modelId
stringlengths 4
112
| lastModified
stringlengths 24
24
| tags
list | pipeline_tag
stringclasses 21
values | files
list | publishedBy
stringlengths 2
37
| downloads_last_month
int32 0
9.44M
| library
stringclasses 15
values | modelCard
large_stringlengths 0
100k
|
---|---|---|---|---|---|---|---|---|
huggingtweets/johnmisczak
|
2021-05-22T09:59:11.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/johnmisczak/1602272252372/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1161789105723908096/C77Qpn9i_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">John Misczak 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@johnmisczak bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@johnmisczak's tweets](https://twitter.com/johnmisczak).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1411</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>216</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>127</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1068</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3tygnonk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @johnmisczak's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1df1lp0c) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1df1lp0c/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/johnmisczak'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/johntheduncan
|
2021-05-22T10:00:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/johntheduncan/1614191301567/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346435789576613888/i5Mt7cEm_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">John Duncan 🤖 AI Bot </div>
<div style="font-size: 15px">@johntheduncan bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@johntheduncan's tweets](https://twitter.com/johntheduncan).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3235 |
| Retweets | 137 |
| Short tweets | 381 |
| Tweets kept | 2717 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gf1wlmc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @johntheduncan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6bwuegkk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6bwuegkk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/johntheduncan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/joinjuno
|
2021-05-22T10:01:17.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/joinjuno/1615829621434/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1087813546644103168/BR487bIe_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">juno ジュノ 🤖 AI Bot </div>
<div style="font-size: 15px">@joinjuno bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@joinjuno's tweets](https://twitter.com/joinjuno).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 610 |
| Retweets | 4 |
| Short tweets | 113 |
| Tweets kept | 493 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pi16gs0n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joinjuno's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12h4wkwh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12h4wkwh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/joinjuno')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jokowi
|
2021-05-22T10:02:24.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1299550083097059332/uK26iMOu_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Joko Widodo</div>
<div style="text-align: center; font-size: 14px;">@jokowi</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Joko Widodo.
| Data | Joko Widodo |
| --- | --- |
| Tweets downloaded | 3240 |
| Retweets | 1 |
| Short tweets | 5 |
| Tweets kept | 3234 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c1qe98am/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jokowi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gawgg6d1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gawgg6d1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jokowi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jonathankabel0
|
2021-05-21T21:05:36.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jonathankabel0/1621631123085/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1304525251997577217/LN13U05Z_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Jonathan Kabel</div>
<div style="text-align: center; font-size: 14px;">@jonathankabel0</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Jonathan Kabel.
| Data | Jonathan Kabel |
| --- | --- |
| Tweets downloaded | 84 |
| Retweets | 14 |
| Short tweets | 8 |
| Tweets kept | 62 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/392vhqb7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jonathankabel0's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rpdzcq4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rpdzcq4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jonathankabel0')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jonnydctid
|
2021-03-25T21:05:39.000Z
|
[] |
[
".gitattributes"
] |
huggingtweets
| 0 | |||
huggingtweets/jonsolomon
|
2021-05-22T10:03:32.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jonsolomon/1614100597698/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345485223442702343/kij8QQLM_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jon Solomon 🤖 AI Bot </div>
<div style="font-size: 15px">@jonsolomon bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jonsolomon's tweets](https://twitter.com/jonsolomon).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3203 |
| Retweets | 375 |
| Short tweets | 460 |
| Tweets kept | 2368 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1469gcid/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jonsolomon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/353uxlro) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/353uxlro/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jonsolomon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jordubi
|
2021-05-22T10:04:39.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jordubi/1601601188792/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1267715006533185539/iPvawKVF_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">maluma 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@jordubi bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jordubi's tweets](https://twitter.com/jordubi).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2268</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>406</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>646</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1216</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3rauq4lo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jordubi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/26sa9gep) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/26sa9gep/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/jordubi'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/jorvalentine
|
2021-05-22T10:06:08.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jorvalentine/1600743927408/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1231287334567542789/hUlvZ9F9_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">JohnnyNutRock 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@jorvalentine bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jorvalentine's tweets](https://twitter.com/jorvalentine).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2746</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1567</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>199</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>980</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/35i6owis/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jorvalentine's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3eq9xhay) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3eq9xhay/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/jorvalentine'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/josephmama666
|
2021-05-22T10:07:11.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/josephmama666/1614134283340/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337312159324258305/XLP7epZE_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">j 🤖 AI Bot </div>
<div style="font-size: 15px">@josephmama666 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@josephmama666's tweets](https://twitter.com/josephmama666).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3156 |
| Retweets | 1809 |
| Short tweets | 201 |
| Tweets kept | 1146 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/157t36eh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @josephmama666's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ahfjdey) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ahfjdey/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/josephmama666')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/joshuamterry
|
2021-05-22T10:08:34.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/joshuamterry/1614192343266/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349830144953884673/_1iwxGPM_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Joshua Terry 🤖 AI Bot </div>
<div style="font-size: 15px">@joshuamterry bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@joshuamterry's tweets](https://twitter.com/joshuamterry).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2641 |
| Retweets | 215 |
| Short tweets | 264 |
| Tweets kept | 2162 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/10h60169/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joshuamterry's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p2x7h27) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p2x7h27/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/joshuamterry')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jplatzhalter
|
2021-05-22T10:09:41.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jplatzhalter/1617891538835/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1204103314733821954/O_QCiMdI_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Julia Platz-Halter 🤖 AI Bot </div>
<div style="font-size: 15px">@jplatzhalter bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jplatzhalter's tweets](https://twitter.com/jplatzhalter).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3229 |
| Retweets | 297 |
| Short tweets | 416 |
| Tweets kept | 2516 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dx0eue5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jplatzhalter's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hsqnqfq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hsqnqfq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jplatzhalter')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jrdskinner
|
2021-03-26T02:07:43.000Z
|
[] |
[
".gitattributes"
] |
huggingtweets
| 0 | |||
huggingtweets/jreosquare
|
2021-05-22T10:10:44.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jreosquare/1614112116009/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361817928115441667/OjKhZsFO_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">rigel #freebaguette 🤖 AI Bot </div>
<div style="font-size: 15px">@jreosquare bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jreosquare's tweets](https://twitter.com/jreosquare).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3185 |
| Retweets | 345 |
| Short tweets | 608 |
| Tweets kept | 2232 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sokv6uq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jreosquare's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o3c73fh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o3c73fh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jreosquare')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jrosenfeld13
|
2021-05-22T10:11:49.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1300853031723032578/O1RXFH5O_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jason Rosenfeld 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@jrosenfeld13 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jrosenfeld13's tweets](https://twitter.com/jrosenfeld13).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>108</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>13</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>7</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>88</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/zll21jin/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jrosenfeld13's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/emtjeqkx) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/emtjeqkx/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/jrosenfeld13'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jruizalt
|
2021-05-22T10:12:56.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jruizalt/1617777087795/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356093945525112832/FZzklm9s_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Glavny Konstruktor 2.0 🛰️🚀🏴🚩🏴☠️🖖🏽 🤖 AI Bot </div>
<div style="font-size: 15px">@jruizalt bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jruizalt's tweets](https://twitter.com/jruizalt).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3215 |
| Retweets | 1813 |
| Short tweets | 128 |
| Tweets kept | 1274 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20z7lx0j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jruizalt's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39t1p2y2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39t1p2y2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jruizalt')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/js_thrill
|
2021-05-22T10:14:06.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/js_thrill/1616641827684/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1176503655643648002/90nRSNMW_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">john stuart placebo 💊 🤖 AI Bot </div>
<div style="font-size: 15px">@js_thrill bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@js_thrill's tweets](https://twitter.com/js_thrill).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 636 |
| Short tweets | 281 |
| Tweets kept | 2329 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ojspkfee/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @js_thrill's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gjgqfsw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gjgqfsw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/js_thrill')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jtk314
|
2021-05-22T10:15:33.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/jtk314/1616682193852/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339705819085070342/cob1ZlMM_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chauncey Guar 😎 🤖 AI Bot </div>
<div style="font-size: 15px">@jtk314 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jtk314's tweets](https://twitter.com/jtk314).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 342 |
| Retweets | 167 |
| Short tweets | 33 |
| Tweets kept | 142 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/nulgt1ao/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jtk314's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ov0kkjre) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ov0kkjre/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jtk314')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/juan
|
2021-05-22T10:16:43.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/juan/1617851040966/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/52505768/Juan_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Juan Comesaña 🤖 AI Bot </div>
<div style="font-size: 15px">@juan bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@juan's tweets](https://twitter.com/juan).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2491 |
| Retweets | 65 |
| Short tweets | 263 |
| Tweets kept | 2163 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kg3kuae/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @juan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mmxyah55) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mmxyah55/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/juan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/juanrallo
|
2021-05-22T10:17:50.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 16 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/juanrallo/1611244251085/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1104706743978913792/HFCwbGY3_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Juan Ramón Rallo 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@juanrallo bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@juanrallo's tweets](https://twitter.com/juanrallo).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3217</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>84</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>167</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2966</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3v3r82g5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @juanrallo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/307vpmrj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/307vpmrj/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/juanrallo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/juicewit
|
2021-05-22T10:18:57.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/juicewit/1618075804924/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1338269321865388036/AEO9QQ-t_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fyrd Mist 🤖 AI Bot </div>
<div style="font-size: 15px">@juicewit bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@juicewit's tweets](https://twitter.com/juicewit).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1384 |
| Retweets | 231 |
| Short tweets | 497 |
| Tweets kept | 656 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1su8svek/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @juicewit's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kl60u00) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kl60u00/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/juicewit')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/julien_c
|
2021-05-22T10:20:15.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 116 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/julien_c/1605217958996/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1108502565925326850/zPsBf2BI_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Julien Chaumond 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@julien_c bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@julien_c's tweets](https://twitter.com/julien_c).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3211</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>915</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>371</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1925</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2puhbhcj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @julien_c's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/245ieai8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/245ieai8/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/julien_c')
generator("My dream is", num_return_sequences=5)
```
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/justinbieber
|
2021-06-11T16:02:09.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/justinbieber/1623427323909/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365346288657715201/lRfQRoWl_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Justin Bieber</div>
<div style="text-align: center; font-size: 14px;">@justinbieber</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Justin Bieber.
| Data | Justin Bieber |
| --- | --- |
| Tweets downloaded | 3166 |
| Retweets | 1034 |
| Short tweets | 863 |
| Tweets kept | 1269 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33sw8hgs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @justinbieber's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wp396eq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wp396eq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/justinbieber')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/justinbowes
|
2021-03-26T01:00:45.000Z
|
[] |
[
".gitattributes"
] |
huggingtweets
| 0 | |||
huggingtweets/k_saifullaah
|
2021-05-22T10:22:32.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/k_saifullaah/1617005044741/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1245374761108041729/N2lNPBXs_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Khalid Saifullah 🤖 AI Bot </div>
<div style="font-size: 15px">@k_saifullaah bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@k_saifullaah's tweets](https://twitter.com/k_saifullaah).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1046 |
| Retweets | 59 |
| Short tweets | 258 |
| Tweets kept | 729 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n1gl1k8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @k_saifullaah's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20fm17xi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20fm17xi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/k_saifullaah')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kalakmanastan1
|
2021-03-31T04:59:16.000Z
|
[] |
[
".gitattributes"
] |
huggingtweets
| 0 | |||
huggingtweets/kali_k_priv
|
2021-05-22T10:23:46.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kali_k_priv/1617893602566/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1110685360919584771/xlBGzW4d_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kálí Kalváll 🤖 AI Bot </div>
<div style="font-size: 15px">@kali_k_priv bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kali_k_priv's tweets](https://twitter.com/kali_k_priv).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3216 |
| Retweets | 309 |
| Short tweets | 218 |
| Tweets kept | 2689 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zzm9a4dx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kali_k_priv's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15iz4s58) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15iz4s58/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kali_k_priv')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kaliandkalki
|
2021-05-22T10:24:55.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 17 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1032443314623021057/nXBnXwnh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sangeetha Thanapal 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@kaliandkalki bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kaliandkalki's tweets](https://twitter.com/kaliandkalki).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3118</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2133</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>34</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>951</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1ge70b9r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kaliandkalki's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1mg7y8rq) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1mg7y8rq/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/kaliandkalki'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kaltetechnick
|
2021-05-22T10:26:23.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kaltetechnick/1617895380460/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1351186992655179781/hk9Is_Nn_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">👁𝙉 𝙄 𝘾 𝙆👁 🤖 AI Bot </div>
<div style="font-size: 15px">@kaltetechnick bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kaltetechnick's tweets](https://twitter.com/kaltetechnick).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 794 |
| Retweets | 227 |
| Short tweets | 89 |
| Tweets kept | 478 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1viia1mg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kaltetechnick's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bmoajsy) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bmoajsy/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kaltetechnick')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kanganateam
|
2021-05-22T10:28:05.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kanganateam/1613324975942/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1328363769848709120/RYB3_4Fd_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kangana Ranaut 🤖 AI Bot </div>
<div style="font-size: 15px">@kanganateam bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kanganateam's tweets](https://twitter.com/kanganateam).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3167 |
| Retweets | 1321 |
| Short tweets | 67 |
| Tweets kept | 1779 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gxbb7zk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kanganateam's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28k6gjhm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28k6gjhm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kanganateam')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kanugantisuman
|
2021-05-22T10:29:16.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 24 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kanugantisuman/1603942667133/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1265865048552960001/HY2oQ7d__400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Suman Kanuganti 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@kanugantisuman bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kanugantisuman's tweets](https://twitter.com/kanugantisuman).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3241</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2327</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>134</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>780</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3e4f49ck/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kanugantisuman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1nncur4w) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1nncur4w/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/kanugantisuman'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/kanyewest
|
2021-06-17T00:34:16.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 17 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kanyewest/1623890028254/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ye</div>
<div style="text-align: center; font-size: 14px;">@kanyewest</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ye.
| Data | ye |
| --- | --- |
| Tweets downloaded | 1863 |
| Retweets | 193 |
| Short tweets | 573 |
| Tweets kept | 1097 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6ty7p2b9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kanyewest's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22uz5yol) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22uz5yol/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kanyewest')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kapusaicin
|
2021-06-13T21:53:09.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 0 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1061762969867112449/mDAkS7mO_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">dust bunny</div>
<div style="text-align: center; font-size: 14px;">@kapusaicin</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from dust bunny.
| Data | dust bunny |
| --- | --- |
| Tweets downloaded | 3110 |
| Retweets | 497 |
| Short tweets | 671 |
| Tweets kept | 1942 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2orj6rd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kapusaicin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qseounml) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qseounml/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kapusaicin')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/karchitecture
|
2021-05-22T10:31:25.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/karchitecture/1613440346289/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/984223761116250113/DZ7hKAGu_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Christopher Parsons 🤖 AI Bot </div>
<div style="font-size: 15px">@karchitecture bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@karchitecture's tweets](https://twitter.com/karchitecture).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3209 |
| Retweets | 1496 |
| Short tweets | 37 |
| Tweets kept | 1676 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t8ybhy5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @karchitecture's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cosz0u1v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cosz0u1v/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/karchitecture')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/karpathy
|
2021-05-22T10:32:36.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/karpathy/1607705820861/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1296667294148382721/9Pr6XrPB_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrej Karpathy 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@karpathy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@karpathy's tweets](https://twitter.com/karpathy).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3217</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>416</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>89</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2712</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m4p0ith/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @karpathy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7mm2jhgw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7mm2jhgw/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/karpathy'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kartographien
|
2021-05-22T10:34:00.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 20 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kartographien/1616642791486/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1218054135083405313/LEQJc8Q0_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">👽 kartographien 🤖 AI Bot </div>
<div style="font-size: 15px">@kartographien bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kartographien's tweets](https://twitter.com/kartographien).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 858 |
| Retweets | 56 |
| Short tweets | 37 |
| Tweets kept | 765 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pfwgux0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kartographien's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mop6jwu9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mop6jwu9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kartographien')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/katposting
|
2021-05-22T10:35:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/katposting/1614192971445/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1317673086100099072/0hla2KzJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">kat 🤖 AI Bot </div>
<div style="font-size: 15px">@katposting bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@katposting's tweets](https://twitter.com/katposting).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3163 |
| Retweets | 404 |
| Short tweets | 913 |
| Tweets kept | 1846 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2zoma9oo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @katposting's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f1mi9xy) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f1mi9xy/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/katposting')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/katya_zamo
|
2021-05-22T10:36:22.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/katya_zamo/1618954427042/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1368109907371692034/ll4wIHt7_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Katya 🤖 AI Bot </div>
<div style="font-size: 15px">@katya_zamo bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@katya_zamo's tweets](https://twitter.com/katya_zamo).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3212 |
| Retweets | 852 |
| Short tweets | 628 |
| Tweets kept | 1732 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2vvscqya/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @katya_zamo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/76adc86q) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/76adc86q/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/katya_zamo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/katymontgomerie
|
2021-05-22T10:37:30.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/katymontgomerie/1616774603762/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369653991349624834/9_USDTvG_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Katy Montgomerie 🦗 🤖 AI Bot </div>
<div style="font-size: 15px">@katymontgomerie bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@katymontgomerie's tweets](https://twitter.com/katymontgomerie).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3240 |
| Retweets | 405 |
| Short tweets | 386 |
| Tweets kept | 2449 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/omu7o91d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @katymontgomerie's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3elfhmr7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3elfhmr7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/katymontgomerie')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kawa11qt
|
2021-05-22T10:38:37.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kawa11qt/1617759012698/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375438566365487104/0NviH6e1_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sad Horse Song🍓 🤖 AI Bot </div>
<div style="font-size: 15px">@kawa11qt bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kawa11qt's tweets](https://twitter.com/kawa11qt).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2013 |
| Retweets | 559 |
| Short tweets | 74 |
| Tweets kept | 1380 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11h57eiv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kawa11qt's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2w477ad2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2w477ad2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kawa11qt')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kaysarridha
|
2021-05-22T10:40:12.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 20 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kaysarridha/1601333147007/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/533570298067828737/6iCVG4W7_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kaysar Ridha 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@kaysarridha bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kaysarridha's tweets](https://twitter.com/kaysarridha).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>451</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>97</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>12</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>342</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/nfrwu57y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kaysarridha's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/308zcfr9) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/308zcfr9/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/kaysarridha'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/kdtrey5
|
2021-05-22T10:41:52.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kdtrey5/1617832862582/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/889585901222989825/gp_fGcQ5_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kevin Durant 🤖 AI Bot </div>
<div style="font-size: 15px">@kdtrey5 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kdtrey5's tweets](https://twitter.com/kdtrey5).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 426 |
| Short tweets | 360 |
| Tweets kept | 2461 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1em9ocax/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kdtrey5's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wuh885m) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wuh885m/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kdtrey5')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kdv_grnola_bars
|
2021-05-22T10:43:01.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kdv_grnola_bars/1616128199998/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372048916305305610/6I4uHxoV_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">elise 🥭 | she/vae 🤖 AI Bot </div>
<div style="font-size: 15px">@kdv_grnola_bars bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kdv_grnola_bars's tweets](https://twitter.com/kdv_grnola_bars).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3186 |
| Retweets | 1771 |
| Short tweets | 468 |
| Tweets kept | 947 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3015uu1a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kdv_grnola_bars's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hamxgphm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hamxgphm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kdv_grnola_bars')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/keithfrankish
|
2021-05-22T10:44:09.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/keithfrankish/1616679112105/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1207775707839041538/osgc7L9X_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Keith Frankish 🤖 AI Bot </div>
<div style="font-size: 15px">@keithfrankish bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@keithfrankish's tweets](https://twitter.com/keithfrankish).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 146 |
| Short tweets | 369 |
| Tweets kept | 2732 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n1ipgov/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @keithfrankish's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yqsk3di) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yqsk3di/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/keithfrankish')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kendrictonn
|
2021-05-22T10:45:12.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kendrictonn/1616813205585/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/725757936698429440/8KNVQff4_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kendric Tonn 🤖 AI Bot </div>
<div style="font-size: 15px">@kendrictonn bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kendrictonn's tweets](https://twitter.com/kendrictonn).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3238 |
| Retweets | 244 |
| Short tweets | 148 |
| Tweets kept | 2846 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ecvcxbk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kendrictonn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2j51dutm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2j51dutm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kendrictonn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kennethlpearce
|
2021-05-22T10:46:20.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kennethlpearce/1616723425755/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362948580571504642/uva03rbs_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kenny Pearce 🤖 AI Bot </div>
<div style="font-size: 15px">@kennethlpearce bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kennethlpearce's tweets](https://twitter.com/kennethlpearce).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 362 |
| Retweets | 32 |
| Short tweets | 7 |
| Tweets kept | 323 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ht0bj53j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kennethlpearce's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/j5gwbymt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/j5gwbymt/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kennethlpearce')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kfeldesu
|
2021-05-21T20:22:27.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kfeldesu/1621628542696/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362490238539624449/l7s-c-kH_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">𝑲𝑹𝑰𝑺𝑻𝑰𝑵𝑬 🌸</div>
<div style="text-align: center; font-size: 14px;">@kfeldesu</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 𝑲𝑹𝑰𝑺𝑻𝑰𝑵𝑬 🌸.
| Data | 𝑲𝑹𝑰𝑺𝑻𝑰𝑵𝑬 🌸 |
| --- | --- |
| Tweets downloaded | 857 |
| Retweets | 117 |
| Short tweets | 79 |
| Tweets kept | 661 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37w4hmbi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kfeldesu's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vz6nuzn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vz6nuzn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kfeldesu')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kgoth999
|
2021-05-22T10:47:23.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1379440257343578120/bzvOADEH_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">K-Gvth 🤖 AI Bot </div>
<div style="font-size: 15px">@kgoth999 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kgoth999's tweets](https://twitter.com/kgoth999).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 2304 |
| Short tweets | 394 |
| Tweets kept | 549 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2zysdd5m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kgoth999's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/73jf1p1a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/73jf1p1a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kgoth999')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/khldharun
|
2021-05-22T10:48:34.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1235259374383304707/vLN0SoOY_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Khalid Harun 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@khldharun bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@khldharun's tweets](https://twitter.com/khldharun).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1110</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>481</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>141</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>488</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/pv5wef11/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @khldharun's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2s55th6x) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2s55th6x/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/khldharun'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kholodetss
|
2021-05-22T10:49:41.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kholodetss/1617896970405/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1367930980346990597/ZG7tz9se_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Elizabeth Hawkeye 🤖 AI Bot </div>
<div style="font-size: 15px">@kholodetss bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kholodetss's tweets](https://twitter.com/kholodetss).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3238 |
| Retweets | 287 |
| Short tweets | 586 |
| Tweets kept | 2365 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rgghkfd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kholodetss's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31ffjncj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31ffjncj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kholodetss')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kiashaaaa
|
2021-05-22T10:50:44.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kiashaaaa/1616789512890/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371548005623595010/17IGY1V1_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kiasha Naidoo 🤖 AI Bot </div>
<div style="font-size: 15px">@kiashaaaa bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kiashaaaa's tweets](https://twitter.com/kiashaaaa).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 235 |
| Retweets | 61 |
| Short tweets | 29 |
| Tweets kept | 145 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qnd0qwd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kiashaaaa's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fgyy2es) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fgyy2es/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kiashaaaa')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kicchinnezumi
|
2021-06-08T06:41:14.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kicchinnezumi/1623134447065/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1400341059842891782/nJw_YYUy_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Kicchin (Most Powerful VTweeter)</div>
<div style="text-align: center; font-size: 14px;">@kicchinnezumi</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Kicchin (Most Powerful VTweeter).
| Data | Kicchin (Most Powerful VTweeter) |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 644 |
| Short tweets | 1223 |
| Tweets kept | 1380 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25jce149/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kicchinnezumi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jg50eab) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jg50eab/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kicchinnezumi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kiddiabeetus
|
2021-05-22T10:51:48.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kiddiabeetus/1617769403632/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377731078081933319/EbD2lYn2_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kid Diabeetus 🤖 AI Bot </div>
<div style="font-size: 15px">@kiddiabeetus bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kiddiabeetus's tweets](https://twitter.com/kiddiabeetus).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 184 |
| Short tweets | 439 |
| Tweets kept | 2610 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d9wjbfj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kiddiabeetus's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22tt2xh4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22tt2xh4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kiddiabeetus')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kidmom777
|
2021-05-22T10:54:11.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342694597919604736/d-WJJkHQ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sop🔫anos 🤖 AI Bot </div>
<div style="font-size: 15px">@kidmom777 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kidmom777's tweets](https://twitter.com/kidmom777).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 228 |
| Retweets | 58 |
| Short tweets | 37 |
| Tweets kept | 133 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16ctnn1x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kidmom777's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/r9lvfp8d) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/r9lvfp8d/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kidmom777')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kimkardashian
|
2021-05-22T10:55:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1282057272357683201/hm0ianWU_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kim Kardashian West 🤖 AI Bot </div>
<div style="font-size: 15px">@kimkardashian bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kimkardashian's tweets](https://twitter.com/kimkardashian).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 906 |
| Short tweets | 589 |
| Tweets kept | 1746 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qcarqqe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kimkardashian's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16mjaoki) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16mjaoki/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kimkardashian')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kimpossiblefact
|
2021-05-22T10:56:26.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kimpossiblefact/1614469751021/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358463860970303492/PVkRra_Z_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">kim possible facts 🤖 AI Bot </div>
<div style="font-size: 15px">@kimpossiblefact bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kimpossiblefact's tweets](https://twitter.com/kimpossiblefact).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 154 |
| Short tweets | 708 |
| Tweets kept | 2379 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q1g4o8in/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kimpossiblefact's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oatncy1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oatncy1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kimpossiblefact')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kingal
|
2021-05-22T10:57:53.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kingal/1616657169273/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1188213182453575680/p8C7lurL_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Al King 🤖 AI Bot </div>
<div style="font-size: 15px">@kingal bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kingal's tweets](https://twitter.com/kingal).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3195 |
| Retweets | 660 |
| Short tweets | 189 |
| Tweets kept | 2346 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3t86cu9s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kingal's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mu6cwjd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mu6cwjd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kingal')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kingjames
|
2021-05-22T10:59:05.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kingjames/1607916672570/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1010862750401253377/Rof4XuYC_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">LeBron James 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@kingjames bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kingjames's tweets](https://twitter.com/kingjames).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3194</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>746</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>397</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2051</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ryhojxg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kingjames's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6svfg3z1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6svfg3z1/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/kingjames'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kinskyunplugged
|
2021-05-22T11:00:21.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363748355977797632/un1jC8Dr_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kinsky™ 🤖 AI Bot </div>
<div style="font-size: 15px">@kinskyunplugged bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kinskyunplugged's tweets](https://twitter.com/kinskyunplugged).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3172 |
| Retweets | 1213 |
| Short tweets | 177 |
| Tweets kept | 1782 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zm3c3vp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kinskyunplugged's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30tdxs0v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30tdxs0v/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kinskyunplugged')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kirilchi
|
2021-05-22T11:01:58.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1050012475897339906/9kQ1dC5v_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">K.Chilingarashvili 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@kirilchi bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kirilchi's tweets](https://twitter.com/kirilchi).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2147</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1387</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>121</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>639</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1h148cqc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kirilchi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2io0y61a) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2io0y61a/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/kirilchi'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kirsten3531
|
2021-05-22T11:03:06.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kirsten3531/1616929644042/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1313934696947081216/YfAUpQP0_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kirsten 🤖 AI Bot </div>
<div style="font-size: 15px">@kirsten3531 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kirsten3531's tweets](https://twitter.com/kirsten3531).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 139 |
| Short tweets | 276 |
| Tweets kept | 2832 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14p2ikaw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kirsten3531's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rp8pw0k) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rp8pw0k/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kirsten3531')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kitsune__spirit
|
2021-05-22T11:04:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 27 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365566121592692736/KP8KDo2-_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">KitsuneSpirit🦊💝 VTuber ~</div>
<div style="text-align: center; font-size: 14px;">@kitsune__spirit</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from KitsuneSpirit🦊💝 VTuber ~.
| Data | KitsuneSpirit🦊💝 VTuber ~ |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 65 |
| Short tweets | 998 |
| Tweets kept | 2187 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qfz2kzl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kitsune__spirit's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mrv13gz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mrv13gz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kitsune__spirit')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/knipps
|
2021-05-22T11:05:19.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/knipps/1616643951269/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342856369666289670/ulo9sK3U_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Knipps 🤖 AI Bot </div>
<div style="font-size: 15px">@knipps bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@knipps's tweets](https://twitter.com/knipps).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3239 |
| Retweets | 646 |
| Short tweets | 510 |
| Tweets kept | 2083 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3843n0rf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @knipps's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31ob2buu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31ob2buu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/knipps')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/koriposting
|
2021-05-22T11:06:55.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/koriposting/1614100924410/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362145992875921408/vuauUc8U_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kori II: Kori Harder 🤖 AI Bot </div>
<div style="font-size: 15px">@koriposting bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@koriposting's tweets](https://twitter.com/koriposting).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3133 |
| Retweets | 552 |
| Short tweets | 648 |
| Tweets kept | 1933 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qpd0htrb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @koriposting's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19rk1uxn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19rk1uxn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/koriposting')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kr00ney-nerdwallet-producthunt
|
2021-06-14T11:08:52.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 0 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kr00ney-nerdwallet-producthunt/1623668927813/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363962814499495937/UFNUnRoS_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339064421964902402/-Rj0-u21_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1029047234371903488/z10lHpTA_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Product Hunt 😸 & Kate Rooney & NerdWallet</div>
<div style="text-align: center; font-size: 14px;">@kr00ney-nerdwallet-producthunt</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Product Hunt 😸 & Kate Rooney & NerdWallet.
| Data | Product Hunt 😸 | Kate Rooney | NerdWallet |
| --- | --- | --- | --- |
| Tweets downloaded | 3250 | 2622 | 3234 |
| Retweets | 92 | 896 | 713 |
| Short tweets | 234 | 125 | 22 |
| Tweets kept | 2924 | 1601 | 2499 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vrmrzm0o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kr00ney-nerdwallet-producthunt's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zdu3nltx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zdu3nltx/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kr00ney-nerdwallet-producthunt')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/krimsonmist
|
2021-05-22T11:08:09.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/krimsonmist/1614097478483/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1170795982017171457/KAXBi-3B_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrew but chilly 🤖 AI Bot </div>
<div style="font-size: 15px">@krimsonmist bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@krimsonmist's tweets](https://twitter.com/krimsonmist).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1003 |
| Retweets | 108 |
| Short tweets | 76 |
| Tweets kept | 819 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ppdwwwp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @krimsonmist's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hpw60be) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hpw60be/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/krimsonmist')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/krislikesbooks
|
2021-05-28T00:18:42.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/krislikesbooks/1622161041088/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1393350979114790914/-iM9DS3X_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">kl conrad kilgallen, ma</div>
<div style="text-align: center; font-size: 14px;">@krislikesbooks</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from kl conrad kilgallen, ma.
| Data | kl conrad kilgallen, ma |
| --- | --- |
| Tweets downloaded | 623 |
| Retweets | 132 |
| Short tweets | 26 |
| Tweets kept | 465 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rgomxad6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @krislikesbooks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i60lm5kw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i60lm5kw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/krislikesbooks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kristjanmoore
|
2021-05-22T11:09:11.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kristjanmoore/1616942113648/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349365025073483776/CxN1vadL_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kristján Moore (Kris) 🤖 AI Bot </div>
<div style="font-size: 15px">@kristjanmoore bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kristjanmoore's tweets](https://twitter.com/kristjanmoore).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 936 |
| Retweets | 184 |
| Short tweets | 53 |
| Tweets kept | 699 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ruacqrz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kristjanmoore's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3c5fw46f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3c5fw46f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kristjanmoore')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/krzyzanowskim
|
2021-05-22T11:10:47.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/krzyzanowskim/1616872995116/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1268856664247218176/judxkqEh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Marcin K 🤖 AI Bot </div>
<div style="font-size: 15px">@krzyzanowskim bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@krzyzanowskim's tweets](https://twitter.com/krzyzanowskim).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 101 |
| Short tweets | 280 |
| Tweets kept | 2868 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k7qbe8o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @krzyzanowskim's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/j8q05077) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/j8q05077/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/krzyzanowskim')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/ksi
|
2021-05-26T07:25:24.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/ksi/1622013920235/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1328581453207269379/_duwG5mF_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">LORD KSI</div>
<div style="text-align: center; font-size: 14px;">@ksi</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from LORD KSI.
| Data | LORD KSI |
| --- | --- |
| Tweets downloaded | 1692 |
| Retweets | 103 |
| Short tweets | 362 |
| Tweets kept | 1227 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qip8cdy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ksi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bbbgguzq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bbbgguzq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ksi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kurnugia1
|
2021-05-22T11:12:58.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kurnugia1/1616749844740/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374843449485238277/9BsM6uYG_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nikki 🖤💜🤍 🤖 AI Bot </div>
<div style="font-size: 15px">@kurnugia1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kurnugia1's tweets](https://twitter.com/kurnugia1).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 71 |
| Short tweets | 416 |
| Tweets kept | 2761 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33sftjsv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kurnugia1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dlj7ham) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dlj7ham/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kurnugia1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kurtkendricks
|
2021-05-22T11:14:06.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kurtkendricks/1616857784762/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1069378985753174016/Vv8vgnV7_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">DOUBLE K 🤖 AI Bot </div>
<div style="font-size: 15px">@kurtkendricks bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kurtkendricks's tweets](https://twitter.com/kurtkendricks).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 752 |
| Retweets | 4 |
| Short tweets | 75 |
| Tweets kept | 673 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18zo8iwy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kurtkendricks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rypm03ta) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rypm03ta/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kurtkendricks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kwiihours
|
2021-05-22T11:15:13.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kwiihours/1616725434123/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375180524096946179/vJCe-Jix_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kwii 🤖 AI Bot </div>
<div style="font-size: 15px">@kwiihours bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kwiihours's tweets](https://twitter.com/kwiihours).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 109 |
| Short tweets | 1051 |
| Tweets kept | 2087 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2i5s41be/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kwiihours's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1aetz628) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1aetz628/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kwiihours')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kylecranmer
|
2021-05-22T11:17:21.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kylecranmer/1616770262671/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/378800000065241474/e47527eed661a899d666329eb2774477_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kyle Cranmer 🤖 AI Bot </div>
<div style="font-size: 15px">@kylecranmer bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kylecranmer's tweets](https://twitter.com/kylecranmer).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3240 |
| Retweets | 1213 |
| Short tweets | 240 |
| Tweets kept | 1787 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/208szm6c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kylecranmer's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29uehfdz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29uehfdz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kylecranmer')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kylejameshoward
|
2021-05-22T11:18:28.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378854104080977921/P9LyBsf0_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kyle J. Howard 🤖 AI Bot </div>
<div style="font-size: 15px">@kylejameshoward bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kylejameshoward's tweets](https://twitter.com/kylejameshoward).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 153 |
| Short tweets | 595 |
| Tweets kept | 2502 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3928z7co/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kylejameshoward's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31oeuh9j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31oeuh9j/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kylejameshoward')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kyrillpotapov
|
2021-05-22T11:19:35.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/kyrillpotapov/1616753968957/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2556685417/edinburgh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kyrill Potapov 🤖 AI Bot </div>
<div style="font-size: 15px">@kyrillpotapov bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@kyrillpotapov's tweets](https://twitter.com/kyrillpotapov).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1874 |
| Retweets | 5 |
| Short tweets | 154 |
| Tweets kept | 1715 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bq0z9jl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kyrillpotapov's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1fmbcn1h) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1fmbcn1h/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kyrillpotapov')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/l2k
|
2021-05-22T11:20:37.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 445 |
transformers
|
---
language: en
thumbnail: http://res.cloudinary.com/huggingtweets/image/upload/v1599871089/l2k.jpg
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/573383872/img_0621_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lukas Biewald 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@l2k bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@l2k's tweets](https://twitter.com/l2k).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2580</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>598</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>88</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1894</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/17e2cw73/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @l2k's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/10mi5zis) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/10mi5zis/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/l2k'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/laceyjames814
|
2021-05-22T11:21:52.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/laceyjames814/1618851308460/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1350450532599607298/3utPgO0f_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">𝓖𝓸𝓭𝓭𝓮𝓼𝓼 𝓛𝓪𝓬𝓮𝔂 🤖 AI Bot </div>
<div style="font-size: 15px">@laceyjames814 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@laceyjames814's tweets](https://twitter.com/laceyjames814).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 440 |
| Retweets | 23 |
| Short tweets | 21 |
| Tweets kept | 396 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ecg4m1t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laceyjames814's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qk3e1j11) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qk3e1j11/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/laceyjames814')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lado_boi
|
2021-05-22T11:23:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lado_boi/1617800384792/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1352677580227420160/Aee7-Ckl_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lado Soyboy 🤖 AI Bot </div>
<div style="font-size: 15px">@lado_boi bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lado_boi's tweets](https://twitter.com/lado_boi).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2986 |
| Retweets | 1786 |
| Short tweets | 168 |
| Tweets kept | 1032 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nyzzg3z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lado_boi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17gefac5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17gefac5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lado_boi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/ladygaga
|
2021-05-22T11:28:20.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 16 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/ladygaga/1621545336086/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369334540339085312/dLY4T49m_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div>
<div style="text-align: center; font-size: 14px;">@ladygaga</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Lady Gaga.
| Data | Lady Gaga |
| --- | --- |
| Tweets downloaded | 3111 |
| Retweets | 607 |
| Short tweets | 307 |
| Tweets kept | 2197 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2y0zrklh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ladygaga's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/slu2szr7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/slu2szr7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ladygaga')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/laen
|
2021-05-22T11:29:36.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/laen/1617752401919/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/412359716094758912/M03z1Sdt_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">laen 🤖 AI Bot </div>
<div style="font-size: 15px">@laen bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@laen's tweets](https://twitter.com/laen).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3238 |
| Retweets | 765 |
| Short tweets | 276 |
| Tweets kept | 2197 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3d8mv5bw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vtr42wt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vtr42wt/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/laen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lafrenchfabtalk
|
2021-05-22T11:30:32.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 24 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lafrenchfabtalk/1606534721070/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1111644417692192770/bFSbn8M3_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Meet La French Fab 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@lafrenchfabtalk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lafrenchfabtalk's tweets](https://twitter.com/lafrenchfabtalk).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>325</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>75</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>23</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>227</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cif6ly5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lafrenchfabtalk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2370zvtn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2370zvtn/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/lafrenchfabtalk'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/laikasez
|
2021-05-22T11:31:36.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/laikasez/1614213513015/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344159878328233984/9JlVe-vm_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Laïka 🤖 AI Bot </div>
<div style="font-size: 15px">@laikasez bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@laikasez's tweets](https://twitter.com/laikasez).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3212 |
| Retweets | 734 |
| Short tweets | 463 |
| Tweets kept | 2015 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2x5btzqc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laikasez's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2n8pmhk2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2n8pmhk2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/laikasez')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lainca_
|
2021-05-22T11:32:43.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371716545710338048/sIU2L-H1_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Inca 🤖 AI Bot </div>
<div style="font-size: 15px">@lainca_ bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lainca_'s tweets](https://twitter.com/lainca_).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 146 |
| Short tweets | 350 |
| Tweets kept | 2749 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2q8tlw4p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lainca_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20lp49wa) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20lp49wa/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lainca_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/laitman
|
2021-05-22T11:33:45.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 20 |
transformers
|
---
language: en
thumbnail: http://www.huggingtweets.com/laitman/1600353144306/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/527071976813125633/WXcs9xjo_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michael Laitman 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@laitman bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@laitman's tweets](https://twitter.com/laitman).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3239</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>0</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>30</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3209</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1zk22yo7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laitman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/12g4l5a0) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/12g4l5a0/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/laitman'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lanalilligant
|
2021-05-22T11:35:34.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lanalilligant/1614104621447/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1338358126664429569/55icVQ_W_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Higa Tedrip 🤖 AI Bot </div>
<div style="font-size: 15px">@lanalilligant bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lanalilligant's tweets](https://twitter.com/lanalilligant).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3143 |
| Retweets | 965 |
| Short tweets | 865 |
| Tweets kept | 1313 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fv251f6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lanalilligant's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dwk8zzw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dwk8zzw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lanalilligant')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/laptopmicdrop
|
2021-05-22T11:37:47.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/laptopmicdrop/1616655100622/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345619827554136064/iD3vTVOJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">conditions uncertain 🤖 AI Bot </div>
<div style="font-size: 15px">@laptopmicdrop bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@laptopmicdrop's tweets](https://twitter.com/laptopmicdrop).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3182 |
| Retweets | 921 |
| Short tweets | 174 |
| Tweets kept | 2087 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/n5muugk9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laptopmicdrop's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2d1ajuwi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2d1ajuwi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/laptopmicdrop')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lauren9dudley
|
2021-05-22T11:38:56.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lauren9dudley/1619459346540/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/936513155152392192/J9N9B-g8_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lauren Dudley📸 🤖 AI Bot </div>
<div style="font-size: 15px">@lauren9dudley bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lauren9dudley's tweets](https://twitter.com/lauren9dudley).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 136 |
| Short tweets | 509 |
| Tweets kept | 2605 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/158bph3u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lauren9dudley's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3c2x1cau) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3c2x1cau/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lauren9dudley')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/laurentfranckx
|
2021-05-22T11:40:02.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369257105786552322/vqJoQlNt_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Laurent Franckx 🇧🇪🇪🇺 🤖 AI Bot </div>
<div style="font-size: 15px">@laurentfranckx bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@laurentfranckx's tweets](https://twitter.com/laurentfranckx).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 670 |
| Short tweets | 353 |
| Tweets kept | 2223 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dmskao5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laurentfranckx's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wcni0df) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wcni0df/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/laurentfranckx')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lavanguardia
|
2021-05-22T11:41:10.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lavanguardia/1610648853706/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1286202362055528450/aZEjPeXP_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">La Vanguardia 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@lavanguardia bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lavanguardia's tweets](https://twitter.com/lavanguardia).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3208</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>578</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>51</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2579</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oy8ll1q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lavanguardia's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ks3gujo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ks3gujo/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/lavanguardia'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lavanyaai
|
2021-05-22T11:42:16.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 54 |
transformers
|
---
language: en
thumbnail: http://www.huggingtweets.com/lavanyaai/1600320144154/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1302839376909488128/fPooODvu_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lavanya 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@lavanyaai bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lavanyaai's tweets](https://twitter.com/lavanyaai).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3187</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1482</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>220</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1485</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1s4lpnmf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lavanyaai's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/6zcv33k4) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/6zcv33k4/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/lavanyaai'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lavendersheeps
|
2021-05-22T11:43:26.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lavendersheeps/1614213910023/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1278506428697923585/iBj87usf_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">vivian 🤖 AI Bot </div>
<div style="font-size: 15px">@lavendersheeps bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lavendersheeps's tweets](https://twitter.com/lavendersheeps).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3234 |
| Retweets | 718 |
| Short tweets | 532 |
| Tweets kept | 1984 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37w5fs55/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lavendersheeps's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32bo9o62) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32bo9o62/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lavendersheeps')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lavendhole
|
2021-05-22T11:44:40.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lavendhole/1617753963233/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/936162831069614080/cEw7nJR5_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Wren 🤖 AI Bot </div>
<div style="font-size: 15px">@lavendhole bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lavendhole's tweets](https://twitter.com/lavendhole).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3178 |
| Retweets | 1249 |
| Short tweets | 95 |
| Tweets kept | 1834 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s9pv1fo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lavendhole's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wuhvuf0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wuhvuf0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lavendhole')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/leaacta
|
2021-05-22T11:46:23.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/leaacta/1616629375351/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374331704735846401/4VYA1Ee0_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Instance Of Cat ☀️ 🤖 AI Bot </div>
<div style="font-size: 15px">@leaacta bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@leaacta's tweets](https://twitter.com/leaacta).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3228 |
| Retweets | 464 |
| Short tweets | 595 |
| Tweets kept | 2169 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k0ify0e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leaacta's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b0xpoqf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b0xpoqf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/leaacta')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/leehsienloong
|
2021-05-22T11:47:48.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 20 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/leehsienloong/1602584946584/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1292656123422498817/KsNLC4Uc_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">leehsienloong 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@leehsienloong bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@leehsienloong's tweets](https://twitter.com/leehsienloong).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3195</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>36</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>39</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3120</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/bodl1o36/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leehsienloong's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/7ajjl7j0) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/7ajjl7j0/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/leehsienloong'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/leftist_cowgirl
|
2021-05-22T11:48:55.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/leftist_cowgirl/1616785870204/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358860336590426113/l1jvvk1E_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">zayn 🤖 AI Bot </div>
<div style="font-size: 15px">@leftist_cowgirl bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@leftist_cowgirl's tweets](https://twitter.com/leftist_cowgirl).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 823 |
| Retweets | 69 |
| Short tweets | 90 |
| Tweets kept | 664 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ce58wsq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leftist_cowgirl's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mwx8k30) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mwx8k30/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/leftist_cowgirl')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/legendarysoren
|
2021-05-22T11:50:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 20 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/legendarysoren/1614146572127/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346228642783711232/aBdTy3Bp_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nicøle Røsalyn Lørelai 🤖 AI Bot </div>
<div style="font-size: 15px">@legendarysoren bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@legendarysoren's tweets](https://twitter.com/legendarysoren).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3053 |
| Retweets | 1519 |
| Short tweets | 260 |
| Tweets kept | 1274 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ta1669u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @legendarysoren's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p5at964) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p5at964/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/legendarysoren')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/leleighc
|
2021-05-22T11:51:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/leleighc/1608390434981/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1331880781166252035/EWqg7Tw8_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ًreign 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@leleighc bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@leleighc's tweets](https://twitter.com/leleighc).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2795</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>574</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>782</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1439</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wk8mzru9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leleighc's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2taihxyc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2taihxyc/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/leleighc'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/leloykun
|
2021-05-22T11:52:26.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/leloykun/1616656093637/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1290501604936835075/JrRZwG_C_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Franz Cesista 🤖 AI Bot </div>
<div style="font-size: 15px">@leloykun bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@leloykun's tweets](https://twitter.com/leloykun).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3183 |
| Retweets | 956 |
| Short tweets | 481 |
| Tweets kept | 1746 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2i4u36q2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leloykun's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vp8c665) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vp8c665/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/leloykun')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/lenforlenjamin
|
2021-05-22T11:53:37.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/lenforlenjamin/1616733019569/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359555020421799937/fV7dNYXq_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lenjamin 🤖 AI Bot </div>
<div style="font-size: 15px">@lenforlenjamin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@lenforlenjamin's tweets](https://twitter.com/lenforlenjamin).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3226 |
| Retweets | 424 |
| Short tweets | 380 |
| Tweets kept | 2422 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30u5t4jt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lenforlenjamin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1n5tns8l) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1n5tns8l/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lenforlenjamin')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.