80% of the cases, the masked amino acids are replaced by `[MASK]`. - In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. - In the 10% remaining cases, the masked amino acids are left as is. ### Pretraining The model was trained on a single TPU Pod V3-512 for 400k steps in total. 300K steps using sequence length 512 (batch size 15k), and 100K steps using sequence length 2048 (batch size 2.5k). The optimizer used is Lamb with a learning rate of 0.002, a weight decay of 0.01, learning rate warmup for 40k steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Test results : | Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane | |:-----:|:-----:|:-----:|:-----:|:-----:| | CASP12 | 75 | 63 | | | | TS115 | 83 | 72 | | | | CB513 | 81 | 66 | | | | DeepLoc | | | 79 | 91 | ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \&lt;a href="https://github.com/agemagician/ProtTrans"\&gt;https://github.com/agemagician/ProtTrans\&lt;/a\&gt;Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Rostlab/prot_bert_bfd
2020-12-11T21:30:10.000Z
[ "pytorch", "tf", "masked-lm", "protein", "dataset:BFD", "transformers", "protein language model", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Rostlab
14,665
transformers
--- language: protein tags: - protein language model datasets: - BFD --- # ProtBert-BFD model Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtBert-BFD is based on Bert model which pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between our Bert model and the original Bert version is the way of dealing with sequences as separate documents This means the Next sentence prediction is not used, as each sequence is treated as a complete document. The masking follows the original Bert training with randomly masks 15% of the amino acids in the input. At the end, the feature extracted from this model revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. ## Intended uses & limitations The model could be used for protein feature extraction or to be fine-tuned on downstream tasks. We have noticed in some tasks you could gain more accuracy by fine-tuning the model rather than using it as a feature extractor. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import BertForMaskedLM, BertTokenizer, pipeline >>> tokenizer = BertTokenizer.from_pretrained('Rostlab/prot_bert_bfd', do_lower_case=False ) >>> model = BertForMaskedLM.from_pretrained("Rostlab/prot_bert_bfd") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker('D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T') [{'score': 0.1165614128112793, 'sequence': '[CLS] D L I P T S S K L V V L D T S L Q V K K A F F A L V T [SEP]', 'token': 5, 'token_str': 'L'}, {'score': 0.08976086974143982, 'sequence': '[CLS] D L I P T S S K L V V V D T S L Q V K K A F F A L V T [SEP]', 'token': 8, 'token_str': 'V'}, {'score': 0.08864385634660721, 'sequence': '[CLS] D L I P T S S K L V V S D T S L Q V K K A F F A L V T [SEP]', 'token': 10, 'token_str': 'S'}, {'score': 0.06227643042802811, 'sequence': '[CLS] D L I P T S S K L V V A D T S L Q V K K A F F A L V T [SEP]', 'token': 6, 'token_str': 'A'}, {'score': 0.06194969266653061, 'sequence': '[CLS] D L I P T S S K L V V T D T S L Q V K K A F F A L V T [SEP]', 'token': 15, 'token_str': 'T'}] ``` Here is how to use this model to get the features of a given protein sequence in PyTorch: ```python from transformers import BertModel, BertTokenizer import re tokenizer = BertTokenizer.from_pretrained('Rostlab/prot_bert_bfd', do_lower_case=False ) model = BertModel.from_pretrained("Rostlab/prot_bert_bfd") sequence_Example = "A E T C Z A O" sequence_Example = re.sub(r"[UZOB]", "X", sequence_Example) encoded_input = tokenizer(sequence_Example, return_tensors='pt') output = model(**encoded_input) ``` ## Training data The ProtBert-BFD model was pretrained on [BFD](https://bfd.mmseqs.com/), a dataset consisting of 2.1 billion protein sequences. ## Training procedure ### Preprocessing The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The inputs of the model are then of the form: ``` [CLS] Protein Sequence A [SEP] Protein Sequence B [SEP] ``` Furthermore, each protein sequence was treated as a separate document. The preprocessing step was performed twice, once for a combined length (2 sequences) of less than 512 amino acids, and another time using a combined length (2 sequences) of less than 2048 amino acids. The details of the masking procedure for each sequence followed the original Bert model as following: - 15% of the amino acids are masked. - In 80% of the cases, the masked amino acids are replaced by `[MASK]`. - In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. - In the 10% remaining cases, the masked amino acids are left as is. ### Pretraining The model was trained on a single TPU Pod V3-1024 for one million steps in total. 800k steps using sequence length 512 (batch size 32k), and 200K steps using sequence length 2048 (batch size 6k). The optimizer used is Lamb with a learning rate of 0.002, a weight decay of 0.01, learning rate warmup for 140k steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Test results : | Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane | |:-----:|:-----:|:-----:|:-----:|:-----:| | CASP12 | 76 | 65 | | | | TS115 | 84 | 73 | | | | CB513 | 83 | 70 | | | | DeepLoc | | | 78 | 91 | ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \&lt;a href="https://github.com/agemagician/ProtTrans"\&gt;https://github.com/agemagician/ProtTrans\&lt;/a\&gt;Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Rostlab/prot_bert_bfd_localization
2021-05-18T22:05:26.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
Rostlab
171
transformers
Rostlab/prot_bert_bfd_membrane
2021-05-18T22:08:28.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "log_history.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
Rostlab
120
transformers
Rostlab/prot_bert_bfd_ss3
2021-05-18T22:11:42.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "log_history.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
Rostlab
104
transformers
Rostlab/prot_electra_discriminator_bfd
2020-12-18T20:10:21.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "vocab.txt" ]
Rostlab
21
transformers
Rostlab/prot_electra_generator_bfd
2020-12-18T20:15:23.000Z
[ "pytorch", "electra", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "vocab.txt" ]
Rostlab
21
transformers
Rostlab/prot_t5_base_mt_uniref50
2021-05-15T20:46:51.000Z
[ "pytorch", "t5", "lm-head", "seq2seq", "transformers", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
Rostlab
132
transformers
--- tags: - summarization widget: - text: "predict protein ms : Met Gly Leu Pro Val Ser Trp Ala Pro Pro Ala Leu" ---
Rostlab/prot_t5_xl_bfd
2020-12-11T21:30:13.000Z
[ "pytorch", "tf", "t5", "lm-head", "seq2seq", "protein", "dataset:BFD", "transformers", "protein language model", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
Rostlab
170
transformers
--- language: protein tags: - protein language model datasets: - BFD --- # ProtT5-XL-BFD model Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtT5-XL-BFD is based on the `t5-3b` model and was pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between this T5 model and the original T5 version is the denosing objective. The original T5-3B model was pretrained using a span denosing objective, while this model was pre-trained with a Bart-like MLM denosing objective. The masking probability is consistent with the original T5 training by randomly masking 15% of the amino acids in the input. It has been shown that the features extracted from this self-supervised model (LM-embeddings) captured important biophysical properties governing protein shape. shape. This implied learning some of the grammar of the language of life realized in protein sequences. ## Intended uses & limitations The model could be used for protein feature extraction or to be fine-tuned on downstream tasks. We have noticed in some tasks on can gain more accuracy by fine-tuning the model rather than using it as a feature extractor. We have also noticed that for feature extraction, its better to use the feature extracted from the encoder not from the decoder. ### How to use Here is how to use this model to extract the features of a given protein sequence in PyTorch: ```python from transformers import T5Tokenizer, T5Model import re import torch tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_bfd', do_lower_case=False) model = T5Model.from_pretrained("Rostlab/prot_t5_xl_bfd") sequences_Example = ["A E T C Z A O","S K T Z P"] sequences_Example = [re.sub(r"[UZOB]", "X", sequence) for sequence in sequences_Example] ids = tokenizer.batch_encode_plus(sequences_Example, add_special_tokens=True, padding=True) input_ids = torch.tensor(ids['input_ids']) attention_mask = torch.tensor(ids['attention_mask']) with torch.no_grad(): embedding = model(input_ids=input_ids,attention_mask=attention_mask,decoder_input_ids=None) # For feature extraction we recommend to use the encoder embedding encoder_embedding = embedding[2].cpu().numpy() decoder_embedding = embedding[0].cpu().numpy() ``` ## Training data The ProtT5-XL-BFD model was pretrained on [BFD](https://bfd.mmseqs.com/), a dataset consisting of 2.1 billion protein sequences. ## Training procedure ### Preprocessing The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The rare amino acids "U,Z,O,B" were mapped to "X". The inputs of the model are then of the form: ``` Protein Sequence [EOS] ``` The preprocessing step was performed on the fly, by cutting and padding the protein sequences up to 512 tokens. The details of the masking procedure for each sequence are as follows: - 15% of the amino acids are masked. - In 90% of the cases, the masked amino acids are replaced by `[MASK]` token. - In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. ### Pretraining The model was trained on a single TPU Pod V3-1024 for 1.2 million steps in total, using sequence length 512 (batch size 4k). It has a total of approximately 3B parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results When the model is used for feature etraction, this model achieves the following results: Test results : | Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane | |:-----:|:-----:|:-----:|:-----:|:-----:| | CASP12 | 77 | 66 | | | | TS115 | 85 | 74 | | | | CB513 | 84 | 71 | | | | DeepLoc | | | 77 | 91 | ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \&lt;a href="https://github.com/agemagician/ProtTrans"\&gt;https://github.com/agemagician/ProtTrans\&lt;/a\&gt;Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Rostlab/prot_t5_xl_uniref50
2021-03-29T11:47:15.000Z
[ "pytorch", "t5", "seq2seq", "protein", "dataset:UniRef50", "transformers", "protein language model", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "pytorch_model_600k.bin", "pytorch_model_723k.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
Rostlab
1,476
transformers
--- language: protein tags: - protein language model datasets: - UniRef50 --- # ProtT5-XL-UniRef50 model Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtT5-XL-UniRef50 is based on the `t5-3b` model and was pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between this T5 model and the original T5 version is the denosing objective. The original T5-3B model was pretrained using a span denosing objective, while this model was pre-trained with a Bart-like MLM denosing objective. The masking probability is consistent with the original T5 training by randomly masking 15% of the amino acids in the input. It has been shown that the features extracted from this self-supervised model (LM-embeddings) captured important biophysical properties governing protein shape. shape. This implied learning some of the grammar of the language of life realized in protein sequences. ## Intended uses & limitations The model could be used for protein feature extraction or to be fine-tuned on downstream tasks. We have noticed in some tasks on can gain more accuracy by fine-tuning the model rather than using it as a feature extractor. We have also noticed that for feature extraction, its better to use the feature extracted from the encoder not from the decoder. ### How to use Here is how to use this model to extract the features of a given protein sequence in PyTorch: ```python from transformers import T5Tokenizer, T5Model import re import torch tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_uniref50', do_lower_case=False) model = T5Model.from_pretrained("Rostlab/prot_t5_xl_uniref50") sequences_Example = ["A E T C Z A O","S K T Z P"] sequences_Example = [re.sub(r"[UZOB]", "X", sequence) for sequence in sequences_Example] ids = tokenizer.batch_encode_plus(sequences_Example, add_special_tokens=True, padding=True) input_ids = torch.tensor(ids['input_ids']) attention_mask = torch.tensor(ids['attention_mask']) with torch.no_grad(): embedding = model(input_ids=input_ids,attention_mask=attention_mask,decoder_input_ids=None) # For feature extraction we recommend to use the encoder embedding encoder_embedding = embedding[2].cpu().numpy() decoder_embedding = embedding[0].cpu().numpy() ``` ## Training data The ProtT5-XL-UniRef50 model was pretrained on [UniRef50](https://www.uniprot.org/help/uniref), a dataset consisting of 45 million protein sequences. ## Training procedure ### Preprocessing The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The rare amino acids "U,Z,O,B" were mapped to "X". The inputs of the model are then of the form: ``` Protein Sequence [EOS] ``` The preprocessing step was performed on the fly, by cutting and padding the protein sequences up to 512 tokens. The details of the masking procedure for each sequence are as follows: - 15% of the amino acids are masked. - In 90% of the cases, the masked amino acids are replaced by `[MASK]` token. - In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. ### Pretraining The model was trained on a single TPU Pod V2-256 for 991.5 thousand steps in total, using sequence length 512 (batch size 2k). It was trained using ProtT5-XL-BFD model as an initial checkpoint, rather than training from scratch. It has a total of approximately 3B parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results When the model is used for feature extraction, this model achieves the following results: Test results : | Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane | |:-----:|:-----:|:-----:|:-----:|:-----:| | CASP12 | 81 | 70 | | | | TS115 | 87 | 77 | | | | CB513 | 86 | 74 | | | | DeepLoc | | | 81 | 91 | ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \&lt;a href="https://github.com/agemagician/ProtTrans"\&gt;https://github.com/agemagician/ProtTrans\&lt;/a\&gt;Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Rostlab/prot_t5_xxl_bfd
2020-12-11T10:20:10.000Z
[ "pytorch", "t5", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
Rostlab
19
transformers
Rostlab/prot_t5_xxl_uniref50
2021-03-30T19:25:17.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
Rostlab
20
transformers
Rostlab/prot_xlnet
2020-08-20T14:57:30.000Z
[ "pytorch", "xlnet", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "spiece.model" ]
Rostlab
102
transformers
Rubens/Wav2Vec2-Large-XLSR-53-Portuguese
2021-03-22T18:35:57.000Z
[ "pytorch", "wav2vec2", "pt", "dataset:common_voice", "transformers", "audio", "speech", "apache-2.0", "portuguese-speech-corpus", "automatic-speech-recognition", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Rubens
12
transformers
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - apache-2.0 - portuguese-speech-corpus - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: Rubens XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 20.41% --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") model = Wav2Vec2ForCTC.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") model = Wav2Vec2ForCTC.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (wer)**: 20.41 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found at: https://github.com/RubensZimbres/wav2vec2/blob/main/fine-tuning.py
Rubens/Wav2Vec2-Large-XLSR-53-a-Portuguese
2021-03-23T12:30:17.000Z
[ "pytorch", "wav2vec2", "pt", "dataset:common_voice", "transformers", "audio", "speech", "apache-2.0", "portuguese-speech-corpus", "automatic-speech-recognition", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Rubens
252
transformers
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - apache-2.0 - portuguese-speech-corpus - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: Rubens XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 19.30% --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-a-Portuguese") model = Wav2Vec2ForCTC.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-a-Portuguese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-a-Portuguese") model = Wav2Vec2ForCTC.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-a-Portuguese") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result(wer)**: 19.30 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found at: https://github.com/RubensZimbres/wav2vec2/blob/main/fine-tuning.py
Rubens/modelo_voice
2021-03-18T14:53:51.000Z
[]
[ ".gitattributes" ]
Rubens
0
Rubix982/TestingModelRepo
2020-11-26T15:23:34.000Z
[]
[ ".gitattributes" ]
Rubix982
0
Rui/moyu-club
2021-04-10T21:26:56.000Z
[]
[ ".gitattributes" ]
Rui
0
RuudVelo/XLSR-Wav2Vec2-Maltese-1
2021-03-29T21:11:59.000Z
[ "pytorch", "wav2vec2", "mt", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
RuudVelo
19
transformers
--- language: mt tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Maltese by RuudVelo results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice mt type: common_voice args: mt metrics: - name: Test WER type: wer value: 30.0 --- ## Evaluation on Common Voice Maltese Test ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys model_name = "RuudVelo/XLSR-Wav2Vec2-Maltese-1" device = "cuda" chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�]' model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "mt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` **Result**: 30.0 %
RuudVelo/wav2vec2-large-xlsr-53-frisian
2021-03-28T17:58:13.000Z
[ "pytorch", "wav2vec2", "fy-NL", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
RuudVelo
8
transformers
--- language: fy-NL tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-frisian by RuudVelo results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fy-NL type: common_voice args: fy-NL metrics: - name: Test WER type: wer value: 18.73 --- ## Evaluation on Common Voice Frisian Test ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys model_name = "RuudVelo/wav2vec2-large-xlsr-53-frisian" device = "cuda" chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "fy-NL", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` **Result**: 18.73 %
SEBIS/code_trans_t5_base_api_generation
2021-02-17T13:49:25.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
22
transformers
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on Api Recommendation Generation dataset. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_api_generation"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_api_generation", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/api%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_api_generation_multitask
2021-02-17T14:05:34.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
10
transformers
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_api_generation_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_api_generation_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/api%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 480,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_api_generation_multitask_finetune
2021-02-17T14:23:28.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
12
transformers
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the api recommendation generation task for the java apis. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_api_generation_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_api_generation_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/api%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 320,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing api recommendation generation data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_api_generation_transfer_learning_finetune
2021-02-18T05:30:22.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
14
transformers
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the api recommendation generation task for the java apis. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_api_generation_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_api_generation_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/api%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V3-8 for 1,400,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing api recommendation generation data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_comment_generation_java
2021-02-17T11:55:30.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
142
transformers
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on Code Comment Generation dataset. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_comment_generation_java_multitask
2021-02-17T11:56:36.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
18
transformers
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 460,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_comment_generation_java_multitask_finetune
2021-02-17T11:52:00.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
14
transformers
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code comment generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 60,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_comment_generation_java_transfer_learning_finetune
2021-02-17T20:16:54.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
13
transformers
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code comment generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V3-8 for 80,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_go
2021-02-15T18:33:36.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
11
transformers
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus go dataset. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/go/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask
2021-02-15T15:15:23.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
11
transformers
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/go/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 340,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask_finetune
2021-02-15T15:10:05.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
19
transformers
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/go/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_go_transfer_learning_finetune
2021-02-15T18:40:24.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
9
transformers
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/go/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_java
2021-02-15T13:54:12.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
11
transformers
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus java dataset. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/java/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask
2021-02-15T13:32:09.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
22
transformers
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/java/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 480,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask_finetune
2021-02-13T16:44:41.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
18
transformers
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/java/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_java_transfer_learning_finetune
2021-02-15T13:46:35.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
12
transformers
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/java/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_javascript
2021-02-16T14:53:09.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".Rhistory", ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
45
transformers
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus javascript dataset. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/javascript/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_javascript_multitask
2021-02-16T12:11:05.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
11
transformers
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/javascript/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 440,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_javascript_multitask_finetune
2021-02-16T09:48:50.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
955
transformers
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the javascript function/method. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/javascript/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 10,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing javascript code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_javascript_transfer_learning_finetune
2021-02-16T15:13:07.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
34
transformers
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the javascript function/method. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/javascript/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V3-8 for 35,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing javascript code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_php
2021-02-16T11:40:36.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
11
transformers
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus php dataset. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/php/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask
2021-02-16T10:44:53.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
9
transformers
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/php/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 360,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask_finetune
2021-02-15T21:19:18.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
10
transformers
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the php function/method. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/php/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing php code. Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_php_transfer_learning_finetune
2021-02-16T11:51:53.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
11
transformers
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the php function/method. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/php/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 65,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing php code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_python
2021-02-15T11:37:56.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
29
transformers
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus python dataset. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask
2021-02-15T11:06:17.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
25
transformers
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 420,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune
2021-02-15T10:53:10.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
87
transformers
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 4000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune
2021-02-15T11:48:14.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
30
transformers
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_ruby
2021-02-16T14:47:09.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
13
transformers
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus ruby dataset. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask
2021-02-16T12:00:43.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
10
transformers
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 160,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune
2021-02-13T16:53:31.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
20
transformers
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 12,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_transfer_learning_finetune
2021-02-16T15:00:04.000Z
[ "pytorch", "t5", "transformers", "summarization" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
SEBIS
9
transformers
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)