modelId
stringlengths 4
112
| lastModified
stringlengths 24
24
| tags
list | pipeline_tag
stringclasses 21
values | files
list | publishedBy
stringlengths 2
37
| downloads_last_month
int32 0
9.44M
| library
stringclasses 15
values | modelCard
large_stringlengths 0
100k
|
---|---|---|---|---|---|---|---|---|
huggingtweets/vfsyes
|
2021-05-23T03:50:08.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vfsyes/1601526119909/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/965091061923160066/L4aLxCgK_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Victoria Firth-Smith βοΈ π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@vfsyes bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vfsyes's tweets](https://twitter.com/vfsyes).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3201</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>791</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>296</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2114</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3zryr6q7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vfsyes's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/316yya4e) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/316yya4e/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/vfsyes'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/vgr
|
2021-05-23T03:51:25.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 28 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vgr/1602716793427/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1266600883380342785/1OFJtU3I_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Venkatesh Rao π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@vgr bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vgr's tweets](https://twitter.com/vgr).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3201</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>487</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>235</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2479</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3ro13ju0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vgr's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/18283z0w) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/18283z0w/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/vgr'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/vikjapan
|
2021-05-23T03:52:28.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vikjapan/1613790649780/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1348312846954758144/X9G_wGk4_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">γ³γ£γ@γγΈγγ£γγ«ζ₯ζ¬γθ―γγγγπ¦ π€ AI Bot </div>
<div style="font-size: 15px">@vikjapan bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vikjapan's tweets](https://twitter.com/vikjapan).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 897 |
| Retweets | 14 |
| Short tweets | 464 |
| Tweets kept | 419 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/u2nd957y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vikjapan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15ytgwxd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15ytgwxd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vikjapan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/vinniehacker
|
2021-05-23T03:53:38.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vinniehacker/1601347831541/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1280331403415019522/u4yAMDJ1_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Vinnie π π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@vinniehacker bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vinniehacker's tweets](https://twitter.com/vinniehacker).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>442</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>90</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>112</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>240</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/9fhoiyof/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vinniehacker's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1zwwbso6) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1zwwbso6/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/vinniehacker'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/violetgweny
|
2021-05-23T03:54:48.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/violetgweny/1616644773439/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359993854871625730/TyFYsZsn_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Gweny π€ AI Bot </div>
<div style="font-size: 15px">@violetgweny bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@violetgweny's tweets](https://twitter.com/violetgweny).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 384 |
| Short tweets | 160 |
| Tweets kept | 2697 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zc0zpn8e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @violetgweny's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1l4ggliv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1l4ggliv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/violetgweny')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/viperwave
|
2021-05-23T03:56:06.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/viperwave/1617765814112/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1312590774912000000/6E6Ry8aJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Travis McElroy "Getting Sexual" Apology Video π€ AI Bot </div>
<div style="font-size: 15px">@viperwave bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@viperwave's tweets](https://twitter.com/viperwave).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3211 |
| Retweets | 980 |
| Short tweets | 623 |
| Tweets kept | 1608 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34nyqo6m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @viperwave's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/184tfonm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/184tfonm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/viperwave')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/viral_b_shah
|
2021-05-23T03:57:09.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/832605174547898368/HMFMaln__400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Viral B. Shah π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@viral_b_shah bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@viral_b_shah's tweets](https://twitter.com/viral_b_shah).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3218</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2233</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>42</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>943</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/i029wkup/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @viral_b_shah's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2hd72k2x) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2hd72k2x/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/viral_b_shah'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/visakanv
|
2021-05-23T03:58:12.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/visakanv/1616871598226/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1310780119590424576/yPprRCqP_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">visa is almost done with @introspectVV π€ AI Bot </div>
<div style="font-size: 15px">@visakanv bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@visakanv's tweets](https://twitter.com/visakanv).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 71 |
| Short tweets | 651 |
| Tweets kept | 2527 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/v7oyjdah/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @visakanv's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7ock9tj7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7ock9tj7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/visakanv')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/vishxl
|
2021-05-23T03:59:13.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1033083727285379073/1SEJwb6b_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">vishal π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@vishxl bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vishxl's tweets](https://twitter.com/vishxl).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>812</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>37</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>84</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>691</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2mqzqssg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vishxl's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3c829t92) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3c829t92/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/vishxl'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/visionify
|
2021-06-18T11:55:54.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 0 |
transformers
| |
huggingtweets/visualizevalue
|
2021-05-23T04:00:21.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 23 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/visualizevalue/1601837796274/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1287562748562309122/4RLk5A_U_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Visualize Value π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@visualizevalue bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@visualizevalue's tweets](https://twitter.com/visualizevalue).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1000</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>132</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>331</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>537</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/f2olvyds/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @visualizevalue's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1rm01ie6) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1rm01ie6/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/visualizevalue'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/vitalikbuterin
|
2021-05-23T04:01:46.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vitalikbuterin/1607573059057/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/977496875887558661/L86xyLF4_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">vitalik.eth π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@vitalikbuterin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vitalikbuterin's tweets](https://twitter.com/vitalikbuterin).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3235</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>287</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>122</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2826</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12dt6biy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vitalikbuterin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12ceuzt7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12ceuzt7/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/vitalikbuterin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/voteblake
|
2021-05-23T04:02:54.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/voteblake/1617899664019/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/948045482835681280/O3hp8__2_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">blake box emoji π€ AI Bot </div>
<div style="font-size: 15px">@voteblake bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@voteblake's tweets](https://twitter.com/voteblake).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 208 |
| Short tweets | 379 |
| Tweets kept | 2657 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/z2oherue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @voteblake's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19n7fmfp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19n7fmfp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/voteblake')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/vsshole
|
2021-05-23T04:04:13.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vsshole/1614098988294/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1012205185119088640/k1hzFM8u_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">πΊ m ny ππ π€ AI Bot </div>
<div style="font-size: 15px">@vsshole bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vsshole's tweets](https://twitter.com/vsshole).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3208 |
| Retweets | 294 |
| Short tweets | 1597 |
| Tweets kept | 1317 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9puhkja4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vsshole's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9ps1hg3p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9ps1hg3p/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vsshole')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/vtribbean
|
2021-05-23T04:05:20.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vtribbean/1620678525750/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370572034053398529/KTwzI1eg_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">π TRIBS π½ VTuber π</div>
<div style="text-align: center; font-size: 14px;">@vtribbean</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from π TRIBS π½ VTuber π.
| Data | π TRIBS π½ VTuber π |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 578 |
| Short tweets | 531 |
| Tweets kept | 2134 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/223pztng/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vtribbean's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hme5b03) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hme5b03/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vtribbean')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/vtubercringe
|
2021-05-23T04:06:25.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vtubercringe/1620710616387/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1390007067675607044/sur9hrB4_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Avatar of VTuber & Fan Cringe/Drama</div>
<div style="text-align: center; font-size: 14px;">@vtubercringe</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Avatar of VTuber & Fan Cringe/Drama.
| Data | Avatar of VTuber & Fan Cringe/Drama |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 382 |
| Short tweets | 476 |
| Tweets kept | 2386 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ul2c4ob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vtubercringe's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/r2wf7l5n) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/r2wf7l5n/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vtubercringe')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/vvangone
|
2021-05-23T04:07:38.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/vvangone/1618985675721/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1190256978007904257/TsXH7_nP_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Vincent Van Gone π€ AI Bot </div>
<div style="font-size: 15px">@vvangone bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vvangone's tweets](https://twitter.com/vvangone).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3231 |
| Retweets | 959 |
| Short tweets | 273 |
| Tweets kept | 1999 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8j4izlsm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vvangone's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bnxlw4j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bnxlw4j/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vvangone')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/w3disd3ad
|
2021-05-23T04:09:00.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/w3disd3ad/1614105152162/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357939184275623936/hhNsWFNY_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">w3dnesday π€ AI Bot </div>
<div style="font-size: 15px">@w3disd3ad bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@w3disd3ad's tweets](https://twitter.com/w3disd3ad).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 644 |
| Retweets | 208 |
| Short tweets | 95 |
| Tweets kept | 341 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c3emieq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @w3disd3ad's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jtauo7r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jtauo7r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/w3disd3ad')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/w_mlabateki
|
2021-05-23T04:10:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 17 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/w_mlabateki/1603890652021/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1234254322092969985/8OT4cl3b_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Wongalethu π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@w_mlabateki bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@w_mlabateki's tweets](https://twitter.com/w_mlabateki).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3151</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1149</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>396</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1606</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/4oakhwm3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @w_mlabateki's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/10ag004j) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/10ag004j/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/w_mlabateki'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/wallstreetbets
|
2021-05-23T04:11:10.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 16 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wallstreetbets/1613146226664/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1355305650432188416/zAPHj9_3_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">WallStreetBets π€ AI Bot </div>
<div style="font-size: 15px">@wallstreetbets bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wallstreetbets's tweets](https://twitter.com/wallstreetbets).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3234 |
| Retweets | 298 |
| Short tweets | 294 |
| Tweets kept | 2642 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/hhzrzcsh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wallstreetbets's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gyh32b7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gyh32b7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wallstreetbets')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wandererslibrar
|
2021-05-23T04:12:19.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wandererslibrar/1616799042068/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1160715040632299520/AQWwV1qg_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Wanderer's Library π€ AI Bot </div>
<div style="font-size: 15px">@wandererslibrar bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wandererslibrar's tweets](https://twitter.com/wandererslibrar).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 349 |
| Retweets | 87 |
| Short tweets | 20 |
| Tweets kept | 242 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ukonasm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wandererslibrar's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1j01gu1x) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1j01gu1x/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wandererslibrar')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/washed_u
|
2021-05-23T04:13:27.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/washed_u/1616771910952/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1333096794826412033/ZuZpbXkU_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">honchoβ°π΅π¦ π€ AI Bot </div>
<div style="font-size: 15px">@washed_u bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@washed_u's tweets](https://twitter.com/washed_u).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1250 |
| Retweets | 102 |
| Short tweets | 124 |
| Tweets kept | 1024 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qt0xkbfn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @washed_u's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3sm2zrqc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3sm2zrqc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/washed_u')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wausaubob
|
2021-05-23T04:14:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wausaubob/1616731136628/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374548471995305986/XVI8-nGF_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Be Like BobβStay Home π€ AI Bot </div>
<div style="font-size: 15px">@wausaubob bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wausaubob's tweets](https://twitter.com/wausaubob).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 744 |
| Retweets | 77 |
| Short tweets | 135 |
| Tweets kept | 532 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2h6y30jv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wausaubob's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ocvosw0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ocvosw0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wausaubob')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/waynedupreeshow
|
2021-05-23T04:15:34.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/waynedupreeshow/1601333699509/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1292091660323770369/f_RKh7Ra_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">W.E. Dupree π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@waynedupreeshow bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@waynedupreeshow's tweets](https://twitter.com/waynedupreeshow).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3242</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>204</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>109</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2929</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2rtohy7z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @waynedupreeshow's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3rje8xkn) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3rje8xkn/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/waynedupreeshow'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/weights_biases
|
2021-05-23T04:16:42.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 43 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/weights_biases/1607115678433/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1101567690014056448/XxZqLgwb_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Weights & Biases π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@weights_biases bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@weights_biases's tweets](https://twitter.com/weights_biases).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1206</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>516</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>10</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>680</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wvlor6a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @weights_biases's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p3knp6q) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p3knp6q/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/weights_biases'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/wellshit0
|
2021-05-23T04:17:53.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 17 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wellshit0/1617765316536/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358739527821647875/7pAyFgnq_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">well shit π€ AI Bot </div>
<div style="font-size: 15px">@wellshit0 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wellshit0's tweets](https://twitter.com/wellshit0).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1777 |
| Retweets | 215 |
| Short tweets | 438 |
| Tweets kept | 1124 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15az2c3i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wellshit0's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r3pkuwr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r3pkuwr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wellshit0')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wellypooscene
|
2021-05-23T04:18:56.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wellypooscene/1616644578299/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/914278196987568128/20uJJCTQ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">cowtown afficionado π€ AI Bot </div>
<div style="font-size: 15px">@wellypooscene bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wellypooscene's tweets](https://twitter.com/wellypooscene).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 414 |
| Retweets | 40 |
| Short tweets | 35 |
| Tweets kept | 339 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mtl43mo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wellypooscene's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38ufdelt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38ufdelt/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wellypooscene')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/weloc_
|
2021-05-23T04:20:04.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/weloc_/1617167272947/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1320521811675750400/IeM-w2-L_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Weloc π€ AI Bot </div>
<div style="font-size: 15px">@weloc_ bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@weloc_'s tweets](https://twitter.com/weloc_).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1975 |
| Retweets | 53 |
| Short tweets | 350 |
| Tweets kept | 1572 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mrw3z4v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @weloc_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/apdvjw3r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/apdvjw3r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/weloc_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wendys
|
2021-05-23T04:21:11.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wendys/1604862209363/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1306958273086730240/lrYgKg8G_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Wendy's π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@wendys bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wendys's tweets](https://twitter.com/wendys).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3213</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>3</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>864</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2346</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/fitafjh9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wendys's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/26qsvzyb) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/26qsvzyb/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/wendys'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/weworewhat
|
2021-05-23T04:22:19.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/weworewhat/1607531750256/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/474590845497520130/yNdb31lq_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Danielle Bernstein π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@weworewhat bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@weworewhat's tweets](https://twitter.com/weworewhat).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3202</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>45</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>389</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2768</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3p1bdluv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @weworewhat's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32xwr6fx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32xwr6fx/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/weworewhat'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wherewasmybrain
|
2021-05-23T04:23:23.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wherewasmybrain/1614466108345/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1278021136387903491/UiDVL30Q_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Titled Goose π€ AI Bot </div>
<div style="font-size: 15px">@wherewasmybrain bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wherewasmybrain's tweets](https://twitter.com/wherewasmybrain).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2479 |
| Retweets | 528 |
| Short tweets | 235 |
| Tweets kept | 1716 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23paobou/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wherewasmybrain's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jxgjfaw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jxgjfaw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wherewasmybrain')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/whiskyhutch
|
2021-05-23T04:24:26.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/whiskyhutch/1617815806661/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1252749409126772738/POVl38T0_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sterling π π€ AI Bot </div>
<div style="font-size: 15px">@whiskyhutch bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@whiskyhutch's tweets](https://twitter.com/whiskyhutch).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2893 |
| Retweets | 1516 |
| Short tweets | 345 |
| Tweets kept | 1032 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24q4cf2m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @whiskyhutch's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rv5i0hc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rv5i0hc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/whiskyhutch')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/whoops2gay
|
2021-05-23T04:25:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/whoops2gay/1617793279871/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1216857777236135936/YKTnrYXf_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">whoops im gay lol π€ AI Bot </div>
<div style="font-size: 15px">@whoops2gay bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@whoops2gay's tweets](https://twitter.com/whoops2gay).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3206 |
| Retweets | 2434 |
| Short tweets | 190 |
| Tweets kept | 582 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jpc0yop/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @whoops2gay's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3iq56t6c) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3iq56t6c/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/whoops2gay')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wife_geist
|
2021-05-23T04:26:36.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wife_geist/1616642371132/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1320806229413908483/qURj8zLe_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">wife Geist π€ AI Bot </div>
<div style="font-size: 15px">@wife_geist bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wife_geist's tweets](https://twitter.com/wife_geist).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 242 |
| Short tweets | 301 |
| Tweets kept | 2701 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dj9mi0d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wife_geist's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/k0rfkwp0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/k0rfkwp0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wife_geist')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wiifactsplus
|
2021-05-23T04:27:38.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wiifactsplus/1614218679072/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1336892376963567616/-La5SswS_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Wii Facts Plus π€ AI Bot </div>
<div style="font-size: 15px">@wiifactsplus bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wiifactsplus's tweets](https://twitter.com/wiifactsplus).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 153 |
| Retweets | 5 |
| Short tweets | 0 |
| Tweets kept | 148 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19wweb3v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wiifactsplus's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28sh6nv9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28sh6nv9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wiifactsplus')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/williamgrobman
|
2021-05-23T04:28:41.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/williamgrobman/1616735910839/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374605323881779203/c5kjnLQp_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">πΒ―\_(γ)_/Β―β π€ AI Bot </div>
<div style="font-size: 15px">@williamgrobman bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@williamgrobman's tweets](https://twitter.com/williamgrobman).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 51 |
| Short tweets | 223 |
| Tweets kept | 2974 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wiaiqgc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @williamgrobman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/phcsbki0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/phcsbki0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/williamgrobman')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wired
|
2021-05-23T04:29:56.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wired/1601263431883/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1228050699348561920/YvWAQD2L_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">WIRED π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@wired bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wired's tweets](https://twitter.com/wired).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3240</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>353</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>21</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2866</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/35181tay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wired's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/13lg2287) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/13lg2287/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/wired'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/witchdagguh
|
2021-05-23T04:31:08.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/witchdagguh/1614138864003/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1184495597967106049/BPXCzXkd_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chaotic Maelstrom of Willing Hands π€ AI Bot </div>
<div style="font-size: 15px">@witchdagguh bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@witchdagguh's tweets](https://twitter.com/witchdagguh).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3046 |
| Retweets | 1626 |
| Short tweets | 135 |
| Tweets kept | 1285 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tqwxgqa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @witchdagguh's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ng9fmxq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ng9fmxq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/witchdagguh')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/witten271
|
2021-05-23T04:32:11.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1264681056256565268/lrwZRqIv_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Edward Witten π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@witten271 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@witten271's tweets](https://twitter.com/witten271).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1337</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>761</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>32</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>544</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/i5o4s13a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @witten271's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/35w4smrg) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/35w4smrg/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/witten271'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wokermayo
|
2021-03-25T20:14:41.000Z
|
[] |
[
".gitattributes"
] |
huggingtweets
| 0 | |||
huggingtweets/woketopus
|
2021-05-23T04:33:18.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/woketopus/1614149251542/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363814877119336451/DtC1OuMG_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">woketopus is grooving π€ AI Bot </div>
<div style="font-size: 15px">@woketopus bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@woketopus's tweets](https://twitter.com/woketopus).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3219 |
| Retweets | 217 |
| Short tweets | 646 |
| Tweets kept | 2356 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3t0s1gfu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @woketopus's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1s4xkpp2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1s4xkpp2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/woketopus')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wolfejosh
|
2021-05-23T04:34:25.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wolfejosh/1616623620980/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1253094103413395456/1OXl60FT_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Josh Wolfe π€ AI Bot </div>
<div style="font-size: 15px">@wolfejosh bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wolfejosh's tweets](https://twitter.com/wolfejosh).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 838 |
| Short tweets | 374 |
| Tweets kept | 2033 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/121x3hw4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wolfejosh's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2poyfrja) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2poyfrja/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wolfejosh')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wolfniya
|
2021-05-23T04:35:39.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wolfniya/1617790877098/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357846937840586753/vte8QVom_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evelyn fra den ΓΈyaβ΄β¬‘β΄π¦β΄π¬π§π³π΄ π€ AI Bot </div>
<div style="font-size: 15px">@wolfniya bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wolfniya's tweets](https://twitter.com/wolfniya).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 198 |
| Short tweets | 331 |
| Tweets kept | 2714 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e1doaxh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wolfniya's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2iyc29lq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2iyc29lq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wolfniya')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wonkhe
|
2021-05-23T04:37:10.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wonkhe/1617269501722/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1213358797038739456/P4RT8ilj_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Wonkhe π€ AI Bot </div>
<div style="font-size: 15px">@wonkhe bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wonkhe's tweets](https://twitter.com/wonkhe).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 82 |
| Short tweets | 0 |
| Tweets kept | 3168 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3thzvsno/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wonkhe's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23efmlg0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23efmlg0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wonkhe')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/worrski_
|
2021-05-23T04:38:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/worrski_/1616131395706/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370683624324956162/R6cB17BK_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">21st Century Schizoid Ben π€ AI Bot </div>
<div style="font-size: 15px">@worrski_ bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@worrski_'s tweets](https://twitter.com/worrski_).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3190 |
| Retweets | 531 |
| Short tweets | 856 |
| Tweets kept | 1803 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g9vvlkk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @worrski_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17oq1dis) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17oq1dis/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/worrski_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wortelsoup
|
2021-05-23T04:39:42.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wortelsoup/1617787975493/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1292884837468999686/9yJgjLUo_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">turnip π€ AI Bot </div>
<div style="font-size: 15px">@wortelsoup bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wortelsoup's tweets](https://twitter.com/wortelsoup).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3203 |
| Retweets | 280 |
| Short tweets | 492 |
| Tweets kept | 2431 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lswi6sv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wortelsoup's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15hy9x0d) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15hy9x0d/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wortelsoup')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wrathofgnon
|
2021-05-23T04:41:01.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wrathofgnon/1603923813760/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/939424471353475072/fB-3BRin_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Wrath Of Gnon π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@wrathofgnon bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wrathofgnon's tweets](https://twitter.com/wrathofgnon).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3227</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>499</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>116</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2612</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/x0tn1ht9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wrathofgnon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/39eutbnd) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/39eutbnd/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/wrathofgnon'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/wretched_worm
|
2021-05-23T04:42:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375118108801691657/W0nGKGr0_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">βͺ wretched worm π€ π€ AI Bot </div>
<div style="font-size: 15px">@wretched_worm bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wretched_worm's tweets](https://twitter.com/wretched_worm).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3213 |
| Retweets | 272 |
| Short tweets | 605 |
| Tweets kept | 2336 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31f6zj5v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wretched_worm's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2w4i1wpc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2w4i1wpc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wretched_worm')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/writinglefty
|
2021-05-23T04:43:32.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/writinglefty/1616644119366/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1213979995342684160/gsKEissy_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">write lefty π€ AI Bot </div>
<div style="font-size: 15px">@writinglefty bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@writinglefty's tweets](https://twitter.com/writinglefty).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 98 |
| Short tweets | 572 |
| Tweets kept | 2577 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dllzz3mr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @writinglefty's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pxddijl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pxddijl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/writinglefty')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wsj
|
2021-05-23T04:44:47.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wsj/1617668423306/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/971415515754266624/zCX0q9d5_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Wall Street Journal π€ AI Bot </div>
<div style="font-size: 15px">@wsj bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wsj's tweets](https://twitter.com/wsj).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 26 |
| Short tweets | 0 |
| Tweets kept | 3224 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zzpode1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wsj's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gwhambd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gwhambd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/wsj')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wwm_shakespeare
|
2021-05-23T04:45:54.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wwm_shakespeare/1610567717562/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/68000547/1863715-big_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">William Shakespeare π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@wwm_shakespeare bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wwm_shakespeare's tweets](https://twitter.com/wwm_shakespeare).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>18</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>196</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3020</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27cac1ob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wwm_shakespeare's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qqhve6t) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qqhve6t/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/wwm_shakespeare'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/wyattpuppers
|
2021-05-23T04:47:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/wyattpuppers/1609011422698/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340068830673027074/VVV2NNgn_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">C a r p π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@wyattpuppers bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@wyattpuppers's tweets](https://twitter.com/wyattpuppers).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3190</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>478</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>481</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2231</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bl7smzv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wyattpuppers's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ld6fkx1k) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ld6fkx1k/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/wyattpuppers'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/xaneowski
|
2021-05-23T04:48:22.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/xaneowski/1616904322673/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375865466095239170/D5rWgwpw_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">xane π€ AI Bot </div>
<div style="font-size: 15px">@xaneowski bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@xaneowski's tweets](https://twitter.com/xaneowski).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1672 |
| Retweets | 18 |
| Short tweets | 208 |
| Tweets kept | 1446 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d0e2uns/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @xaneowski's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/27c0d7fs) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/27c0d7fs/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/xaneowski')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/xescobin
|
2021-05-23T04:49:24.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/xescobin/1608382856568/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1322124437039165442/wNDVA07K_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">xean π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@xescobin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@xescobin's tweets](https://twitter.com/xescobin).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>848</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>51</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>213</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>584</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3tc2mjf0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @xescobin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gvtor1n) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gvtor1n/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/xescobin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/xiaomi
|
2021-05-23T04:50:39.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/xiaomi/1609716260950/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1246621358458433536/JlSVXK2__400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Xiaomi π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@xiaomi bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@xiaomi's tweets](https://twitter.com/xiaomi).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3225</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>273</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>99</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2853</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jsfmwvr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @xiaomi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16pogxna) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16pogxna/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/xiaomi'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/xinqisu
|
2021-05-23T04:51:48.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/xinqisu/1607803999992/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1185460679550984192/jCxIECDA_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Xinqi Su θζηͺ π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@xinqisu bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@xinqisu's tweets](https://twitter.com/xinqisu).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3248</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>174</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>39</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3035</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1l67ih2t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @xinqisu's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m0wt4pe) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m0wt4pe/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/xinqisu'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/xwylraz0rbl4d3x
|
2021-05-23T04:54:20.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/xwylraz0rbl4d3x/1617889284619/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366426861299920900/A1ynltRo_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ππππ½ππ πππΌππππππππππ π€ AI Bot </div>
<div style="font-size: 15px">@xwylraz0rbl4d3x bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@xwylraz0rbl4d3x's tweets](https://twitter.com/xwylraz0rbl4d3x).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3152 |
| Retweets | 682 |
| Short tweets | 631 |
| Tweets kept | 1839 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36q46b23/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @xwylraz0rbl4d3x's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a0sqgtk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a0sqgtk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/xwylraz0rbl4d3x')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yarbsalocin
|
2021-05-23T04:55:26.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yarbsalocin/1616647825805/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/978499874923556866/8vBDa_LU_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nicolas Bray π€ AI Bot </div>
<div style="font-size: 15px">@yarbsalocin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yarbsalocin's tweets](https://twitter.com/yarbsalocin).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 135 |
| Short tweets | 190 |
| Tweets kept | 2918 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ps5uhut/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yarbsalocin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tsu7r7s9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tsu7r7s9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yarbsalocin')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/ycombinator
|
2021-05-23T04:56:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/ycombinator/1603447091260/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/716641091311697920/hFFVBhFe_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Y Combinator π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@ycombinator bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@ycombinator's tweets](https://twitter.com/ycombinator).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3220</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>726</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>14</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2480</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/256at4s3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ycombinator's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/31k6k27j) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/31k6k27j/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/ycombinator'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/yeahyeahyens
|
2021-05-23T04:58:28.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yeahyeahyens/1612175424382/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/647352395622653952/WEuxh8dK_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">evilyeahyeahyens π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@yeahyeahyens bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yeahyeahyens's tweets](https://twitter.com/yeahyeahyens).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3244</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>492</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>327</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2425</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3udu67c3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yeahyeahyens's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2lmppjy9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2lmppjy9/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/yeahyeahyens'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yellowdogedem
|
2021-05-23T04:59:31.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yellowdogedem/1617172947443/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374515470498373639/dygzoNob_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Toby (Inactive) π³οΈπ₯βοΈππππ π€ AI Bot </div>
<div style="font-size: 15px">@yellowdogedem bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yellowdogedem's tweets](https://twitter.com/yellowdogedem).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 494 |
| Short tweets | 788 |
| Tweets kept | 1951 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ln60y7n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yellowdogedem's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vj8xb46) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vj8xb46/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yellowdogedem')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yennyowo
|
2021-06-07T11:56:51.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 1 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yennyowo/1623067005926/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1400613553070018571/4_Sit9I4_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">π³βππΈ Pride Huwu-Yenny πΈπ³βπ</div>
<div style="text-align: center; font-size: 14px;">@yennyowo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from π³βππΈ Pride Huwu-Yenny πΈπ³βπ.
| Data | π³βππΈ Pride Huwu-Yenny πΈπ³βπ |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 50 |
| Short tweets | 1015 |
| Tweets kept | 2185 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1e63a0zl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yennyowo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rh23jhk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rh23jhk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yennyowo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yieee_nagitaco
|
2021-05-23T05:00:38.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yieee_nagitaco/1608381956095/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339194351298072577/tfJheAeM_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Yieee Nagi Taco (Sky) π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@yieee_nagitaco bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yieee_nagitaco's tweets](https://twitter.com/yieee_nagitaco).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3032</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>789</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>623</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1620</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g8y06jc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yieee_nagitaco's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tjubyxk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tjubyxk/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/yieee_nagitaco'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yigitckahyaoglu
|
2021-05-23T05:01:57.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yigitckahyaoglu/1616644358995/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1145065807376003072/tc_1b4de_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">yiΔit π€ AI Bot </div>
<div style="font-size: 15px">@yigitckahyaoglu bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yigitckahyaoglu's tweets](https://twitter.com/yigitckahyaoglu).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1105 |
| Retweets | 111 |
| Short tweets | 44 |
| Tweets kept | 950 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7lw3u0uh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yigitckahyaoglu's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1iek155c) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1iek155c/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yigitckahyaoglu')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/ylecun
|
2021-05-23T05:03:08.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 24 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2387565623/7gew8nz1z7ik1ch148so_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Yann LeCun π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@ylecun bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@ylecun's tweets](https://twitter.com/ylecun).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3230</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>968</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>245</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2017</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3a9fwpf1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ylecun's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/avykhi3y) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/avykhi3y/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/ylecun'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/youronlinedad
|
2021-05-23T05:04:15.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/youronlinedad/1614100614383/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1184826580910125057/gqE8fCKg_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Internet Dad π€ AI Bot </div>
<div style="font-size: 15px">@youronlinedad bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@youronlinedad's tweets](https://twitter.com/youronlinedad).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3201 |
| Retweets | 41 |
| Short tweets | 508 |
| Tweets kept | 2652 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g7jg14o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @youronlinedad's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t2wy77n) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t2wy77n/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/youronlinedad')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yujiri3
|
2021-05-23T05:05:22.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yujiri3/1616651697285/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1350388215975456768/hyUBufqg_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Yujiri (my likes don't always work) π€ AI Bot </div>
<div style="font-size: 15px">@yujiri3 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yujiri3's tweets](https://twitter.com/yujiri3).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3182 |
| Retweets | 773 |
| Short tweets | 318 |
| Tweets kept | 2091 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/353ok7f3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yujiri3's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sqw7eetr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sqw7eetr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yujiri3')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yukonbrandon
|
2021-05-23T05:06:26.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yukonbrandon/1617458018352/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359285189482934280/-NJ6GZ4M_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brandon Macdonald π€ AI Bot </div>
<div style="font-size: 15px">@yukonbrandon bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yukonbrandon's tweets](https://twitter.com/yukonbrandon).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 105 |
| Short tweets | 128 |
| Tweets kept | 3016 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36sc6qhf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yukonbrandon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8xctkx0v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8xctkx0v/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yukonbrandon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yung_caribou
|
2021-05-23T05:07:40.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yung_caribou/1614136835166/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358907764374970368/tJHY7eRK_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Certified Hairbrush Licker π€ AI Bot </div>
<div style="font-size: 15px">@yung_caribou bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yung_caribou's tweets](https://twitter.com/yung_caribou).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 772 |
| Retweets | 52 |
| Short tweets | 158 |
| Tweets kept | 562 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1c7fnh7f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yung_caribou's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2palqva5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2palqva5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yung_caribou')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yungparenti
|
2021-05-23T05:08:47.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yungparenti/1619285093850/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1305960885987532802/6TzwD8_B_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Astronaut Cum Evangelist π¬π· π€ AI Bot </div>
<div style="font-size: 15px">@yungparenti bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yungparenti's tweets](https://twitter.com/yungparenti).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3232 |
| Retweets | 211 |
| Short tweets | 507 |
| Tweets kept | 2514 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20pdwcql/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yungparenti's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/oi3awf8d) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/oi3awf8d/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yungparenti')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yuureimi
|
2021-05-23T05:09:59.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/yuureimi/1614217561886/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343286808755499008/5MMYpRNN_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">yuureimiπΈ π€ AI Bot </div>
<div style="font-size: 15px">@yuureimi bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yuureimi's tweets](https://twitter.com/yuureimi).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2885 |
| Retweets | 2570 |
| Short tweets | 53 |
| Tweets kept | 262 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21dq7xjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yuureimi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hunxb6z) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hunxb6z/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yuureimi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yybbhn
|
2021-05-23T05:11:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369145347155591168/eRKzbkIx_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Yiyang Chen π€ AI Bot </div>
<div style="font-size: 15px">@yybbhn bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@yybbhn's tweets](https://twitter.com/yybbhn).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 107 |
| Retweets | 25 |
| Short tweets | 9 |
| Tweets kept | 73 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16g99wak/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yybbhn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pj7k13c) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pj7k13c/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yybbhn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zacharyhundley
|
2021-05-23T05:12:24.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zacharyhundley/1616620657215/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1336547084372234241/ZthomfiN_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zachary π»π±οΈ π€ AI Bot </div>
<div style="font-size: 15px">@zacharyhundley bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zacharyhundley's tweets](https://twitter.com/zacharyhundley).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 260 |
| Short tweets | 797 |
| Tweets kept | 2189 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d5adsoe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zacharyhundley's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ni6yl621) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ni6yl621/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zacharyhundley')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zachfox
|
2021-05-23T05:13:41.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zachfox/1603321719549/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1142440824766193664/6NK0B-Gr_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zach Fox π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@zachfox bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zachfox's tweets](https://twitter.com/zachfox).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3168</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>547</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>415</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2206</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/21svlsaa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zachfox's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/21o6mb7e) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/21o6mb7e/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/zachfox'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/zackfox
|
2021-05-23T05:15:04.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zackfox/1614157233424/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339876988941553665/6t5kM6LU_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zack Fox π€ AI Bot </div>
<div style="font-size: 15px">@zackfox bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zackfox's tweets](https://twitter.com/zackfox).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3159 |
| Retweets | 384 |
| Short tweets | 892 |
| Tweets kept | 1883 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sm6cmyd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zackfox's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qyn5ajb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qyn5ajb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zackfox')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zackmdavis
|
2021-05-23T05:16:20.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zackmdavis/1617765418297/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1058563940223868928/08EbRbwT_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zack M. Davis π€ AI Bot </div>
<div style="font-size: 15px">@zackmdavis bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zackmdavis's tweets](https://twitter.com/zackmdavis).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3178 |
| Retweets | 1350 |
| Short tweets | 111 |
| Tweets kept | 1717 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1uu0syjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zackmdavis's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2x5kqcep) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2x5kqcep/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zackmdavis')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zashskoe
|
2021-05-23T05:17:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zashskoe/1617795305571/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1286629921037508608/cC3hHmm7_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zash Skoe π π€ AI Bot </div>
<div style="font-size: 15px">@zashskoe bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zashskoe's tweets](https://twitter.com/zashskoe).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 35 |
| Short tweets | 555 |
| Tweets kept | 2658 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8qwi2vtm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zashskoe's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2e7v0bbr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2e7v0bbr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zashskoe')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zavaralho
|
2021-05-23T05:18:42.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zavaralho/1614104703560/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1347906977087827978/6EI648fF_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zum Zavaralho π€ AI Bot </div>
<div style="font-size: 15px">@zavaralho bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zavaralho's tweets](https://twitter.com/zavaralho).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3193 |
| Retweets | 241 |
| Short tweets | 1078 |
| Tweets kept | 1874 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7fl4khg3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zavaralho's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18t6cfw2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18t6cfw2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zavaralho')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zetsubunny
|
2021-05-23T05:19:49.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 22 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zetsubunny/1617772715416/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362563256230031366/ujesNtUk_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">MEMENTO BUNI π€ AI Bot </div>
<div style="font-size: 15px">@zetsubunny bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zetsubunny's tweets](https://twitter.com/zetsubunny).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3230 |
| Retweets | 1122 |
| Short tweets | 264 |
| Tweets kept | 1844 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3u5onhoi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zetsubunny's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tv6yd107) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tv6yd107/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zetsubunny')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zeynep
|
2021-05-23T05:20:58.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zeynep/1608087457012/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1042040726534668288/z-TxsjAw_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">zeynep tufekci π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@zeynep bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zeynep's tweets](https://twitter.com/zeynep).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3220</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>524</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>364</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2332</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c0ls39dz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zeynep's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1t7gox04) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1t7gox04/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/zeynep'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zitterbewegung
|
2021-05-23T05:22:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1033823587071737856/pDlHy2Sh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Joshua Herman π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@zitterbewegung bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zitterbewegung's tweets](https://twitter.com/zitterbewegung).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3186</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1591</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>113</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1482</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/14z6v8xv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zitterbewegung's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2mqisxo3) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2mqisxo3/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/zitterbewegung'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/zkarlinn
|
2021-05-23T05:23:15.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zkarlinn/1612670051245/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/939167998228795392/-tdbboDI_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zev Karlin-Neumann π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@zkarlinn bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zkarlinn's tweets](https://twitter.com/zkarlinn).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3225</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2237</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>187</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>801</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/260jmvfw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zkarlinn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/67rfsha0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/67rfsha0/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/zkarlinn'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zlisto
|
2021-05-23T05:24:22.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zlisto/1611290409885/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/933754221257723904/OPVfNgZG_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tauhid R. Zaman π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@zlisto bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zlisto's tweets](https://twitter.com/zlisto).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3157</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1202</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>117</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1838</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3p8ylpjm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zlisto's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/220gmo20) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/220gmo20/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/zlisto'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zoebot_zoe
|
2021-05-23T05:25:33.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zoebot_zoe/1607527750457/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1330687610625220611/RGVkpYG-_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ZOEOZONE π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@zoebot_zoe bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zoebot_zoe's tweets](https://twitter.com/zoebot_zoe).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3196</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>597</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>410</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2189</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cddeevp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zoebot_zoe's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kaybw72) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kaybw72/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/zoebot_zoe'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zrkrlc
|
2021-05-23T05:26:40.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 23 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zrkrlc/1616626091555/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1332547297914175494/RAz44L4J_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">object-level jail π¨ π€ AI Bot </div>
<div style="font-size: 15px">@zrkrlc bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zrkrlc's tweets](https://twitter.com/zrkrlc).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2241 |
| Retweets | 228 |
| Short tweets | 204 |
| Tweets kept | 1809 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2g51am53/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zrkrlc's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23unb7ar) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23unb7ar/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zrkrlc')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/zvisrosen
|
2021-05-23T05:27:42.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/zvisrosen/1607051627200/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/793249343713243137/L-ZrfLj5_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Zvi S. Rosen π€ AI Bot </div>
<div style="font-size: 15px; color: #657786">@zvisrosen bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@zvisrosen's tweets](https://twitter.com/zvisrosen).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3232</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>225</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>85</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2922</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3awttigi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zvisrosen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rths1wy) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rths1wy/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/zvisrosen'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
human-centered-summarization/financial-summarization-pegasus
|
2021-04-21T15:51:38.000Z
|
[
"pytorch",
"tf",
"pegasus",
"seq2seq",
"en",
"dataset:xsum",
"arxiv:1912.08777",
"transformers",
"summarization",
"text2text-generation"
] |
summarization
|
[
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tf_model.h5",
"tokenizer_config.json"
] |
human-centered-summarization
| 2,351 |
transformers
|
---
language:
- en
tags: summarization
datasets:
- xsum
metrics:
- rouge
widget:
- text: "National Commercial Bank (NCB), Saudi Arabiaβs largest lender by assets, agreed to buy rival Samba Financial Group for $15 billion in the biggest banking takeover this year.NCB will pay 28.45 riyals ($7.58) for each Samba share, according to a statement on Sunday, valuing it at about 55.7 billion riyals. NCB will offer 0.739 new shares for each Samba share, at the lower end of the 0.736-0.787 ratio the banks set when they signed an initial framework agreement in June.The offer is a 3.5% premium to Sambaβs Oct. 8 closing price of 27.50 riyals and about 24% higher than the level the shares traded at before the talks were made public. Bloomberg News first reported the merger discussions.The new bank will have total assets of more than $220 billion, creating the Gulf regionβs third-largest lender. The entityβs $46 billion market capitalization nearly matches that of Qatar National Bank QPSC, which is still the Middle Eastβs biggest lender with about $268 billion of assets."
---
### PEGASUS for Financial Summarization
This model was fine-tuned on a novel financial news dataset, which consists of 2K articles from [Bloomberg](https://www.bloomberg.com/europe), on topics such as stock, markets, currencies, rate and cryptocurrencies.
It is based on the [PEGASUS](https://huggingface.co/transformers/model_doc/pegasus.html) model and in particular PEGASUS fine-tuned on the Extreme Summarization (XSum) dataset: [google/pegasus-xsum model](https://huggingface.co/google/pegasus-xsum). PEGASUS was originally proposed by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
### How to use
We provide a simple snippet of how to use this model for the task of financial summarization in PyTorch.
```Python
from transformers import PegasusTokenizer, PegasusForConditionalGeneration, TFPegasusForConditionalGeneration
# Let's load the model and the tokenizer
model_name = "human-centered-summarization/financial-summarization-pegasus"
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name) # If you want to use the Tensorflow model
# just replace with TFPegasusForConditionalGeneration
# Some text to summarize here
text_to_summarize = "National Commercial Bank (NCB), Saudi Arabiaβs largest lender by assets, agreed to buy rival Samba Financial Group for $15 billion in the biggest banking takeover this year.NCB will pay 28.45 riyals ($7.58) for each Samba share, according to a statement on Sunday, valuing it at about 55.7 billion riyals. NCB will offer 0.739 new shares for each Samba share, at the lower end of the 0.736-0.787 ratio the banks set when they signed an initial framework agreement in June.The offer is a 3.5% premium to Sambaβs Oct. 8 closing price of 27.50 riyals and about 24% higher than the level the shares traded at before the talks were made public. Bloomberg News first reported the merger discussions.The new bank will have total assets of more than $220 billion, creating the Gulf regionβs third-largest lender. The entityβs $46 billion market capitalization nearly matches that of Qatar National Bank QPSC, which is still the Middle Eastβs biggest lender with about $268 billion of assets."
# Tokenize our text
# If you want to run the code in Tensorflow, please remember to return the particular tensors as simply as using return_tensors = 'tf'
input_ids = tokenizer(text_to_summarize, return_tensors="pt").input_ids
# Generate the output (Here, we use beam search but you can also use any other strategy you like)
output = model.generate(
input_ids,
max_length=32,
num_beams=5,
early_stopping=True
)
# Finally, we can print the generated summary
print(tokenizer.decode(output[0], skip_special_tokens=True))
# Generated Output: Saudi bank to pay a 3.5% premium to Samba share price. Gulf regionβs third-largest lender will have total assets of $220 billion
```
## Evaluation Results
The results before and after the fine-tuning on our dataset are shown below:
| Fine-tuning | R-1 | R-2 | R-L | R-S |
|:-----------:|:-----:|:-----:|:------:|:-----:|
| Yes | 23.55 | 6.99 | 18.14 | 21.36 |
| No | 13.8 | 2.4 | 10.63 | 12.03 |
## Citation
You can find more details about this work in the following workshop paper. If you use our model in your research, please consider citing our paper:
> T. Passali, A. Gidiotis, E. Chatzikyriakidis and G. Tsoumakas. 2021.
> Towards Human-Centered Summarization: A Case Study on Financial News.
> In Proceedings of the First Workshop on Bridging Human-Computer Interaction and Natural Language Processing(pp. 21β27). Association for Computational Linguistics.
BibTeX entry:
```
@inproceedings{passali-etal-2021-towards,
title = "Towards Human-Centered Summarization: A Case Study on Financial News",
author = "Passali, Tatiana and Gidiotis, Alexios and Chatzikyriakidis, Efstathios and Tsoumakas, Grigorios",
booktitle = "Proceedings of the First Workshop on Bridging Human{--}Computer Interaction and Natural Language Processing",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.hcinlp-1.4",
pages = "21--27",
}
```
## Support
Contact us at [[email protected]](mailto:[email protected]) if you are interested in a more sophisticated version of the model, trained on more articles and adapted to your needs!
More information about Medoid AI:
- Website: [https://www.medoid.ai](https://www.medoid.ai)
- LinkedIn: [https://www.linkedin.com/company/medoid-ai/](https://www.linkedin.com/company/medoid-ai/)
|
huseinzol05/albert-base-bahasa-cased
|
2020-12-11T21:44:12.000Z
|
[
"pytorch",
"albert",
"masked-lm",
"ms",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] |
huseinzol05
| 50 |
transformers
|
---
language: ms
---
# Bahasa Albert Model
Pretrained Albert base language model for Malay and Indonesian.
## Pretraining Corpus
`albert-base-bahasa-cased` model was pretrained on ~1.8 Billion words. We trained on both standard and social media language structures, and below is list of data we trained on,
1. [dumping wikipedia](https://github.com/huseinzol05/Malaya-Dataset#wikipedia-1).
2. [local instagram](https://github.com/huseinzol05/Malaya-Dataset#instagram).
3. [local twitter](https://github.com/huseinzol05/Malaya-Dataset#twitter-1).
4. [local news](https://github.com/huseinzol05/Malaya-Dataset#public-news).
5. [local parliament text](https://github.com/huseinzol05/Malaya-Dataset#parliament).
6. [local singlish/manglish text](https://github.com/huseinzol05/Malaya-Dataset#singlish-text).
7. [IIUM Confession](https://github.com/huseinzol05/Malaya-Dataset#iium-confession).
8. [Wattpad](https://github.com/huseinzol05/Malaya-Dataset#wattpad).
9. [Academia PDF](https://github.com/huseinzol05/Malaya-Dataset#academia-pdf).
Preprocessing steps can reproduce from here, [Malaya/pretrained-model/preprocess](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/preprocess).
## Pretraining details
- This model was trained using Google Albert's github [repository](https://github.com/google-research/ALBERT) on v3-8 TPU.
- All steps can reproduce from here, [Malaya/pretrained-model/albert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/albert).
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AlbertTokenizer, AlbertModel
model = BertModel.from_pretrained('huseinzol05/albert-base-bahasa-cased')
tokenizer = AlbertTokenizer.from_pretrained(
'huseinzol05/albert-base-bahasa-cased',
do_lower_case = False,
)
```
## Example using AutoModelWithLMHead
```python
from transformers import AlbertTokenizer, AutoModelWithLMHead, pipeline
model = AutoModelWithLMHead.from_pretrained('huseinzol05/albert-base-bahasa-cased')
tokenizer = AlbertTokenizer.from_pretrained(
'huseinzol05/albert-base-bahasa-cased',
do_lower_case = False,
)
fill_mask = pipeline('fill-mask', model = model, tokenizer = tokenizer)
print(fill_mask('makan ayam dengan [MASK]'))
```
Output is,
```text
[{'sequence': '[CLS] makan ayam dengan ayam[SEP]',
'score': 0.044952988624572754,
'token': 629},
{'sequence': '[CLS] makan ayam dengan sayur[SEP]',
'score': 0.03621877357363701,
'token': 1639},
{'sequence': '[CLS] makan ayam dengan ikan[SEP]',
'score': 0.034429922699928284,
'token': 758},
{'sequence': '[CLS] makan ayam dengan nasi[SEP]',
'score': 0.032447945326566696,
'token': 453},
{'sequence': '[CLS] makan ayam dengan rendang[SEP]',
'score': 0.028885239735245705,
'token': 2451}]
```
## Results
For further details on the model performance, simply checkout accuracy page from Malaya, https://malaya.readthedocs.io/en/latest/Accuracy.html, we compared with traditional models.
## Acknowledgement
Thanks to [Im Big](https://www.facebook.com/imbigofficial/), [LigBlou](https://www.facebook.com/ligblou), [Mesolitica](https://mesolitica.com/) and [KeyReply](https://www.keyreply.com/) for sponsoring AWS, Google and GPU clouds to train Albert for Bahasa.
|
huseinzol05/albert-base-bahasa-standard-cased
|
2020-10-19T13:58:25.000Z
|
[
"pytorch",
"albert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] |
huseinzol05
| 14 |
transformers
| |
huseinzol05/albert-large-bahasa-standard-cased
|
2020-10-19T14:46:38.000Z
|
[
"pytorch",
"albert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] |
huseinzol05
| 12 |
transformers
| |
huseinzol05/albert-tiny-bahasa-cased
|
2020-12-11T21:44:15.000Z
|
[
"pytorch",
"albert",
"masked-lm",
"ms",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] |
huseinzol05
| 37 |
transformers
|
---
language: ms
---
# Bahasa Albert Model
Pretrained Albert tiny language model for Malay and Indonesian, 85% faster execution and 50% smaller than Albert base.
## Pretraining Corpus
`albert-tiny-bahasa-cased` model was pretrained on ~1.8 Billion words. We trained on both standard and social media language structures, and below is list of data we trained on,
1. [dumping wikipedia](https://github.com/huseinzol05/Malaya-Dataset#wikipedia-1).
2. [local instagram](https://github.com/huseinzol05/Malaya-Dataset#instagram).
3. [local twitter](https://github.com/huseinzol05/Malaya-Dataset#twitter-1).
4. [local news](https://github.com/huseinzol05/Malaya-Dataset#public-news).
5. [local parliament text](https://github.com/huseinzol05/Malaya-Dataset#parliament).
6. [local singlish/manglish text](https://github.com/huseinzol05/Malaya-Dataset#singlish-text).
7. [IIUM Confession](https://github.com/huseinzol05/Malaya-Dataset#iium-confession).
8. [Wattpad](https://github.com/huseinzol05/Malaya-Dataset#wattpad).
9. [Academia PDF](https://github.com/huseinzol05/Malaya-Dataset#academia-pdf).
Preprocessing steps can reproduce from here, [Malaya/pretrained-model/preprocess](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/preprocess).
## Pretraining details
- This model was trained using Google Albert's github [repository](https://github.com/google-research/ALBERT) on v3-8 TPU.
- All steps can reproduce from here, [Malaya/pretrained-model/albert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/albert).
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AlbertTokenizer, AlbertModel
model = BertModel.from_pretrained('huseinzol05/albert-tiny-bahasa-cased')
tokenizer = AlbertTokenizer.from_pretrained(
'huseinzol05/albert-tiny-bahasa-cased',
do_lower_case = False,
)
```
## Example using AutoModelWithLMHead
```python
from transformers import AlbertTokenizer, AutoModelWithLMHead, pipeline
model = AutoModelWithLMHead.from_pretrained('huseinzol05/albert-tiny-bahasa-cased')
tokenizer = AlbertTokenizer.from_pretrained(
'huseinzol05/albert-tiny-bahasa-cased',
do_lower_case = False,
)
fill_mask = pipeline('fill-mask', model = model, tokenizer = tokenizer)
print(fill_mask('makan ayam dengan [MASK]'))
```
Output is,
```text
[{'sequence': '[CLS] makan ayam dengan ayam[SEP]',
'score': 0.05121927708387375,
'token': 629},
{'sequence': '[CLS] makan ayam dengan sayur[SEP]',
'score': 0.04497420787811279,
'token': 1639},
{'sequence': '[CLS] makan ayam dengan nasi[SEP]',
'score': 0.039827536791563034,
'token': 453},
{'sequence': '[CLS] makan ayam dengan rendang[SEP]',
'score': 0.032997727394104004,
'token': 2451},
{'sequence': '[CLS] makan ayam dengan makan[SEP]',
'score': 0.031354598701000214,
'token': 129}]
```
## Results
For further details on the model performance, simply checkout accuracy page from Malaya, https://malaya.readthedocs.io/en/latest/Accuracy.html, we compared with traditional models.
## Acknowledgement
Thanks to [Im Big](https://www.facebook.com/imbigofficial/), [LigBlou](https://www.facebook.com/ligblou), [Mesolitica](https://mesolitica.com/) and [KeyReply](https://www.keyreply.com/) for sponsoring AWS, Google and GPU clouds to train Albert for Bahasa.
|
huseinzol05/albert-tiny-bahasa-standard-cased
|
2020-10-19T14:03:47.000Z
|
[
"pytorch",
"albert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] |
huseinzol05
| 15 |
transformers
| |
huseinzol05/bert-base-bahasa-cased
|
2021-05-19T20:07:12.000Z
|
[
"pytorch",
"jax",
"bert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] |
huseinzol05
| 345 |
transformers
| |
huseinzol05/bert-base-bahasa-standard-cased-fix
|
2021-05-19T20:08:07.000Z
|
[
"pytorch",
"jax",
"bert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] |
huseinzol05
| 90 |
transformers
| |
huseinzol05/bert-base-bahasa-standard-cased
|
2021-05-19T20:09:01.000Z
|
[
"pytorch",
"jax",
"bert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] |
huseinzol05
| 292 |
transformers
| |
huseinzol05/bert-large-bahasa-standard-cased-fix
|
2021-05-19T20:11:11.000Z
|
[
"pytorch",
"jax",
"bert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] |
huseinzol05
| 39 |
transformers
| |
huseinzol05/bert-large-bahasa-standard-cased
|
2021-05-19T20:13:38.000Z
|
[
"pytorch",
"jax",
"bert",
"masked-lm",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] |
huseinzol05
| 29 |
transformers
| |
huseinzol05/electra-base-discriminator-bahasa-cased
|
2020-12-11T21:44:21.000Z
|
[
"pytorch",
"electra",
"pretraining",
"ms",
"transformers"
] |
[
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] |
huseinzol05
| 31 |
transformers
|
---
language: ms
---
# Bahasa ELECTRA Model
Pretrained ELECTRA base language model for Malay and Indonesian.
## Pretraining Corpus
`electra-base-discriminator-bahasa-cased` model was pretrained on ~1.8 Billion words. We trained on both standard and social media language structures, and below is list of data we trained on,
1. [dumping wikipedia](https://github.com/huseinzol05/Malaya-Dataset#wikipedia-1).
2. [local instagram](https://github.com/huseinzol05/Malaya-Dataset#instagram).
3. [local twitter](https://github.com/huseinzol05/Malaya-Dataset#twitter-1).
4. [local news](https://github.com/huseinzol05/Malaya-Dataset#public-news).
5. [local parliament text](https://github.com/huseinzol05/Malaya-Dataset#parliament).
6. [local singlish/manglish text](https://github.com/huseinzol05/Malaya-Dataset#singlish-text).
7. [IIUM Confession](https://github.com/huseinzol05/Malaya-Dataset#iium-confession).
8. [Wattpad](https://github.com/huseinzol05/Malaya-Dataset#wattpad).
9. [Academia PDF](https://github.com/huseinzol05/Malaya-Dataset#academia-pdf).
Preprocessing steps can reproduce from here, [Malaya/pretrained-model/preprocess](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/preprocess).
## Pretraining details
- This model was trained using Google ELECTRA's github [repository](https://github.com/google-research/electra) on a single TESLA V100 32GB VRAM.
- All steps can reproduce from here, [Malaya/pretrained-model/electra](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/electra).
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import ElectraTokenizer, ElectraModel
model = ElectraModel.from_pretrained('huseinzol05/electra-base-discriminator-bahasa-cased')
tokenizer = ElectraTokenizer.from_pretrained(
'huseinzol05/electra-base-discriminator-bahasa-cased',
do_lower_case = False,
)
```
## Example using ElectraForPreTraining
```python
from transformers import ElectraTokenizer, AutoModelWithLMHead, pipeline
model = ElectraForPreTraining.from_pretrained('huseinzol05/electra-base-discriminator-bahasa-cased')
tokenizer = ElectraTokenizer.from_pretrained(
'huseinzol05/electra-base-discriminator-bahasa-cased',
do_lower_case = False
)
sentence = 'kerajaan sangat prihatin terhadap rakyat'
fake_tokens = tokenizer.tokenize(sentence)
fake_inputs = tokenizer.encode(sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
list(zip(fake_tokens, predictions.tolist()))
```
Output is,
```text
[('kerajaan', 0.0),
('sangat', 0.0),
('prihatin', 0.0),
('terhadap', 0.0),
('rakyat', 0.0)]
```
## Results
For further details on the model performance, simply checkout accuracy page from Malaya, https://malaya.readthedocs.io/en/latest/Accuracy.html, we compared with traditional models.
## Acknowledgement
Thanks to [Im Big](https://www.facebook.com/imbigofficial/), [LigBlou](https://www.facebook.com/ligblou), [Mesolitica](https://mesolitica.com/) and [KeyReply](https://www.keyreply.com/) for sponsoring AWS, Google and GPU clouds to train ELECTRA for Bahasa.
|
|
huseinzol05/electra-base-generator-bahasa-cased
|
2020-12-11T21:44:24.000Z
|
[
"pytorch",
"electra",
"masked-lm",
"ms",
"transformers",
"fill-mask"
] |
fill-mask
|
[
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] |
huseinzol05
| 41 |
transformers
|
---
language: ms
---
# Bahasa ELECTRA Model
Pretrained ELECTRA base language model for Malay and Indonesian.
## Pretraining Corpus
`electra-base-generator-bahasa-cased` model was pretrained on ~1.8 Billion words. We trained on both standard and social media language structures, and below is list of data we trained on,
1. [dumping wikipedia](https://github.com/huseinzol05/Malaya-Dataset#wikipedia-1).
2. [local instagram](https://github.com/huseinzol05/Malaya-Dataset#instagram).
3. [local twitter](https://github.com/huseinzol05/Malaya-Dataset#twitter-1).
4. [local news](https://github.com/huseinzol05/Malaya-Dataset#public-news).
5. [local parliament text](https://github.com/huseinzol05/Malaya-Dataset#parliament).
6. [local singlish/manglish text](https://github.com/huseinzol05/Malaya-Dataset#singlish-text).
7. [IIUM Confession](https://github.com/huseinzol05/Malaya-Dataset#iium-confession).
8. [Wattpad](https://github.com/huseinzol05/Malaya-Dataset#wattpad).
9. [Academia PDF](https://github.com/huseinzol05/Malaya-Dataset#academia-pdf).
Preprocessing steps can reproduce from here, [Malaya/pretrained-model/preprocess](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/preprocess).
## Pretraining details
- This model was trained using Google ELECTRA's github [repository](https://github.com/google-research/electra) on v3-8 TPU.
- All steps can reproduce from here, [Malaya/pretrained-model/electra](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/electra).
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import ElectraTokenizer, ElectraModel
model = ElectraModel.from_pretrained('huseinzol05/electra-base-generator-bahasa-cased')
tokenizer = ElectraTokenizer.from_pretrained(
'huseinzol05/electra-base-generator-bahasa-cased',
do_lower_case = False,
)
```
## Example using AutoModelWithLMHead
```python
from transformers import ElectraTokenizer, AutoModelWithLMHead, pipeline
model = AutoModelWithLMHead.from_pretrained('huseinzol05/electra-base-generator-bahasa-cased')
tokenizer = ElectraTokenizer.from_pretrained(
'huseinzol05/electra-base-generator-bahasa-cased',
do_lower_case = False,
)
fill_mask = pipeline('fill-mask', model = model, tokenizer = tokenizer)
print(fill_mask('makan ayam dengan [MASK]'))
```
Output is,
```text
[{'sequence': '[CLS] makan ayam dengan ayam [SEP]',
'score': 0.08424834907054901,
'token': 3255},
{'sequence': '[CLS] makan ayam dengan rendang [SEP]',
'score': 0.064150370657444,
'token': 6288},
{'sequence': '[CLS] makan ayam dengan nasi [SEP]',
'score': 0.033446669578552246,
'token': 2533},
{'sequence': '[CLS] makan ayam dengan kucing [SEP]',
'score': 0.02803465723991394,
'token': 3577},
{'sequence': '[CLS] makan ayam dengan telur [SEP]',
'score': 0.026627106592059135,
'token': 6350}]
```
## Results
For further details on the model performance, simply checkout accuracy page from Malaya, https://malaya.readthedocs.io/en/latest/Accuracy.html, we compared with traditional models.
## Acknowledgement
Thanks to [Im Big](https://www.facebook.com/imbigofficial/), [LigBlou](https://www.facebook.com/ligblou), [Mesolitica](https://mesolitica.com/) and [KeyReply](https://www.keyreply.com/) for sponsoring AWS, Google and GPU clouds to train ELECTRA for Bahasa.
|
huseinzol05/electra-small-discriminator-bahasa-cased
|
2020-12-11T21:44:27.000Z
|
[
"pytorch",
"electra",
"pretraining",
"ms",
"transformers"
] |
[
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] |
huseinzol05
| 46 |
transformers
|
---
language: ms
---
# Bahasa ELECTRA Model
Pretrained ELECTRA small language model for Malay and Indonesian.
## Pretraining Corpus
`electra-small-discriminator-bahasa-cased` model was pretrained on ~1.8 Billion words. We trained on both standard and social media language structures, and below is list of data we trained on,
1. [dumping wikipedia](https://github.com/huseinzol05/Malaya-Dataset#wikipedia-1).
2. [local instagram](https://github.com/huseinzol05/Malaya-Dataset#instagram).
3. [local twitter](https://github.com/huseinzol05/Malaya-Dataset#twitter-1).
4. [local news](https://github.com/huseinzol05/Malaya-Dataset#public-news).
5. [local parliament text](https://github.com/huseinzol05/Malaya-Dataset#parliament).
6. [local singlish/manglish text](https://github.com/huseinzol05/Malaya-Dataset#singlish-text).
7. [IIUM Confession](https://github.com/huseinzol05/Malaya-Dataset#iium-confession).
8. [Wattpad](https://github.com/huseinzol05/Malaya-Dataset#wattpad).
9. [Academia PDF](https://github.com/huseinzol05/Malaya-Dataset#academia-pdf).
Preprocessing steps can reproduce from here, [Malaya/pretrained-model/preprocess](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/preprocess).
## Pretraining details
- This model was trained using Google ELECTRA's github [repository](https://github.com/google-research/electra) on a single TESLA V100 32GB VRAM.
- All steps can reproduce from here, [Malaya/pretrained-model/electra](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/electra).
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import ElectraTokenizer, ElectraModel
model = ElectraModel.from_pretrained('huseinzol05/electra-small-discriminator-bahasa-cased')
tokenizer = ElectraTokenizer.from_pretrained(
'huseinzol05/electra-small-discriminator-bahasa-cased',
do_lower_case = False,
)
```
## Example using ElectraForPreTraining
```python
from transformers import ElectraTokenizer, AutoModelWithLMHead, pipeline
model = ElectraForPreTraining.from_pretrained('huseinzol05/electra-small-discriminator-bahasa-cased')
tokenizer = ElectraTokenizer.from_pretrained(
'huseinzol05/electra-small-discriminator-bahasa-cased',
do_lower_case = False
)
sentence = 'kerajaan sangat prihatin terhadap rakyat'
fake_tokens = tokenizer.tokenize(sentence)
fake_inputs = tokenizer.encode(sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
list(zip(fake_tokens, predictions.tolist()))
```
Output is,
```text
[('kerajaan', 0.0),
('sangat', 0.0),
('prihatin', 0.0),
('terhadap', 0.0),
('rakyat', 0.0)]
```
## Results
For further details on the model performance, simply checkout accuracy page from Malaya, https://malaya.readthedocs.io/en/latest/Accuracy.html, we compared with traditional models.
## Acknowledgement
Thanks to [Im Big](https://www.facebook.com/imbigofficial/), [LigBlou](https://www.facebook.com/ligblou), [Mesolitica](https://mesolitica.com/) and [KeyReply](https://www.keyreply.com/) for sponsoring AWS, Google and GPU clouds to train ELECTRA for Bahasa.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.