modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
huggingtweets/maxnoichl
2021-05-22T13:55:07.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/maxnoichl/1616642867004/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1044692450529476613/TEnp8FC5_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Max Noichl 🤖 AI Bot </div> <div style="font-size: 15px">@maxnoichl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maxnoichl's tweets](https://twitter.com/maxnoichl). | Data | Quantity | | --- | --- | | Tweets downloaded | 920 | | Retweets | 407 | | Short tweets | 46 | | Tweets kept | 467 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3q42s8gg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxnoichl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hyybffc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hyybffc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maxnoichl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/maxwellacameron
2021-05-22T13:56:10.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
8
transformers
--- language: en thumbnail: https://www.huggingtweets.com/maxwellacameron/1617251170563/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1013952238501355520/PbL6SuNj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Maxwell A. Cameron 🤖 AI Bot </div> <div style="font-size: 15px">@maxwellacameron bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maxwellacameron's tweets](https://twitter.com/maxwellacameron). | Data | Quantity | | --- | --- | | Tweets downloaded | 2969 | | Retweets | 392 | | Short tweets | 182 | | Tweets kept | 2395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k670nnb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxwellacameron's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hkatk9i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hkatk9i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maxwellacameron') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/maybeluncle
2021-05-22T13:59:45.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/maybeluncle/1617776294782/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1303741898155323395/kk5Da9Gz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Æustin B-12 🍊 🤖 AI Bot </div> <div style="font-size: 15px">@maybeluncle bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maybeluncle's tweets](https://twitter.com/maybeluncle). | Data | Quantity | | --- | --- | | Tweets downloaded | 436 | | Retweets | 23 | | Short tweets | 84 | | Tweets kept | 329 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bgbf4jv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maybeluncle's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/aqd96qwz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/aqd96qwz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maybeluncle') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mchammer
2021-05-22T14:01:02.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
14
transformers
--- language: en thumbnail: http://res.cloudinary.com/huggingtweets/image/upload/v1599931790/mchammer.jpg tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1273350748152008706/lrRFBCd-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">MC HAMMER 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mchammer bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mchammer's tweets](https://twitter.com/mchammer). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3228</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1006</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1084</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1138</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/7qehxuzo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mchammer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/cibgo2pn) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/cibgo2pn/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mchammer'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mcintweet
2021-06-13T16:36:05.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
0
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mcintweet/1623602161461/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1174977443641249792/VCg_utme_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Michael McIntyre</div> <div style="text-align: center; font-size: 14px;">@mcintweet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Michael McIntyre. | Data | Michael McIntyre | | --- | --- | | Tweets downloaded | 1196 | | Retweets | 138 | | Short tweets | 34 | | Tweets kept | 1024 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35dkm3ec/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mcintweet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20vszack) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20vszack/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mcintweet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mdennedy
2021-05-22T14:02:20.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
14
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/488767003910365185/XuiEhFC8_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michelle Finneran Dennedy 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mdennedy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mdennedy's tweets](https://twitter.com/mdennedy). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3217</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1383</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>327</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1507</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2a1prekg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdennedy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1gge9ffp) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1gge9ffp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mdennedy'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mdlhx
2021-05-22T14:03:28.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
22
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mdlhx/1600847599559/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1017771143174983680/xZ4-ChFm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Miryam de Lhoneux 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mdlhx bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mdlhx's tweets](https://twitter.com/mdlhx). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2408</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>213</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>272</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1923</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2nt3ibgz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdlhx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1e6qg0mw) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1e6qg0mw/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mdlhx'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/mechanical_monk
2021-05-22T14:04:31.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
12
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mechanical_monk/1616856045639/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374353206898229249/p9ZaR7AU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Solar Monk 🤖 AI Bot </div> <div style="font-size: 15px">@mechanical_monk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mechanical_monk's tweets](https://twitter.com/mechanical_monk). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 9 | | Short tweets | 540 | | Tweets kept | 2701 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qymex3o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mechanical_monk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15h2yysz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15h2yysz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mechanical_monk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mediocrechris
2021-05-22T14:05:36.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
8
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1368512623034183686/SqccnbVI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">chris 🤖 AI Bot </div> <div style="font-size: 15px">@mediocrechris bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mediocrechris's tweets](https://twitter.com/mediocrechris). | Data | Quantity | | --- | --- | | Tweets downloaded | 3054 | | Retweets | 1321 | | Short tweets | 167 | | Tweets kept | 1566 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7lzf7wr4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mediocrechris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mf39bti) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mf39bti/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mediocrechris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/medyoantok
2021-05-22T14:07:25.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/medyoantok/1608377513234/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337800638655152129/lzyOrl2X_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">jai 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@medyoantok bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@medyoantok's tweets](https://twitter.com/medyoantok). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3211</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>282</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>853</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2076</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4tvjlrbh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medyoantok's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38pi42bb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38pi42bb/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/medyoantok'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/meekaale
2021-05-22T14:09:09.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349329043343224832/WhPBEeDp_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Meekaale Brockman 🤖 AI Bot </div> <div style="font-size: 15px">@meekaale bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@meekaale's tweets](https://twitter.com/meekaale). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 194 | | Short tweets | 314 | | Tweets kept | 2737 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1y2n8q6q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @meekaale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wpx5ruy7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wpx5ruy7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/meekaale') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mehatescum
2021-05-22T14:10:26.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
16
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mehatescum/1617250023965/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1252735857418698755/z57k2l8j_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">sewer man 🤖 AI Bot </div> <div style="font-size: 15px">@mehatescum bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mehatescum's tweets](https://twitter.com/mehatescum). | Data | Quantity | | --- | --- | | Tweets downloaded | 2909 | | Retweets | 682 | | Short tweets | 509 | | Tweets kept | 1718 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xnqvzfl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mehatescum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qs8o4r0a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qs8o4r0a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mehatescum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/melee_monkey
2021-05-22T14:12:09.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/melee_monkey/1614201280882/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1103599131967123457/FnVa21bq_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Simon 🤖 AI Bot </div> <div style="font-size: 15px">@melee_monkey bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@melee_monkey's tweets](https://twitter.com/melee_monkey). | Data | Quantity | | --- | --- | | Tweets downloaded | 2584 | | Retweets | 278 | | Short tweets | 83 | | Tweets kept | 2223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ul7y1t6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melee_monkey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zl5ryef) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zl5ryef/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/melee_monkey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/melnicksergio
2021-05-22T14:13:24.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
17
transformers
--- language: en thumbnail: https://www.huggingtweets.com/melnicksergio/1602256233745/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/905461232324542468/pmWvNFJl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sergio I. Melnick 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@melnicksergio bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@melnicksergio's tweets](https://twitter.com/melnicksergio). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3189</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2694</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>110</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>385</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1tgvsv1m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melnicksergio's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/24l036nj) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/24l036nj/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/melnicksergio'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/mentlelhospital
2021-05-22T14:14:40.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mentlelhospital/1617766795325/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1314538217920552960/kXXIde-t_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🐮Seeking Alphas🐮 (college dropout) 🤖 AI Bot </div> <div style="font-size: 15px">@mentlelhospital bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mentlelhospital's tweets](https://twitter.com/mentlelhospital). | Data | Quantity | | --- | --- | | Tweets downloaded | 3172 | | Retweets | 916 | | Short tweets | 241 | | Tweets kept | 2015 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tyv3tpy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mentlelhospital's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tq73mj0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tq73mj0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mentlelhospital') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/merry_eths
2021-05-22T14:16:50.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
12
transformers
--- language: en thumbnail: https://www.huggingtweets.com/merry_eths/1616933123793/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343769502916489216/lg5XnoAa_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Eths 🤖 AI Bot </div> <div style="font-size: 15px">@merry_eths bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@merry_eths's tweets](https://twitter.com/merry_eths). | Data | Quantity | | --- | --- | | Tweets downloaded | 796 | | Retweets | 35 | | Short tweets | 41 | | Tweets kept | 720 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26yei5rs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @merry_eths's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a84bp6k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a84bp6k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/merry_eths') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/messiah869
2021-05-22T14:18:05.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
19
transformers
--- language: en thumbnail: https://www.huggingtweets.com/messiah869/1616676005506/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1287118149394071552/mKhqMluH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mo 🤖 AI Bot </div> <div style="font-size: 15px">@messiah869 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@messiah869's tweets](https://twitter.com/messiah869). | Data | Quantity | | --- | --- | | Tweets downloaded | 2858 | | Retweets | 1271 | | Short tweets | 212 | | Tweets kept | 1375 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/243hchhz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @messiah869's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/221ghn2m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/221ghn2m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/messiah869') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/messiah_niko
2021-06-07T08:29:53.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
1
transformers
--- language: en thumbnail: https://www.huggingtweets.com/messiah_niko/1623054570608/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1323150543460577280/qH9qh3Hg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NikoTheMessiah</div> <div style="text-align: center; font-size: 14px;">@messiah_niko</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NikoTheMessiah. | Data | NikoTheMessiah | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 0 | | Short tweets | 1095 | | Tweets kept | 2154 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hqsklu0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @messiah_niko's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fov69x9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fov69x9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/messiah_niko') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mgardner2000
2021-05-22T14:20:09.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
8
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mgardner2000/1616723022351/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1172700745981988869/L6yS44ib_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Molly Gardner 🤖 AI Bot </div> <div style="font-size: 15px">@mgardner2000 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mgardner2000's tweets](https://twitter.com/mgardner2000). | Data | Quantity | | --- | --- | | Tweets downloaded | 114 | | Retweets | 20 | | Short tweets | 11 | | Tweets kept | 83 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6mhuilch/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mgardner2000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wimgfslg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wimgfslg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mgardner2000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/micbucci
2021-05-22T14:21:17.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
16
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1249308412808171521/WNx765F8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michelangelo Bucci 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@micbucci bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@micbucci's tweets](https://twitter.com/micbucci). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1559</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>248</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>52</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1259</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/198uon6g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @micbucci's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/f6humoq2) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/f6humoq2/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/micbucci'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/michaeljackson
2021-05-22T14:22:13.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
16
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/556179314660478976/l_MadSiU_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michael Jackson 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@michaeljackson bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michaeljackson's tweets](https://twitter.com/michaeljackson). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2671</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>24</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2615</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3lg17rb5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaeljackson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/lnx54cjj) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/lnx54cjj/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/michaeljackson'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/michaelreeves
2021-05-22T14:23:17.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/michaelreeves/1619288893486/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1275396462076022786/ZsFFlLrH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michael Reeves 🤖 AI Bot </div> <div style="font-size: 15px">@michaelreeves bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michaelreeves's tweets](https://twitter.com/michaelreeves). | Data | Quantity | | --- | --- | | Tweets downloaded | 914 | | Retweets | 32 | | Short tweets | 142 | | Tweets kept | 740 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3prhwuuh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaelreeves's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1za8s10i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1za8s10i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michaelreeves') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/michaeltrazzi
2021-05-22T14:24:36.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/michaeltrazzi/1616940766067/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340673217921474562/Igt314Ag_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michaël Trazzi 🤖 AI Bot </div> <div style="font-size: 15px">@michaeltrazzi bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michaeltrazzi's tweets](https://twitter.com/michaeltrazzi). | Data | Quantity | | --- | --- | | Tweets downloaded | 2029 | | Retweets | 116 | | Short tweets | 467 | | Tweets kept | 1446 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w9xuqn6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaeltrazzi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bumahb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bumahb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michaeltrazzi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/michelleobama
2021-05-22T14:25:40.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
19
transformers
--- language: en thumbnail: https://www.huggingtweets.com/michelleobama/1620772050236/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1366747801435185155/hZGK5WFL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Michelle Obama</div> <div style="text-align: center; font-size: 14px;">@michelleobama</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Michelle Obama. | Data | Michelle Obama | | --- | --- | | Tweets downloaded | 1713 | | Retweets | 403 | | Short tweets | 10 | | Tweets kept | 1300 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m1uk0tq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michelleobama's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2096emrq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2096emrq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michelleobama') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/michelonfray4
2021-05-22T14:26:47.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
20
transformers
--- language: en thumbnail: https://www.huggingtweets.com/michelonfray4/1601451731753/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1055539020594380802/RDybDRUj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michel Onfray 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@michelonfray4 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michelonfray4's tweets](https://twitter.com/michelonfray4). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>483</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>222</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>88</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>173</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/18u5girs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michelonfray4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/19hut7nl) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/19hut7nl/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/michelonfray4'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/micky_cow
2021-05-22T14:28:03.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362790988356464645/TGSSbvT0_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Micky the cow 🤖 AI Bot </div> <div style="font-size: 15px">@micky_cow bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@micky_cow's tweets](https://twitter.com/micky_cow). | Data | Quantity | | --- | --- | | Tweets downloaded | 135 | | Retweets | 0 | | Short tweets | 15 | | Tweets kept | 120 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ugkdnx6z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @micky_cow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jfh2mjg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jfh2mjg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/micky_cow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/microflashfic
2021-05-22T14:29:52.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
18
transformers
--- language: en thumbnail: https://www.huggingtweets.com/microflashfic/1619506039830/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/894065467576508420/4iIvZzFO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Micro Flash Fiction📖 🤖 AI Bot </div> <div style="font-size: 15px">@microflashfic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@microflashfic's tweets](https://twitter.com/microflashfic). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 52 | | Short tweets | 226 | | Tweets kept | 2961 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3zjfyjpv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @microflashfic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/v1kciboh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/v1kciboh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/microflashfic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/microsff
2021-05-22T14:30:59.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/microsff/1616769599663/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/522520775002058752/ZD7KK74G_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Micro SF/F stories 🤖 AI Bot </div> <div style="font-size: 15px">@microsff bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@microsff's tweets](https://twitter.com/microsff). | Data | Quantity | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 216 | | Short tweets | 205 | | Tweets kept | 2828 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18q9cujj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @microsff's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1h8ikm1r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1h8ikm1r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/microsff') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/microsoft
2021-05-22T14:32:22.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
10
transformers
--- language: en thumbnail: https://www.huggingtweets.com/microsoft/1609714866268/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1334505837147029504/dg_Twuy0_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Microsoft 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@microsoft bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@microsoft's tweets](https://twitter.com/microsoft). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3243</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>431</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>730</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2082</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l9quqlq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @microsoft's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nxetoau) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nxetoau/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/microsoft'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/midwaymedway
2021-05-22T14:35:20.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/midwaymedway/1617829571471/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378530868378017792/n-7hu56m_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Medway 🤖 AI Bot </div> <div style="font-size: 15px">@midwaymedway bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@midwaymedway's tweets](https://twitter.com/midwaymedway). | Data | Quantity | | --- | --- | | Tweets downloaded | 2852 | | Retweets | 584 | | Short tweets | 273 | | Tweets kept | 1995 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ks2nkwdu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @midwaymedway's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3byueofy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3byueofy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/midwaymedway') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/miild90
2021-05-22T14:36:40.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/miild90/1617751141528/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373820690214789123/mOik9-iZ_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">mild🍹 🤖 AI Bot </div> <div style="font-size: 15px">@miild90 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@miild90's tweets](https://twitter.com/miild90). | Data | Quantity | | --- | --- | | Tweets downloaded | 909 | | Retweets | 48 | | Short tweets | 183 | | Tweets kept | 678 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3caxonuq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @miild90's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/l2qd3070) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/l2qd3070/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/miild90') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mike_massive
2021-05-22T14:37:44.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mike_massive/1614095900280/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1299026526999019520/erdLPGsC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">mike insane 🤖 AI Bot </div> <div style="font-size: 15px">@mike_massive bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mike_massive's tweets](https://twitter.com/mike_massive). | Data | Quantity | | --- | --- | | Tweets downloaded | 434 | | Retweets | 67 | | Short tweets | 73 | | Tweets kept | 294 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/sk151pwp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mike_massive's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rli832dd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rli832dd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mike_massive') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mike_pence
2021-05-22T14:38:51.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mike_pence/1612452533931/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337423084370931712/DH7N-1BW_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mike Pence 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mike_pence bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mike_pence's tweets](https://twitter.com/mike_pence). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2498</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1360</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>161</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>977</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3npp9mjo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mike_pence's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mumzor5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mumzor5/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mike_pence'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mikekyismad
2021-05-22T14:39:53.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mikekyismad/1616782600007/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364645809728315393/XaERYHCb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mikeky Mckekerson 🤖 AI Bot </div> <div style="font-size: 15px">@mikekyismad bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mikekyismad's tweets](https://twitter.com/mikekyismad). | Data | Quantity | | --- | --- | | Tweets downloaded | 576 | | Retweets | 11 | | Short tweets | 198 | | Tweets kept | 367 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e9p5fru6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mikekyismad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tq9x0dms) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tq9x0dms/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mikekyismad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mikeyyshorts
2021-06-13T21:38:51.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
0
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mikeyyshorts/1623620327489/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1370766101706051587/CcUAr3LL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mikey l-h-f-m (donathon creek)</div> <div style="text-align: center; font-size: 14px;">@mikeyyshorts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mikey l-h-f-m (donathon creek). | Data | mikey l-h-f-m (donathon creek) | | --- | --- | | Tweets downloaded | 1850 | | Retweets | 162 | | Short tweets | 336 | | Tweets kept | 1352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rqx8qgm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mikeyyshorts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/157kyrv2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/157kyrv2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mikeyyshorts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mikrodystopies
2021-05-22T14:41:31.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mikrodystopies/1604658435538/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1313931951791902720/P5xuzPnM_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mikrodystopies 🤖 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mikrodystopies bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mikrodystopies's tweets](https://twitter.com/mikrodystopies). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1353</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>14</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>3</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1336</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3ujepu0f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mikrodystopies's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/6omc5zso) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/6omc5zso/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mikrodystopies'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/mild_lakes
2021-05-22T14:42:41.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mild_lakes/1614174488992/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345777271240617987/wwqcknPt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mild 🤖 AI Bot </div> <div style="font-size: 15px">@mild_lakes bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mild_lakes's tweets](https://twitter.com/mild_lakes). | Data | Quantity | | --- | --- | | Tweets downloaded | 2207 | | Retweets | 517 | | Short tweets | 601 | | Tweets kept | 1089 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30nz4ixw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mild_lakes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/122k4eob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/122k4eob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mild_lakes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/milesperhoward
2021-05-22T14:44:06.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/milesperhoward/1608184422696/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1326919073167454208/eVQ43BgY_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Miles Howard 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@milesperhoward bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@milesperhoward's tweets](https://twitter.com/milesperhoward). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3194</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1612</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>184</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1398</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14hm02k2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @milesperhoward's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ey58dzn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ey58dzn/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/milesperhoward'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/milezmarkus
2021-05-22T14:45:13.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364075918327746560/jG0rQra-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Miles Markus 🤖 AI Bot </div> <div style="font-size: 15px">@milezmarkus bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@milezmarkus's tweets](https://twitter.com/milezmarkus). | Data | Quantity | | --- | --- | | Tweets downloaded | 3164 | | Retweets | 1121 | | Short tweets | 203 | | Tweets kept | 1840 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sb1xj7c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @milezmarkus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16cneqjr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16cneqjr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/milezmarkus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/milligram3d
2021-05-22T14:46:20.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/milligram3d/1616791387103/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329940613718949888/ta7GE35b_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">im gay 🤖 AI Bot </div> <div style="font-size: 15px">@milligram3d bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@milligram3d's tweets](https://twitter.com/milligram3d). | Data | Quantity | | --- | --- | | Tweets downloaded | 3102 | | Retweets | 514 | | Short tweets | 267 | | Tweets kept | 2321 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2b28e9ko/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @milligram3d's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dnn0apc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dnn0apc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/milligram3d') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/minidiscplus
2021-05-22T14:47:59.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/minidiscplus/1614226312373/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1266897293925548037/GcLTrLGc_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Diskette 🤖 AI Bot </div> <div style="font-size: 15px">@minidiscplus bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@minidiscplus's tweets](https://twitter.com/minidiscplus). | Data | Quantity | | --- | --- | | Tweets downloaded | 731 | | Retweets | 58 | | Short tweets | 98 | | Tweets kept | 575 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ho0rrmld/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @minidiscplus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dwlvkv36) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dwlvkv36/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/minidiscplus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mishanotters
2021-05-22T14:49:08.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
10
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mishanotters/1608310350013/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329909940245454853/fd-cMm76_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">misha 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mishanotters bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mishanotters's tweets](https://twitter.com/mishanotters). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3022</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>527</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>598</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1897</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3t8nu5kk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mishanotters's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6kxz8ss3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6kxz8ss3/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mishanotters'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/misogenist
2021-05-22T14:50:20.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
13
transformers
--- language: en thumbnail: https://www.huggingtweets.com/misogenist/1617971482479/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1231843464532221952/sTSwvexI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">💊 🤖 AI Bot </div> <div style="font-size: 15px">@misogenist bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@misogenist's tweets](https://twitter.com/misogenist). | Data | Quantity | | --- | --- | | Tweets downloaded | 3199 | | Retweets | 252 | | Short tweets | 1022 | | Tweets kept | 1925 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1iudua4o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @misogenist's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kn4lk1o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kn4lk1o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/misogenist') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/miss_sanrio
2021-05-22T14:51:24.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
10
transformers
--- language: en thumbnail: https://www.huggingtweets.com/miss_sanrio/1615666005209/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365844820611137536/U05zExF3_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">k-selected shawty 🤖 AI Bot </div> <div style="font-size: 15px">@miss_sanrio bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@miss_sanrio's tweets](https://twitter.com/miss_sanrio). | Data | Quantity | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 389 | | Short tweets | 171 | | Tweets kept | 2646 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ayxn8m5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @miss_sanrio's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fwsf07wr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fwsf07wr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/miss_sanrio') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mistykrueger
2021-05-22T14:52:29.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
10
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mistykrueger/1619113130071/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365730731180363785/qqDYQuLX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Misty Krueger 🤖 AI Bot </div> <div style="font-size: 15px">@mistykrueger bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mistykrueger's tweets](https://twitter.com/mistykrueger). | Data | Quantity | | --- | --- | | Tweets downloaded | 2056 | | Retweets | 313 | | Short tweets | 323 | | Tweets kept | 1420 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29y7s3fq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mistykrueger's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/t7fw1d2s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/t7fw1d2s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mistykrueger') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mit_csail
2021-05-22T14:53:45.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
9
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mit_csail/1620429689752/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/885505956272115712/U81HpDxb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">MIT CSAIL 🤖 AI Bot </div> <div style="font-size: 15px">@mit_csail bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mit_csail's tweets](https://twitter.com/mit_csail). | Data | Quantity | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 105 | | Short tweets | 44 | | Tweets kept | 3077 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/nj6zg8vq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mit_csail's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vkl4au0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vkl4au0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mit_csail') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mitchellsolomo1
2021-05-22T14:55:21.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mitchellsolomo1/1614098943754/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354235179892674562/Ku6uOc6K_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mitchell Solomon 🤖 AI Bot </div> <div style="font-size: 15px">@mitchellsolomo1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mitchellsolomo1's tweets](https://twitter.com/mitchellsolomo1). | Data | Quantity | | --- | --- | | Tweets downloaded | 243 | | Retweets | 38 | | Short tweets | 25 | | Tweets kept | 180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3du8kd6m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mitchellsolomo1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3duwyidn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3duwyidn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mitchellsolomo1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mitll
2021-05-23T14:13:26.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mitll/1621527157401/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1380233126354558979/ltnN7Gl4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lincoln Laboratory</div> <div style="text-align: center; font-size: 14px;">@mitll</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lincoln Laboratory. | Data | Lincoln Laboratory | | --- | --- | | Tweets downloaded | 2054 | | Retweets | 569 | | Short tweets | 14 | | Tweets kept | 1471 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k9mrbjd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mitll's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b55wa3e8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b55wa3e8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mitll') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mitomodeller
2021-05-22T14:56:29.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mitomodeller/1616643087102/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1218989397707759617/qrnM597F_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">PseudospectralWill 🤖 AI Bot </div> <div style="font-size: 15px">@mitomodeller bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mitomodeller's tweets](https://twitter.com/mitomodeller). | Data | Quantity | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 332 | | Short tweets | 221 | | Tweets kept | 2684 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oungt1sb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mitomodeller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/270vp9zv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/270vp9zv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mitomodeller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mkbhd
2021-05-22T14:57:37.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
21
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364264349204959235/fJPgOBd2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Marques Brownlee</div> <div style="text-align: center; font-size: 14px;">@mkbhd</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Marques Brownlee. | Data | Marques Brownlee | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 237 | | Short tweets | 679 | | Tweets kept | 2331 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sz3420j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mkbhd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o5kj2qg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o5kj2qg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mkbhd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ml_nlp
2021-05-22T14:58:50.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/ml_nlp/1606838395922/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/483993250470969344/_hfa_iHG_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Machine Learning and NLP 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ml_nlp bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ml_nlp's tweets](https://twitter.com/ml_nlp). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1669</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>185</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>13</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1471</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1us77dfn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ml_nlp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3kg0h84e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3kg0h84e/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ml_nlp'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/mlescaille
2021-03-25T21:00:20.000Z
[]
[ ".gitattributes" ]
huggingtweets
0
huggingtweets/moderadillo
2021-05-22T14:59:59.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
20
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1280918155142082563/WtM7zPUx_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Moderado enajenado 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@moderadillo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@moderadillo's tweets](https://twitter.com/moderadillo). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>849</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>161</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>43</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>645</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1vwaf07s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moderadillo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1kkev0qz) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1kkev0qz/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/moderadillo'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/modpizza
2021-05-22T15:01:01.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
14
transformers
--- language: en thumbnail: https://www.huggingtweets.com/modpizza/1605564082955/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1277421243092709377/fTZLLwUh_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">MOD Pizza 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@modpizza bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@modpizza's tweets](https://twitter.com/modpizza). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3229</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1117</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1878</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1m5s2xvi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @modpizza's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jnr3lsia) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jnr3lsia/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/modpizza'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/molassesgrey
2021-05-22T15:02:59.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/molassesgrey/1614173478568/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362448847746830336/iwo39ze1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">David Foster Winnie 🤖 AI Bot </div> <div style="font-size: 15px">@molassesgrey bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@molassesgrey's tweets](https://twitter.com/molassesgrey). | Data | Quantity | | --- | --- | | Tweets downloaded | 3159 | | Retweets | 1239 | | Short tweets | 290 | | Tweets kept | 1630 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ve0e5vf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @molassesgrey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24eh8794) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24eh8794/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/molassesgrey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/molleindustria
2021-05-22T15:04:01.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/molleindustria/1607297976960/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1093212724/logo_small_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Paolo Pedercini 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@molleindustria bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@molleindustria's tweets](https://twitter.com/molleindustria). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3240</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>376</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>172</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2692</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r51uy9bs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @molleindustria's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cdzfc0q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cdzfc0q/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/molleindustria'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/moltenpig
2021-05-22T15:05:26.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
8
transformers
--- language: en thumbnail: https://www.huggingtweets.com/moltenpig/1614115368149/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345969843418251265/We6vDKEk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">MoltenPig 🤖 AI Bot </div> <div style="font-size: 15px">@moltenpig bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@moltenpig's tweets](https://twitter.com/moltenpig). | Data | Quantity | | --- | --- | | Tweets downloaded | 298 | | Retweets | 32 | | Short tweets | 62 | | Tweets kept | 204 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oxr8b0a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moltenpig's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rvc7ntr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rvc7ntr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/moltenpig') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/moneyvsfreedom
2021-05-22T15:06:34.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
15
transformers
--- language: en thumbnail: https://www.huggingtweets.com/moneyvsfreedom/1617867749077/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1367744910967795718/DNuvRRxw_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🪢 🍄🌶🚣🏽‍♂️ 🔶😼 DNC_alt, Rushslayer (no likes) 🤖 AI Bot </div> <div style="font-size: 15px">@moneyvsfreedom bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@moneyvsfreedom's tweets](https://twitter.com/moneyvsfreedom). | Data | Quantity | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 247 | | Short tweets | 724 | | Tweets kept | 2267 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22n1m6t8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moneyvsfreedom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22k8rg5y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22k8rg5y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/moneyvsfreedom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/moni_stats
2021-05-22T15:07:41.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
23
transformers
--- language: en thumbnail: https://www.huggingtweets.com/moni_stats/1604867381184/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1201700957911957504/3Qya4JKQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Monica 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@moni_stats bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@moni_stats's tweets](https://twitter.com/moni_stats). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>500</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>120</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>39</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>341</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2eobfodd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moni_stats's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1cry6bjk) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1cry6bjk/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/moni_stats'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/monodevice
2021-05-22T15:08:48.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/monodevice/1616731608711/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342210639595532289/_IT2n4Yn_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🐜onio 🤖 AI Bot </div> <div style="font-size: 15px">@monodevice bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@monodevice's tweets](https://twitter.com/monodevice). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 28 | | Short tweets | 982 | | Tweets kept | 2236 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28ckopf3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @monodevice's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gglhzx0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gglhzx0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/monodevice') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/monopolyfornite
2021-05-22T15:09:56.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/monopolyfornite/1617768112400/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345904136571809793/L7vONi6h_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🍷🍤 🤖 AI Bot </div> <div style="font-size: 15px">@monopolyfornite bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@monopolyfornite's tweets](https://twitter.com/monopolyfornite). | Data | Quantity | | --- | --- | | Tweets downloaded | 3155 | | Retweets | 827 | | Short tweets | 671 | | Tweets kept | 1657 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cy0tmjx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @monopolyfornite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cndb2sv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cndb2sv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/monopolyfornite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/moonagemayqueen
2021-05-22T15:11:10.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/moonagemayqueen/1614214555251/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344923483168407554/IWxC8No6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Maecore Inc. ⚪ 🤖 AI Bot </div> <div style="font-size: 15px">@moonagemayqueen bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@moonagemayqueen's tweets](https://twitter.com/moonagemayqueen). | Data | Quantity | | --- | --- | | Tweets downloaded | 3093 | | Retweets | 2363 | | Short tweets | 291 | | Tweets kept | 439 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hncotlo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moonagemayqueen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gmxvqco) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gmxvqco/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/moonagemayqueen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/morallawwithin
2021-05-22T15:12:26.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
12
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374727712355577856/PsAz792x_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">florence bacus 💜 🤖 AI Bot </div> <div style="font-size: 15px">@morallawwithin bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@morallawwithin's tweets](https://twitter.com/morallawwithin). | Data | Quantity | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 666 | | Short tweets | 491 | | Tweets kept | 2070 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hnxbkm1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @morallawwithin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ue5m0yh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ue5m0yh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/morallawwithin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/moratorias
2021-05-22T15:14:29.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/moratorias/1614113587590/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354820099107037197/5rPiix_w_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Indy 🤖 AI Bot </div> <div style="font-size: 15px">@moratorias bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@moratorias's tweets](https://twitter.com/moratorias). | Data | Quantity | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 710 | | Short tweets | 339 | | Tweets kept | 2148 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1twsutkc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moratorias's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qbw3sqa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qbw3sqa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/moratorias') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/morganstanley
2021-05-22T15:15:39.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/morganstanley/1607110195449/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/767759044849336328/99u_IE90_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Morgan Stanley 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@morganstanley bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@morganstanley's tweets](https://twitter.com/morganstanley). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>106</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3127</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mn5apem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @morganstanley's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gcjvbjs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gcjvbjs/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/morganstanley'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/mormo_music
2021-05-22T15:16:51.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
8
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mormo_music/1619264382586/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309110567383322624/_bG1P3yC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">zeta mask yo (42/?? years) 🤖 AI Bot </div> <div style="font-size: 15px">@mormo_music bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mormo_music's tweets](https://twitter.com/mormo_music). | Data | Quantity | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 178 | | Short tweets | 325 | | Tweets kept | 2744 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hjkc8nh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mormo_music's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8guhilo5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8guhilo5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mormo_music') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/most_lamentable
2021-05-22T15:17:59.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/most_lamentable/1618953821275/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1324108343217192960/6sVP_i_6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ACAB Rocky 🖤 🤖 AI Bot </div> <div style="font-size: 15px">@most_lamentable bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@most_lamentable's tweets](https://twitter.com/most_lamentable). | Data | Quantity | | --- | --- | | Tweets downloaded | 3155 | | Retweets | 2752 | | Short tweets | 63 | | Tweets kept | 340 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qgfbjlk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @most_lamentable's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3i44t2y3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3i44t2y3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/most_lamentable') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mothsprite
2021-05-22T15:19:14.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mothsprite/1614115281996/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1360064787552608259/9-NoRXNL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">carsen 💝 🤖 AI Bot </div> <div style="font-size: 15px">@mothsprite bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mothsprite's tweets](https://twitter.com/mothsprite). | Data | Quantity | | --- | --- | | Tweets downloaded | 3168 | | Retweets | 563 | | Short tweets | 660 | | Tweets kept | 1945 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31yl64zo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mothsprite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10118mvg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10118mvg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mothsprite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mpopv
2021-05-22T15:20:23.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mpopv/1616857878066/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1360621116146864131/lwVklARB_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Popovich 🤖 AI Bot </div> <div style="font-size: 15px">@mpopv bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mpopv's tweets](https://twitter.com/mpopv). | Data | Quantity | | --- | --- | | Tweets downloaded | 3223 | | Retweets | 545 | | Short tweets | 260 | | Tweets kept | 2418 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19i3rh71/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mpopv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ffznl4y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ffznl4y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mpopv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mralgore
2021-05-22T15:21:49.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
34
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mralgore/1617597072251/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1368714601664249861/TLprk30T_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mr. Al Gore 🇺🇸 🤖 AI Bot </div> <div style="font-size: 15px">@mralgore bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mralgore's tweets](https://twitter.com/mralgore). | Data | Quantity | | --- | --- | | Tweets downloaded | 1042 | | Retweets | 47 | | Short tweets | 266 | | Tweets kept | 729 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32ax6gcj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mralgore's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1krm0c3g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1krm0c3g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mralgore') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mraofnull
2021-05-22T15:23:05.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mraofnull/1614169554638/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/897994820362416128/MUi78ucT_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mraof 🤖 AI Bot </div> <div style="font-size: 15px">@mraofnull bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mraofnull's tweets](https://twitter.com/mraofnull). | Data | Quantity | | --- | --- | | Tweets downloaded | 1389 | | Retweets | 486 | | Short tweets | 237 | | Tweets kept | 666 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ostzmpk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mraofnull's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2sr0ddvm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2sr0ddvm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mraofnull') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mrjjrocks
2021-05-22T15:24:12.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
8
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1297887250727022595/55giHYmx_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Joseph, 4x HS student of the month! 🤖 AI Bot </div> <div style="font-size: 15px">@mrjjrocks bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mrjjrocks's tweets](https://twitter.com/mrjjrocks). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 108 | | Short tweets | 147 | | Tweets kept | 2993 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/nk8t41g8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrjjrocks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2x4cn7dd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2x4cn7dd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrjjrocks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mrmeatscience
2021-05-22T15:25:20.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mrmeatscience/1616698328401/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/860937813868654593/pSU21JFl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chet Humphries 🤖 AI Bot </div> <div style="font-size: 15px">@mrmeatscience bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mrmeatscience's tweets](https://twitter.com/mrmeatscience). | Data | Quantity | | --- | --- | | Tweets downloaded | 1483 | | Retweets | 641 | | Short tweets | 121 | | Tweets kept | 721 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/301hr630/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrmeatscience's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b1pd4nz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b1pd4nz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrmeatscience') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mrsanctumonious
2021-06-13T06:23:36.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
0
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mrsanctumonious/1623565396151/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397722561065017344/nna9wn35_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">His Majesty Diem The Sanctimonious 🎈🗯️🔫</div> <div style="text-align: center; font-size: 14px;">@mrsanctumonious</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from His Majesty Diem The Sanctimonious 🎈🗯️🔫. | Data | His Majesty Diem The Sanctimonious 🎈🗯️🔫 | | --- | --- | | Tweets downloaded | 972 | | Retweets | 82 | | Short tweets | 111 | | Tweets kept | 779 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8h5lsj13/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrsanctumonious's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tohfeq2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tohfeq2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrsanctumonious') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mrwheatley3
2021-06-07T12:19:16.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
2
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mrwheatley3/1623068311288/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391512399426031617/LQ0clunr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mr Wheatley</div> <div style="text-align: center; font-size: 14px;">@mrwheatley3</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mr Wheatley. | Data | Mr Wheatley | | --- | --- | | Tweets downloaded | 730 | | Retweets | 0 | | Short tweets | 290 | | Tweets kept | 440 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8068lfjy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrwheatley3's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dlxscsl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dlxscsl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrwheatley3') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mschuresko
2021-05-29T19:54:38.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mschuresko/1622317955447/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1296692705662078976/5S7n1Rcc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Michael S</div> <div style="text-align: center; font-size: 14px;">@mschuresko</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Michael S. | Data | Michael S | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 436 | | Short tweets | 492 | | Tweets kept | 2312 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cb03j4o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mschuresko's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2l74wvek) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2l74wvek/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mschuresko') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mspunks
2021-05-22T15:26:31.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mspunks/1618627597126/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1003044574372098048/ntjhzzRd_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">sponk 🤖 AI Bot </div> <div style="font-size: 15px">@mspunks bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mspunks's tweets](https://twitter.com/mspunks). | Data | Quantity | | --- | --- | | Tweets downloaded | 601 | | Retweets | 154 | | Short tweets | 64 | | Tweets kept | 383 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2i3fqaqd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mspunks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jfyn4s4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jfyn4s4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mspunks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mtajsar
2021-05-22T15:28:36.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
19
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mtajsar/1600798504031/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1288167151396741120/eJAMhmYk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mohammad Tajsar 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mtajsar bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mtajsar's tweets](https://twitter.com/mtajsar). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1090</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>195</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>65</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>830</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2eykwz2g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mtajsar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/xtpogimb) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/xtpogimb/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mtajsar'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/mullbot_forever
2021-05-22T15:29:41.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
8
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mullbot_forever/1614097213857/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1334794074822504449/KX8oD2AU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">extremely online bot 🤖 AI Bot </div> <div style="font-size: 15px">@mullbot_forever bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mullbot_forever's tweets](https://twitter.com/mullbot_forever). | Data | Quantity | | --- | --- | | Tweets downloaded | 510 | | Retweets | 0 | | Short tweets | 7 | | Tweets kept | 503 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ot8lggl5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mullbot_forever's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b0k862nr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b0k862nr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mullbot_forever') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/murderlinart
2021-05-22T15:30:57.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/murderlinart/1617904433043/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378075236109811712/6wkJc-3m_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">AJ 🍀 🤖 AI Bot </div> <div style="font-size: 15px">@murderlinart bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@murderlinart's tweets](https://twitter.com/murderlinart). | Data | Quantity | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 1141 | | Short tweets | 544 | | Tweets kept | 1545 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/b0hhcnrk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @murderlinart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a7qsqyy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a7qsqyy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/murderlinart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/musebiihi
2021-05-22T15:32:22.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
16
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/724693664644124674/P5yUOmXv_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Muse Bihi Abdi 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@musebiihi bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@musebiihi's tweets](https://twitter.com/musebiihi). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>494</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>48</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>442</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2aq097tl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @musebiihi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/14ujo7fd) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/14ujo7fd/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/musebiihi'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/musingsofyouth
2021-05-22T15:34:00.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/musingsofyouth/1616830407983/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1274909495869804544/3UJtcEdD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lonesome Youth 🤖 AI Bot </div> <div style="font-size: 15px">@musingsofyouth bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@musingsofyouth's tweets](https://twitter.com/musingsofyouth). | Data | Quantity | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 76 | | Short tweets | 103 | | Tweets kept | 3062 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qak8n7k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @musingsofyouth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fqsgyxwr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fqsgyxwr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/musingsofyouth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mutilumila
2021-05-22T15:35:13.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mutilumila/1616785118212/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1367580181171470336/VGbeIwgL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">p a ' u l 🤖 AI Bot </div> <div style="font-size: 15px">@mutilumila bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mutilumila's tweets](https://twitter.com/mutilumila). | Data | Quantity | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 432 | | Short tweets | 618 | | Tweets kept | 2177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xkgonzr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mutilumila's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oplbn5a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oplbn5a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mutilumila') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mutual_ayyde
2021-05-22T15:37:45.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mutual_ayyde/1616654015077/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357503109790978050/pkBmTm4h_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">mutual - dsa matrioshka brain caucus 🤖 AI Bot </div> <div style="font-size: 15px">@mutual_ayyde bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mutual_ayyde's tweets](https://twitter.com/mutual_ayyde). | Data | Quantity | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 341 | | Short tweets | 377 | | Tweets kept | 2508 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1078r58l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mutual_ayyde's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3240hia4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3240hia4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mutual_ayyde') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mxrtinli
2021-05-22T15:39:26.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
9
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mxrtinli/1616696860405/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359637588630528004/SqovhhAH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">martin 李润林 🤖 AI Bot </div> <div style="font-size: 15px">@mxrtinli bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mxrtinli's tweets](https://twitter.com/mxrtinli). | Data | Quantity | | --- | --- | | Tweets downloaded | 375 | | Retweets | 105 | | Short tweets | 31 | | Tweets kept | 239 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24avrm4e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mxrtinli's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1344ky2b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1344ky2b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mxrtinli') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/myconversica
2021-05-22T15:40:47.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
14
transformers
--- language: en thumbnail: https://www.huggingtweets.com/myconversica/1607708384339/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/887468833916600320/8nOhBX6V_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Conversica 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@myconversica bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@myconversica's tweets](https://twitter.com/myconversica). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3199</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>498</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>18</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2683</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23fygoqr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @myconversica's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22zq89x4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22zq89x4/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/myconversica'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mysticmaryy
2021-05-22T15:41:54.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://www.huggingtweets.com/mysticmaryy/1614165667227/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363558757163298826/QMbj_QJF_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mary 🤖 AI Bot </div> <div style="font-size: 15px">@mysticmaryy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mysticmaryy's tweets](https://twitter.com/mysticmaryy). | Data | Quantity | | --- | --- | | Tweets downloaded | 3185 | | Retweets | 829 | | Short tweets | 417 | | Tweets kept | 1939 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3d21cva2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mysticmaryy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xs68znb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xs68znb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mysticmaryy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/najmc
2021-05-22T15:43:01.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
9
transformers
--- language: en thumbnail: https://www.huggingtweets.com/najmc/1608309975570/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1010829198783602688/SCcQ6M3O_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Najm Clayton 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@najmc bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@najmc's tweets](https://twitter.com/najmc). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3172</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2115</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>170</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>887</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gva8vjg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @najmc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tp9lbby) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tp9lbby/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/najmc'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nancycartnite
2021-05-22T15:44:12.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: https://www.huggingtweets.com/nancycartnite/1616689038335/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369840459904917506/pejZuQvK_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">luiz 🌤🐺 🤖 AI Bot </div> <div style="font-size: 15px">@nancycartnite bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@nancycartnite's tweets](https://twitter.com/nancycartnite). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 67 | | Short tweets | 639 | | Tweets kept | 2539 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kykawrr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nancycartnite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3eustbrf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3eustbrf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nancycartnite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/narendramodi
2021-05-22T15:45:27.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
31
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1249934092994375680/xX66NSZP_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Narendra Modi 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@narendramodi bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@narendramodi's tweets](https://twitter.com/narendramodi). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3211</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>44</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>61</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3106</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2v5myr9v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @narendramodi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2qbwhhqe) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2qbwhhqe/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/narendramodi'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/nasa
2021-05-22T15:46:34.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
14
transformers
--- language: en thumbnail: https://www.huggingtweets.com/nasa/1601059385955/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1091070803184177153/TI2qItoi_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">NASA 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@nasa bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@nasa's tweets](https://twitter.com/nasa). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3249</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>873</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>166</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2210</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3w0r3gcn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nasa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/22kjd4oq) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/22kjd4oq/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/nasa'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/natashajaques
2021-05-22T15:47:56.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
huggingtweets
11
transformers
--- language: en thumbnail: http://res.cloudinary.com/huggingtweets/image/upload/v1599942934/natashajaques.jpg tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1105961729987620864/Q7OBLflN_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Natasha Jaques 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@natashajaques bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@natashajaques's tweets](https://twitter.com/natashajaques). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>799</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>518</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>23</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>258</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3ab9hmc0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @natashajaques's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3nw4qkaf) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3nw4qkaf/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/natashajaques'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/natesilver538
2021-05-22T15:49:02.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
19
transformers
--- language: en thumbnail: https://www.huggingtweets.com/natesilver538/1620950912366/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1359552173873524736/T1wEBXtD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nate Silver</div> <div style="text-align: center; font-size: 14px;">@natesilver538</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nate Silver. | Data | Nate Silver | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 413 | | Short tweets | 43 | | Tweets kept | 2794 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rz221q4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @natesilver538's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8i97f9l8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8i97f9l8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/natesilver538') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nathanlawkc
2021-05-22T15:50:11.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
18
transformers
--- language: en thumbnail: https://www.huggingtweets.com/nathanlawkc/1607801293510/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/953263245678215168/gKWkzY_f_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nathan Law 羅冠聰 😷 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@nathanlawkc bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@nathanlawkc's tweets](https://twitter.com/nathanlawkc). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2786</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>996</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>463</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1327</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3svb5x6n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nathanlawkc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3q94y8me) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3q94y8me/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/nathanlawkc'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/natincorporated
2021-06-09T09:31:39.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
1
transformers
--- language: en thumbnail: https://www.huggingtweets.com/natincorporated/1623231077515/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1209761400811376640/lnnD1fQg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nat</div> <div style="text-align: center; font-size: 14px;">@natincorporated</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nat. | Data | Nat | | --- | --- | | Tweets downloaded | 2216 | | Retweets | 279 | | Short tweets | 296 | | Tweets kept | 1641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qqos99wz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @natincorporated's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36i25isl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36i25isl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/natincorporated') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/naval-shl
2021-05-22T15:51:17.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
13
transformers
--- language: en thumbnail: https://www.huggingtweets.com/naval-shl/1620710904626/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374866727285104642/lBw0y163_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Naval & Sahil</div> <div style="text-align: center; font-size: 14px;">@naval-shl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Naval & Sahil. | Data | Naval | Sahil | | --- | --- | --- | | Tweets downloaded | 3218 | 3240 | | Retweets | 137 | 580 | | Short tweets | 646 | 440 | | Tweets kept | 2435 | 2220 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rnct2yy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @naval-shl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2azjqrw1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2azjqrw1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/naval-shl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/naval
2021-05-22T15:52:22.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
23
transformers
--- language: en thumbnail: https://www.huggingtweets.com/naval/1618057971262/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Naval 🤖 AI Bot </div> <div style="font-size: 15px">@naval bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@naval's tweets](https://twitter.com/naval). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 138 | | Short tweets | 657 | | Tweets kept | 2455 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p7s0zjvq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @naval's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16ugp9hy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16ugp9hy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/naval') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nayancat1111
2021-05-22T15:53:32.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/nayancat1111/1617817440405/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1379437561454555143/aLqKehQQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nayancat 🤖 AI Bot </div> <div style="font-size: 15px">@nayancat1111 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@nayancat1111's tweets](https://twitter.com/nayancat1111). | Data | Quantity | | --- | --- | | Tweets downloaded | 2113 | | Retweets | 458 | | Short tweets | 439 | | Tweets kept | 1216 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s59kydx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nayancat1111's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2nqgswin) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2nqgswin/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nayancat1111') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nbthieves
2021-05-22T15:54:39.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
7
transformers
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1296003688562130944/K_R9DCAP_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nothing But Thieves 🤖 AI Bot </div> <div style="font-size: 15px">@nbthieves bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@nbthieves's tweets](https://twitter.com/nbthieves). | Data | Quantity | | --- | --- | | Tweets downloaded | 3159 | | Retweets | 959 | | Short tweets | 187 | | Tweets kept | 2013 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lpdh8nfr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nbthieves's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ml5d0ypp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ml5d0ypp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nbthieves') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/neil_jetter
2021-05-22T15:55:47.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "huggingtweets", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
huggingtweets
6
transformers
--- language: en thumbnail: https://www.huggingtweets.com/neil_jetter/1616624365889/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1125464452529152000/8GSujJ8l_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Puzzle man 🧩 🤖 AI Bot </div> <div style="font-size: 15px">@neil_jetter bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@neil_jetter's tweets](https://twitter.com/neil_jetter). | Data | Quantity | | --- | --- | | Tweets downloaded | 481 | | Retweets | 117 | | Short tweets | 96 | | Tweets kept | 268 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39dpbluj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @neil_jetter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a7kufsc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a7kufsc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/neil_jetter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)