modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
jack-oh/korbert_morp_korquad
2021-05-25T08:06:32.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenization_morp.py", "tokenizer_config.json", "vocab.txt" ]
jack-oh
7
transformers
jacob-valdez/blenderbot-small-tflite
2021-04-25T00:47:29.000Z
[ "tflite", "en", "Android", "blenderbot", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "blenderbot.tflite" ]
jacob-valdez
0
--- language: "en" #thumbnail: "url to a thumbnail used in social sharing" tags: - Android - tflite - blenderbot license: "apache-2.0" #datasets: #metrics: --- # Model Card `blenderbot-small-tflite` is a tflite version of `blenderbot-small-90M` I converted for my UTA CSE3310 class. See the repo at [https://github.com/kmosoti/DesparadosAEYE](https://github.com/kmosoti/DesparadosAEYE) and the conversion process [here](https://drive.google.com/file/d/1F93nMsDIm1TWhn70FcLtcaKQUynHq9wS/view?usp=sharing). You have to right pad your user and model input integers to make them [32,]-shaped. Then indicate te true length with the 3rd and 4th params. ```python display(interpreter.get_input_details()) display(interpreter.get_output_details()) ``` ```json [{'dtype': numpy.int32, 'index': 0, 'name': 'input_tokens', 'quantization': (0.0, 0), 'quantization_parameters': {'quantized_dimension': 0, 'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32)}, 'shape': array([32], dtype=int32), 'shape_signature': array([32], dtype=int32), 'sparsity_parameters': {}}, {'dtype': numpy.int32, 'index': 1, 'name': 'decoder_input_tokens', 'quantization': (0.0, 0), 'quantization_parameters': {'quantized_dimension': 0, 'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32)}, 'shape': array([32], dtype=int32), 'shape_signature': array([32], dtype=int32), 'sparsity_parameters': {}}, {'dtype': numpy.int32, 'index': 2, 'name': 'input_len', 'quantization': (0.0, 0), 'quantization_parameters': {'quantized_dimension': 0, 'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32)}, 'shape': array([], dtype=int32), 'shape_signature': array([], dtype=int32), 'sparsity_parameters': {}}, {'dtype': numpy.int32, 'index': 3, 'name': 'decoder_input_len', 'quantization': (0.0, 0), 'quantization_parameters': {'quantized_dimension': 0, 'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32)}, 'shape': array([], dtype=int32), 'shape_signature': array([], dtype=int32), 'sparsity_parameters': {}}] [{'dtype': numpy.int32, 'index': 3113, 'name': 'Identity', 'quantization': (0.0, 0), 'quantization_parameters': {'quantized_dimension': 0, 'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32)}, 'shape': array([1], dtype=int32), 'shape_signature': array([1], dtype=int32), 'sparsity_parameters': {}}] ```
jacobshein/bert-danish-uncased-by-botxo
2021-01-27T14:18:15.000Z
[]
[ ".gitattributes" ]
jacobshein
0
jaehyeong/koelectra-base-v3-finetuned-generalized-sentiment-analysis
2020-12-04T13:59:51.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jaehyeong
10
transformers
jaimin/wav2vec2-base-gujarati-demo
2021-03-31T07:37:36.000Z
[ "pytorch", "wav2vec2", "Guj", "dataset:google", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "template.README.md", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
jaimin
7
transformers
--- language: - - thumbnail: tags: - - - license: datasets: - - metrics: - - --- # MyModelName ## Model description You can embed local or remote images using `![](...)` ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
jakelever/coronabert
2021-05-19T20:34:36.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:cord19", "dataset:pubmed", "transformers", "coronavirus", "covid", "bionlp", "license:mit" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tf_model.preproc", "tokenizer_config.json", "vocab.txt" ]
jakelever
250
transformers
--- language: en thumbnail: https://coronacentral.ai/logo-with-name.png?1 tags: - coronavirus - covid - bionlp datasets: - cord19 - pubmed license: mit widget: - text: "Pre-existing T-cell immunity to SARS-CoV-2 in unexposed healthy controls in Ecuador, as detected with a COVID-19 Interferon-Gamma Release Assay." - text: "Lifestyle and mental health disruptions during COVID-19." - text: "More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis" --- # CoronaCentral BERT Model for Topic / Article Type Classification This is the topic / article type multi-label classification for the [CoronaCentral website](https://coronacentral.ai). This forms part of the pipeline for downloading and processing coronavirus literature described in the [corona-ml repo](https://github.com/jakelever/corona-ml) with available [step-by-step descriptions](https://github.com/jakelever/corona-ml/blob/master/stepByStep.md). The method is described in the [preprint](https://doi.org/10.1101/2020.12.21.423860) and detailed performance results can be found in the [machine learning details](https://github.com/jakelever/corona-ml/blob/master/machineLearningDetails.md) document. This model was derived by fine-tuning the [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) model on this coronavirus sequence (document) classification task. ## Usage Below are two Google Colab notebooks with example usage of this sequence classification model using HuggingFace transformers and KTrain. - [HuggingFace example on Google Colab](https://colab.research.google.com/drive/1cBNgKd4o6FNWwjKXXQQsC_SaX1kOXDa4?usp=sharing) - [KTrain example on Google Colab](https://colab.research.google.com/drive/1h7oJa2NDjnBEoox0D5vwXrxiCHj3B1kU?usp=sharing) ## Training Data The model is trained on ~3200 manually-curated articles sampled at various stages during the coronavirus pandemic. The code for training is available in the [category\_prediction](https://github.com/jakelever/corona-ml/tree/master/category_prediction) directory of the main Github Repo. The data is available in the [annotated_documents.json.gz](https://github.com/jakelever/corona-ml/blob/master/category_prediction/annotated_documents.json.gz) file. ## Inputs and Outputs The model takes in a tokenized title and abstract (combined into a single string and separated by a new line). The outputs are topics and article types, broadly called categories in the pipeline code. The types are listed below. Some others are managed by hand-coded rules described in the [step-by-step descriptions](https://github.com/jakelever/corona-ml/blob/master/stepByStep.md). ### List of Article Types - Comment/Editorial - Meta-analysis - News - Review ### List of Topics - Clinical Reports - Communication - Contact Tracing - Diagnostics - Drug Targets - Education - Effect on Medical Specialties - Forecasting & Modelling - Health Policy - Healthcare Workers - Imaging - Immunology - Inequality - Infection Reports - Long Haul - Medical Devices - Misinformation - Model Systems & Tools - Molecular Biology - Non-human - Non-medical - Pediatrics - Prevalence - Prevention - Psychology - Recommendations - Risk Factors - Surveillance - Therapeutics - Transmission - Vaccines
jaketae/bert-cola
2021-02-03T03:57:55.000Z
[]
[ ".gitattributes" ]
jaketae
0
jakobwes/xlm_roberta_squad_v1.1
2021-05-09T14:08:37.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
jakobwes
15
transformers
XLM-RoBERTa base (`xlm-roberta-base`) finetuned on squad v1.1. **Training-specifications:** - training_epochs: 3.0 - max_seq_length: 384 - batch_size: 16 - dataset_name: squad - doc_stride 128 **Train-results:** ``` { "epoch": 3.0, "init_mem_cpu_alloc_delta": 991453184, "init_mem_cpu_peaked_delta": 0, "init_mem_gpu_alloc_delta": 1109893120, "init_mem_gpu_peaked_delta": 0, "train_mem_cpu_alloc_delta": 14753792, "train_mem_cpu_peaked_delta": 0, "train_mem_gpu_alloc_delta": 3330195456, "train_mem_gpu_peaked_delta": 8287144960, "train_runtime": 11376.3034, "train_samples": 89597, "train_samples_per_second": 1.477 } ``` **Eval-results:** ``` { "epoch": 3.0, "eval_samples": 10918, "exact_match": 82.06244087038789, "f1": 89.09539709124654 } ```
jamesmark/mark
2021-04-09T05:32:14.000Z
[]
[ ".gitattributes" ]
jamesmark
0
jannesg/bertsson
2021-05-19T20:36:10.000Z
[ "pytorch", "jax", "bert", "sv", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "model.ckpt-1000000.data-00000-of-00001", "model.ckpt-1000000.index", "model.ckpt-1000000.meta", "model.ckpt-1110000.data-00000-of-00001", "model.ckpt-1110000.index", "model.ckpt-1110000.meta", "model.ckpt-990000.data-00000-of-00001", "model.ckpt-990000.index", "model.ckpt-990000.meta", "model.ckpt-992500.data-00000-of-00001", "model.ckpt-992500.index", "model.ckpt-992500.meta", "model.ckpt-995000.data-00000-of-00001", "model.ckpt-995000.index", "model.ckpt-995000.meta", "model.ckpt-997500.data-00000-of-00001", "model.ckpt-997500.index", "model.ckpt-997500.meta", "pytorch_model.bin", "vocab.txt" ]
jannesg
74
transformers
--- language: sv --- # BERTSSON Models The models are trained on: - Government Text - Swedish Literature - Swedish News Corpus size: Roughly 6B tokens. The following models are currently available: - **bertsson** - A BERT base model trained with the same hyperparameters as first published by Google. All models are cased and trained with whole word masking. Stay tuned for evaluations.
jannesg/takalane_afr_roberta
2021-05-20T16:58:24.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "af", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
16
transformers
--- language: - af thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - af - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Salie - Afrikaans 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_afr_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_afr_roberta") ``` #### Limitations and bias Updates will be added continuously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 2.8M ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_nbl_roberta
2021-05-20T16:59:09.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "nr", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
14
transformers
--- language: - nr thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - nr - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Ndebele 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_nbl_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_nbl_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. This is a very low resource language, results may be poor at first. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 318M ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_nso_roberta
2021-05-20T17:00:02.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "nso", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
15
transformers
--- language: - nso thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - nso - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Northern Sotho 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_nso_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_nso_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 4746 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_sot_roberta
2021-05-20T17:00:50.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "sot", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
16
transformers
--- language: - sot thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - sot - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Southern Sotho 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_sot_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_sot_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 20000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_ssw_roberta
2021-05-20T17:01:40.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "tn", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
17
transformers
--- language: - tn thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - tn - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Tswana 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_ssw_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_ssw_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 380 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_tsn_roberta
2021-05-20T17:02:28.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "tn", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
15
transformers
--- language: - tn thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - tn - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Tswana 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_tsn_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_tsn_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 10000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_tso_roberta
2021-05-20T17:03:37.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "ts", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
19
transformers
--- language: - ts thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - ts - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Tsonga 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_tso_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_tso_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 20000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_ven_roberta
2021-05-20T17:04:26.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "ven", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
20
transformers
--- language: - ven thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - ven - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Venda 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_ven_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_ven_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 9279 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_xho_roberta
2021-05-20T17:05:15.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "xho", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
20
transformers
--- language: - xho thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - xho - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Xhosa 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_xho_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_xho_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 100000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_zul_roberta
2021-05-20T17:06:46.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "zul", "transformers", "fill-mask", "license:mit" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jannesg
16
transformers
--- language: - zul thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - zul - fill-mask - pytorch - roberta - masked-lm license: MIT --- # Takalani Sesame - Zulu 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_zul_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_zul_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 410000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jaron-maene/gpt2-large-nl2bash
2021-05-23T05:38:26.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
jaron-maene
16
transformers
jaron-maene/gpt2-medium-nl2bash
2021-05-23T05:42:13.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
jaron-maene
12
transformers
jason9693/SoongsilBERT-beep-base
2021-05-20T17:07:42.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jason9693
76
transformers
# Finetuning ## Result ### Base Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :-------------------- | :---: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | KoBERT | 351M | 89.59 | 87.92 | 81.25 | 79.62 | 81.59 | 94.85 | 51.75 / 79.15 | 66.21 | | XLM-Roberta-Base | 1.03G | 89.03 | 86.65 | 82.80 | 80.23 | 78.45 | 93.80 | 64.70 / 88.94 | 64.06 | | HanBERT | 614M | 90.06 | 87.70 | 82.95 | 80.32 | 82.73 | 94.72 | 78.74 / 92.02 | 68.32 | | KoELECTRA-Base-v3 | 431M | 90.63 | 88.11 | 84.45 | 82.24 | 85.53 | 95.25 | 84.83 / 93.45 | 67.61 | | Soongsil-BERT | 370M | **91.2** | - | - | - | 76 | 94 | - | **69** | ### Small Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :--------------------- | :--: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | DistilKoBERT | 108M | 88.60 | 84.65 | 60.50 | 72.00 | 72.59 | 92.48 | 54.40 / 77.97 | 60.72 | | KoELECTRA-Small-v3 | 54M | 89.36 | 85.40 | 77.45 | 78.60 | 80.79 | 94.85 | 82.11 / 91.13 | 63.07 | | Soongsil-BERT | 213M | **90.7** | 84 | 69.1 | 76 | - | 92 | - | **66** | ## Reference - [Transformers Examples](https://github.com/huggingface/transformers/blob/master/examples/README.md) - [NSMC](https://github.com/e9t/nsmc) - [Naver NER Dataset](https://github.com/naver/nlp-challenge) - [PAWS](https://github.com/google-research-datasets/paws) - [KorNLI/KorSTS](https://github.com/kakaobrain/KorNLUDatasets) - [Question Pair](https://github.com/songys/Question_pair) - [KorQuad](https://korquad.github.io/category/1.0_KOR.html) - [Korean Hate Speech](https://github.com/kocohub/korean-hate-speech) - [KoELECTRA](https://github.com/monologg/KoELECTRA) - [KoBERT](https://github.com/SKTBrain/KoBERT) - [HanBERT](https://github.com/tbai2019/HanBert-54k-N) - [HanBert Transformers](https://github.com/monologg/HanBert-Transformers)
jason9693/SoongsilBERT-notice-base
2021-05-20T14:04:16.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jason9693
74
transformers
# Finetuning ## Result ### Base Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :-------------------- | :---: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | KoBERT | 351M | 89.59 | 87.92 | 81.25 | 79.62 | 81.59 | 94.85 | 51.75 / 79.15 | 66.21 | | XLM-Roberta-Base | 1.03G | 89.03 | 86.65 | 82.80 | 80.23 | 78.45 | 93.80 | 64.70 / 88.94 | 64.06 | | HanBERT | 614M | 90.06 | 87.70 | 82.95 | 80.32 | 82.73 | 94.72 | 78.74 / 92.02 | 68.32 | | KoELECTRA-Base-v3 | 431M | 90.63 | 88.11 | 84.45 | 82.24 | 85.53 | 95.25 | 84.83 / 93.45 | 67.61 | | Soongsil-BERT | 370M | **91.2** | - | - | - | 76 | 94 | - | **69** | ### Small Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :--------------------- | :--: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | DistilKoBERT | 108M | 88.60 | 84.65 | 60.50 | 72.00 | 72.59 | 92.48 | 54.40 / 77.97 | 60.72 | | KoELECTRA-Small-v3 | 54M | 89.36 | 85.40 | 77.45 | 78.60 | 80.79 | 94.85 | 82.11 / 91.13 | 63.07 | | Soongsil-BERT | 213M | **90.7** | 84 | 69.1 | 76 | - | 92 | - | **66** | ## Reference - [Transformers Examples](https://github.com/huggingface/transformers/blob/master/examples/README.md) - [NSMC](https://github.com/e9t/nsmc) - [Naver NER Dataset](https://github.com/naver/nlp-challenge) - [PAWS](https://github.com/google-research-datasets/paws) - [KorNLI/KorSTS](https://github.com/kakaobrain/KorNLUDatasets) - [Question Pair](https://github.com/songys/Question_pair) - [KorQuad](https://korquad.github.io/category/1.0_KOR.html) - [Korean Hate Speech](https://github.com/kocohub/korean-hate-speech) - [KoELECTRA](https://github.com/monologg/KoELECTRA) - [KoBERT](https://github.com/SKTBrain/KoBERT) - [HanBERT](https://github.com/tbai2019/HanBert-54k-N) - [HanBert Transformers](https://github.com/monologg/HanBert-Transformers)
jason9693/SoongsilBERT-nsmc-base
2021-05-20T17:08:31.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jason9693
69
transformers
# Finetuning ## Result ### Base Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :-------------------- | :---: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | KoBERT | 351M | 89.59 | 87.92 | 81.25 | 79.62 | 81.59 | 94.85 | 51.75 / 79.15 | 66.21 | | XLM-Roberta-Base | 1.03G | 89.03 | 86.65 | 82.80 | 80.23 | 78.45 | 93.80 | 64.70 / 88.94 | 64.06 | | HanBERT | 614M | 90.06 | 87.70 | 82.95 | 80.32 | 82.73 | 94.72 | 78.74 / 92.02 | 68.32 | | KoELECTRA-Base-v3 | 431M | 90.63 | 88.11 | 84.45 | 82.24 | 85.53 | 95.25 | 84.83 / 93.45 | 67.61 | | Soongsil-BERT | 370M | **91.2** | - | - | - | 76 | 94 | - | **69** | ### Small Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :--------------------- | :--: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | DistilKoBERT | 108M | 88.60 | 84.65 | 60.50 | 72.00 | 72.59 | 92.48 | 54.40 / 77.97 | 60.72 | | KoELECTRA-Small-v3 | 54M | 89.36 | 85.40 | 77.45 | 78.60 | 80.79 | 94.85 | 82.11 / 91.13 | 63.07 | | Soongsil-BERT | 213M | **90.7** | 84 | 69.1 | 76 | - | 92 | - | **66** | ## Reference - [Transformers Examples](https://github.com/huggingface/transformers/blob/master/examples/README.md) - [NSMC](https://github.com/e9t/nsmc) - [Naver NER Dataset](https://github.com/naver/nlp-challenge) - [PAWS](https://github.com/google-research-datasets/paws) - [KorNLI/KorSTS](https://github.com/kakaobrain/KorNLUDatasets) - [Question Pair](https://github.com/songys/Question_pair) - [KorQuad](https://korquad.github.io/category/1.0_KOR.html) - [Korean Hate Speech](https://github.com/kocohub/korean-hate-speech) - [KoELECTRA](https://github.com/monologg/KoELECTRA) - [KoBERT](https://github.com/SKTBrain/KoBERT) - [HanBERT](https://github.com/tbai2019/HanBert-54k-N) - [HanBert Transformers](https://github.com/monologg/HanBert-Transformers)
jason9693/soongsil-roberta-base
2021-05-20T17:09:28.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".DS_Store", ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
jason9693
186
transformers
jason9693/soongsil-roberta-small
2021-05-20T17:11:38.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".DS_Store", ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jason9693
29
transformers
jasonwu/ToD-BERT-jnt
2021-05-19T20:38:18.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
jasonwu
21
transformers
jazzisfuture/new_summary_t5_small
2021-04-20T12:18:02.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "trainer_state.json", "training_args.bin" ]
jazzisfuture
50
transformers
jcblaise/bert-tagalog-base-cased-WWM
2021-05-19T20:39:12.000Z
[ "pytorch", "jax", "bert", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "bert_model.ckpt.meta", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
28
transformers
--- language: tl tags: - bert - tagalog - filipino license: gpl-3.0 inference: false --- # BERT Tagalog Base Cased (Whole Word Masking) Tagalog version of BERT trained on a large preprocessed text corpus scraped and sourced from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This particular version uses whole word masking. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/bert-tagalog-base-cased-WWM', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-cased-WWM', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/bert-tagalog-base-cased-WWM') tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-cased-WWM', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{localization2020cruz, title={{Localization of Fake News Detection via Multitask Transfer Learning}}, author={Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth}, booktitle={Proceedings of The 12th Language Resources and Evaluation Conference}, pages={2589--2597}, year={2020}, url={https://www.aclweb.org/anthology/2020.lrec-1.315} } @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/bert-tagalog-base-cased
2021-05-19T20:40:23.000Z
[ "pytorch", "jax", "bert", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "bert_model.ckpt.meta", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
97
transformers
--- language: tl tags: - bert - tagalog - filipino license: gpl-3.0 inference: false --- # BERT Tagalog Base Cased Tagalog version of BERT trained on a large preprocessed text corpus scraped and sourced from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/bert-tagalog-base-cased', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-cased', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/bert-tagalog-base-cased') tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-cased', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{localization2020cruz, title={{Localization of Fake News Detection via Multitask Transfer Learning}}, author={Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth}, booktitle={Proceedings of The 12th Language Resources and Evaluation Conference}, pages={2589--2597}, year={2020}, url={https://www.aclweb.org/anthology/2020.lrec-1.315} } @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/bert-tagalog-base-uncased-WWM
2021-05-19T20:44:17.000Z
[ "pytorch", "jax", "bert", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "bert_model.ckpt.meta", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
37
transformers
--- language: tl tags: - bert - tagalog - filipino license: gpl-3.0 inference: false --- # BERT Tagalog Base Uncased (Whole Word Masking) Tagalog version of BERT trained on a large preprocessed text corpus scraped and sourced from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This particular version uses whole word masking. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/bert-tagalog-base-uncased-WWM', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-uncased-WWM', do_lower_case=True) # PyTorch model = AutoModel.from_pretrained('jcblaise/bert-tagalog-base-uncased-WWM') tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-uncased-WWM', do_lower_case=True) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{localization2020cruz, title={{Localization of Fake News Detection via Multitask Transfer Learning}}, author={Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth}, booktitle={Proceedings of The 12th Language Resources and Evaluation Conference}, pages={2589--2597}, year={2020}, url={https://www.aclweb.org/anthology/2020.lrec-1.315} } @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/bert-tagalog-base-uncased
2021-05-19T20:45:20.000Z
[ "pytorch", "jax", "bert", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "bert_model.ckpt.meta", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
111
transformers
--- language: tl tags: - bert - tagalog - filipino license: gpl-3.0 inference: false --- # BERT Tagalog Base Uncased Tagalog version of BERT trained on a large preprocessed text corpus scraped and sourced from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/bert-tagalog-base-uncased', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-uncased', do_lower_case=True) # PyTorch model = AutoModel.from_pretrained('jcblaise/bert-tagalog-base-uncased') tokenizer = AutoTokenizer.from_pretrained('jcblaise/bert-tagalog-base-uncased', do_lower_case=True) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{localization2020cruz, title={{Localization of Fake News Detection via Multitask Transfer Learning}}, author={Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth}, booktitle={Proceedings of The 12th Language Resources and Evaluation Conference}, pages={2589--2597}, year={2020}, url={https://www.aclweb.org/anthology/2020.lrec-1.315} } @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/distilbert-tagalog-base-cased
2021-05-19T20:46:16.000Z
[ "pytorch", "jax", "distilbert", "tl", "transformers", "bert", "tagalog", "filipino", "license:gpl-3.0" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
128
transformers
--- language: tl tags: - distilbert - bert - tagalog - filipino license: gpl-3.0 inference: false --- # DistilBERT Tagalog Base Cased Tagalog version of DistilBERT, distilled from [`bert-tagalog-base-cased`](https://huggingface.co/jcblaise/bert-tagalog-base-cased). This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/distilbert-tagalog-base-cased', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/distilbert-tagalog-base-cased', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/distilbert-tagalog-base-cased') tokenizer = AutoTokenizer.from_pretrained('jcblaise/distilbert-tagalog-base-cased', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{localization2020cruz, title={{Localization of Fake News Detection via Multitask Transfer Learning}}, author={Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth}, booktitle={Proceedings of The 12th Language Resources and Evaluation Conference}, pages={2589--2597}, year={2020}, url={https://www.aclweb.org/anthology/2020.lrec-1.315} } @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-base-cased-discriminator
2020-12-11T21:47:12.000Z
[ "pytorch", "electra", "pretraining", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
21
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Base Cased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-base-cased-discriminator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-cased-discriminator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-base-cased-discriminator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-cased-discriminator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-base-cased-generator
2020-12-11T21:47:15.000Z
[ "pytorch", "electra", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
40
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Base Cased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-base-cased-generator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-cased-generator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-base-cased-generator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-cased-generator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-base-uncased-discriminator
2020-12-11T21:47:18.000Z
[ "pytorch", "electra", "pretraining", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
23
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Base Uncased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-base-uncased-discriminator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-uncased-discriminator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-base-uncased-discriminator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-uncased-discriminator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-base-uncased-generator
2020-12-11T21:47:21.000Z
[ "pytorch", "electra", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
38
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Base Uncased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-base-uncased-generator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-uncased-generator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-base-uncased-generator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-base-uncased-generator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-small-cased-discriminator
2020-12-11T21:47:25.000Z
[ "pytorch", "electra", "pretraining", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
21
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Small Cased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-small-cased-discriminator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-cased-discriminator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-small-cased-discriminator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-cased-discriminator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-small-cased-generator
2020-12-11T21:47:28.000Z
[ "pytorch", "electra", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
27
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Small Cased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-small-cased-generator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-cased-generator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-small-cased-generator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-cased-generator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-small-uncased-discriminator-newsphnli
2020-12-08T10:24:28.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
jcblaise
18
transformers
jcblaise/electra-tagalog-small-uncased-discriminator
2020-12-11T21:47:31.000Z
[ "pytorch", "electra", "pretraining", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
22
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Small Uncased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-small-uncased-discriminator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-uncased-discriminator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-small-uncased-discriminator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-uncased-discriminator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/electra-tagalog-small-uncased-generator
2020-12-11T21:47:34.000Z
[ "pytorch", "electra", "masked-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
jcblaise
21
transformers
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Small Uncased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/electra-tagalog-small-uncased-generator', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-uncased-generator', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/electra-tagalog-small-uncased-generator') tokenizer = AutoTokenizer.from_pretrained('jcblaise/electra-tagalog-small-uncased-generator', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/gpt2-tagalog
2021-05-23T05:44:21.000Z
[ "pytorch", "tf", "jax", "gpt2", "lm-head", "causal-lm", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
jcblaise
12
transformers
--- language: tl tags: - gpt2 - tagalog - filipino license: gpl-3.0 inference: false --- # GPT-2 Tagalog This is a prototype GPT-2 model of the smallest variant, trained using a combination of WikiText-TL-39 and the NewsPH-Raw datasets. The checkpoint provided can be used for text generation as-is, but should be finetuned for more specific tasks or generation topics. ## Usage Weights are provided in both PyTorch and TensorFlow and can be used with ease via the HuggingFace Transformers library: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('jcblaise/gpt2-tagalog') model = GPT2Model.from_pretrained('jcblaise/gpt2-tagalog') s = "Palitan ito ng iyong nais na pangungusap." s_in = tokenizer(s, return_tensors='pt') out = model(**s_in) ``` ## Limitations and Bias The model was trained with two language modeling datasets for Tagalog: * **WikiText-TL-39**, which is sourced from a dump of Tagalog WikiPedia. * **NewsPH**, which is a dump of news articles from all available mainstream news outlets in the Philippines. Due to the source of the training data, generated sentences out-of-the-box may sound and read like actual news articles, possessing the common tone and style of these works. While these may *look* like news articles, these are *not* news articles, and should not be read, understood, published, or shared as one. Language models do not inherently distinguish factual statements from non-factual ones, and as such, we discourage use of the model in systems and use-cases where the generated output is required to be true. As this model is currently a prototype, bias was not thoroughly studied. Models inherit biases that are present in the data that they are trained with. Thing such as frequency of association of gender to occupation can induce certain biases in the model that will remain undetected unless thoroughly tested. As with the original GPT-2 model, we recommend that this model not be deployed or used in systems that interact with humans unless thorough study of potential biases is carried out. We release this model with the intent that it may aid in the advancement of Filipino NLP, and that researchers and engineers who are interested in applying their work to the language may have a baseline model to use. For future work, in addition to the study of inherent bias, we mainly look into improving the quality of our models. As this is a prototype, a large-scale corpora was not used to train it. We plan to train larger GPT-2 models with larger corpora in the future. ## Citations This model is part of a much larger work-in-progress, and as such, does not have a citeable paper at the moment. We will update this repository once a paper has been released. For the datasets used to train the model, please cite the following papers: ```bibtex @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jcblaise/roberta-tagalog-base
2021-02-18T06:13:56.000Z
[]
[ ".gitattributes", "README.md" ]
jcblaise
0
RoBERTa Tagalog Base
jcblaise/roberta-tagalog-small
2021-05-20T17:12:24.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tf_model.h5", "vocab.json" ]
jcblaise
12
transformers
jcoelho/robertapp
2021-06-06T14:09:15.000Z
[]
[ ".gitattributes" ]
jcoelho
0
jcpwfloi/gpt2-story-generation
2021-05-23T05:48:11.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jcpwfloi
19
transformers
jeew/xlm-roberta-ckpt-95000
2020-07-14T06:50:56.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", ".zip", "config.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin" ]
jeew
18
transformers
jeniya/BERTOverflow
2021-05-19T20:47:17.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
jeniya
556
transformers
# BERTOverflow ## Model description We pre-trained BERT-base model on 152 million sentences from the StackOverflow's 10 year archive. More details of this model can be found in our ACL 2020 paper: [Code and Named Entity Recognition in StackOverflow](https://www.aclweb.org/anthology/2020.acl-main.443/). We would like to thank [Wuwei Lan](https://lanwuwei.github.io/) for helping us in training this model. #### How to use ```python from transformers import * import torch tokenizer = AutoTokenizer.from_pretrained("jeniya/BERTOverflow") model = AutoModelForTokenClassification.from_pretrained("jeniya/BERTOverflow") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{tabassum2020code, title={Code and Named Entity Recognition in StackOverflow}, author={Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan }, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)}, url={https://www.aclweb.org/anthology/2020.acl-main.443/} year = {2020}, } ```
jeniya/BERTOverflow_stackoverflow_github
2021-05-19T20:48:44.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
jeniya
46
transformers
# BERTOverflow ## Model description We pre-trained BERT-base model on 152 million sentences from the StackOverflow's 10 year archive. More details of this model can be found in our ACL 2020 paper: [Code and Named Entity Recognition in StackOverflow](https://www.aclweb.org/anthology/2020.acl-main.443/). We would like to thank [Wuwei Lan](https://lanwuwei.github.io/) for helping us in training this model. #### How to use ```python from transformers import * import torch tokenizer = AutoTokenizer.from_pretrained("jeniya/BERTOverflow") model = AutoModelForTokenClassification.from_pretrained("jeniya/BERTOverflow") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{tabassum2020code, title={Code and Named Entity Recognition in StackOverflow}, author={Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan }, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)}, url={https://www.aclweb.org/anthology/2020.acl-main.443/} year = {2020}, } ```
jeremy-vianai/test
2021-04-24T00:53:44.000Z
[]
[ ".gitattributes" ]
jeremy-vianai
0
jeyco89/JustTalking
2021-03-05T03:27:31.000Z
[]
[ ".gitattributes" ]
jeyco89
0
ji-xin/bert_base-MNLI-two_stage
2020-07-08T14:51:18.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
9
transformers
ji-xin/bert_base-MRPC-two_stage
2020-07-07T20:05:34.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
13
transformers
ji-xin/bert_base-QNLI-two_stage
2020-07-08T14:53:19.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
17
transformers
ji-xin/bert_base-QQP-two_stage
2020-07-08T14:53:42.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
16
transformers
ji-xin/bert_base-RTE-two_stage
2020-07-08T14:54:15.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
14
transformers
ji-xin/bert_base-SST2-two_stage
2020-07-08T14:54:44.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
14
transformers
ji-xin/bert_large-MRPC-two_stage
2020-07-08T15:02:27.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "layer_example_counter", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
17
transformers
ji-xin/bert_large-SST2-two_stage
2020-07-08T15:00:26.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ji-xin
10
transformers
ji-xin/roberta_base-MNLI-two_stage
2020-07-08T15:05:22.000Z
[ "pytorch", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "layer_example_counter", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
34
transformers
ji-xin/roberta_base-MRPC-two_stage
2021-05-20T17:13:04.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
27
transformers
ji-xin/roberta_base-QNLI-two_stage
2020-07-08T15:06:38.000Z
[ "pytorch", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "layer_example_counter", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
10
transformers
ji-xin/roberta_base-QQP-two_stage
2020-07-08T15:07:16.000Z
[ "pytorch", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "layer_example_counter", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
17
transformers
ji-xin/roberta_base-RTE-two_stage
2020-07-08T15:08:42.000Z
[ "pytorch", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "layer_example_counter", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
21
transformers
ji-xin/roberta_base-SST2-two_stage
2020-07-08T15:09:27.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
17
transformers
ji-xin/roberta_large-MRPC-two_stage
2020-07-08T15:03:50.000Z
[ "pytorch", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "layer_example_counter", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
14
transformers
ji-xin/roberta_large-SST2-two_stage
2020-07-07T20:25:04.000Z
[ "pytorch", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "layer_example_counter", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ji-xin
9
transformers
jieun/senti_model
2021-04-05T01:50:50.000Z
[ "tf" ]
[ ".gitattributes", "config.json", "tf_model.h5", "tokenizer_78b3253a26.model", "tokenizer_config.json", "vocab.txt" ]
jieun
5
jieun/tempBERT
2021-03-15T09:53:28.000Z
[ "pytorch", "tf" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
jieun
6
jieun/tfbertforsc
2021-03-26T03:18:33.000Z
[ "tf" ]
[ ".gitattributes", "config.json", "tf_model.h5", "tokenizer_78b3253a26.model", "tokenizer_config.json", "vocab.txt" ]
jieun
4
jieun/tmpBERT_v2
2021-03-25T01:53:56.000Z
[ "tf" ]
[ ".gitattributes", "config.json", "tf_model.h5", "tokenizer_78b3253a26.model", "tokenizer_config.json", "vocab.txt" ]
jieun
6
jihopark/GPT2-Article-Large2
2021-05-23T05:51:18.000Z
[ "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "a.taraa", "a.tarab", "a.tarac", "a.tarad", "a.tarae", "a.taraf", "a.tarag", "a.tarah", "a.tarai", "a.taraj", "a.tarak", "a.taral", "a.taram", "a.taran", "a.tarao", "a.tarap", "a.taraq", "a.tarar", "a.taras", "a.tarat", "a.tarau", "a.tarav", "a.taraw", "a.tarax", "a.taray", "a.taraz", "a.tarba", "a.tarbb", "a.tarbc", "a.tarbd", "a.tarbe", "a.tarbf", "a.tarbg", "a.tarbh", "a.tarbi", "a.tarbj", "a.tarbk", "a.tarbl", "a.tarbm", "a.tarbn", "a.tarbo", "a.tarbp", "a.tarbq", "a.tarbr", "a.tarbs", "a.tarbt", "a.tarbu", "a.tarbv", "a.tarbw", "a.tarbx", "a.tarby", "a.tarbz", "a.tarca", "a.tarcb", "a.tarcc", "a.tarcd", "a.tarce", "a.tarcf", "a.tarcg", "a.tarch", "config.json", "merges.txt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jihopark
8
transformers
jihopark/KoCulture-Large
2021-05-23T05:52:01.000Z
[ "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "a.taraa", "a.tarab", "a.tarac", "a.tarad", "a.tarae", "a.taraf", "a.tarag", "a.tarah", "a.tarai", "a.taraj", "a.tarak", "a.taral", "a.taram", "a.taran", "a.tarao", "a.tarap", "a.taraq", "a.tarar", "a.taras", "a.tarat", "a.tarau", "a.tarav", "a.taraw", "a.tarax", "a.taray", "a.taraz", "a.tarba", "a.tarbb", "a.tarbc", "a.tarbd", "a.tarbe", "a.tarbf", "a.tarbg", "a.tarbh", "a.tarbi", "a.tarbj", "a.tarbk", "a.tarbl", "a.tarbm", "a.tarbn", "a.tarbo", "a.tarbp", "a.tarbq", "a.tarbr", "a.tarbs", "a.tarbt", "a.tarbu", "a.tarbv", "a.tarbw", "a.tarbx", "a.tarby", "a.tarbz", "a.tarca", "a.tarcb", "a.tarcc", "a.tarcd", "a.tarce", "a.tarcf", "a.tarcg", "a.tarch", "config.json", "merges.txt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jihopark
7
transformers
jihopark/article_large
2021-05-23T05:52:44.000Z
[ "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "a.taraa", "a.tarab", "a.tarac", "a.tarad", "a.tarae", "a.taraf", "a.tarag", "a.tarah", "a.tarai", "a.taraj", "a.tarak", "a.taral", "a.taram", "a.taran", "a.tarao", "a.tarap", "a.taraq", "a.tarar", "a.taras", "a.tarat", "a.tarau", "a.tarav", "a.taraw", "a.tarax", "a.taray", "a.taraz", "a.tarba", "a.tarbb", "a.tarbc", "a.tarbd", "a.tarbe", "a.tarbf", "a.tarbg", "a.tarbh", "a.tarbi", "a.tarbj", "a.tarbk", "a.tarbl", "a.tarbm", "a.tarbn", "a.tarbo", "a.tarbp", "a.tarbq", "a.tarbr", "a.tarbs", "a.tarbt", "a.tarbu", "a.tarbv", "a.tarbw", "a.tarbx", "a.tarby", "a.tarbz", "a.tarca", "a.tarcb", "a.tarcc", "a.tarcd", "a.tarce", "a.tarcf", "a.tarcg", "a.tarch", "config.json", "merges.txt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jihopark
8
transformers
jihopark/colloquial-large
2021-05-23T05:53:27.000Z
[ "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "a.taraa", "a.tarab", "a.tarac", "a.tarad", "a.tarae", "a.taraf", "a.tarag", "a.tarah", "a.tarai", "a.taraj", "a.tarak", "a.taral", "a.taram", "a.taran", "a.tarao", "a.tarap", "a.taraq", "a.tarar", "a.taras", "a.tarat", "a.tarau", "a.tarav", "a.taraw", "a.tarax", "a.taray", "a.taraz", "a.tarba", "a.tarbb", "a.tarbc", "a.tarbd", "a.tarbe", "a.tarbf", "a.tarbg", "a.tarbh", "a.tarbi", "a.tarbj", "a.tarbk", "a.tarbl", "a.tarbm", "a.tarbn", "a.tarbo", "a.tarbp", "a.tarbq", "a.tarbr", "a.tarbs", "a.tarbt", "a.tarbu", "a.tarbv", "a.tarbw", "a.tarbx", "a.tarby", "a.tarbz", "a.tarca", "a.tarcb", "a.tarcc", "a.tarcd", "a.tarce", "a.tarcf", "a.tarcg", "a.tarch", "config.json", "merges.txt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jihopark
7
transformers
jihopark/colloquial
2021-05-23T05:54:19.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jihopark
61
transformers
jihopark/colloquialV2
2021-05-23T05:55:26.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jihopark
7
transformers
jihopark/dialog
2021-01-26T08:11:50.000Z
[]
[ ".gitattributes" ]
jihopark
0
jihopark/wiki_large
2021-05-23T05:56:40.000Z
[ "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "a.taraa", "a.tarab", "a.tarac", "a.tarad", "a.tarae", "a.taraf", "a.tarag", "a.tarah", "a.tarai", "a.taraj", "a.tarak", "a.taral", "a.taram", "a.taran", "a.tarao", "a.tarap", "a.taraq", "a.tarar", "a.taras", "a.tarat", "a.tarau", "a.tarav", "a.taraw", "a.tarax", "a.taray", "a.taraz", "a.tarba", "a.tarbb", "a.tarbc", "a.tarbd", "a.tarbe", "a.tarbf", "a.tarbg", "a.tarbh", "a.tarbi", "a.tarbj", "a.tarbk", "a.tarbl", "a.tarbm", "a.tarbn", "a.tarbo", "a.tarbp", "a.tarbq", "a.tarbr", "a.tarbs", "a.tarbt", "a.tarbu", "a.tarbv", "a.tarbw", "a.tarbx", "a.tarby", "a.tarbz", "a.tarca", "a.tarcb", "a.tarcc", "a.tarcd", "a.tarce", "a.tarcf", "a.tarcg", "a.tarch", "config.json", "merges.txt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jihopark
7
transformers
jikehukai/test_learn
2021-03-13T08:24:36.000Z
[]
[ ".gitattributes", "README.md" ]
jikehukai
0
jimregan/BERTreach
2021-05-20T17:13:40.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "ga", "transformers", "irish", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
jimregan
14
transformers
--- language: ga tags: - irish --- ## BERTreach ([beirtreach](https://www.teanglann.ie/en/fgb/beirtreach) means 'oyster bed') **Model size:** 84M **Training data:** * [PARSEME 1.2](https://gitlab.com/parseme/parseme_corpus_ga/-/blob/master/README.md) * Newscrawl 300k portion of the [Leipzig Corpora](https://wortschatz.uni-leipzig.de/en/download/irish) * Private news corpus crawled with [Corpus Crawler](https://github.com/google/corpuscrawler) (2125804 sentences, 47419062 tokens, as reckoned by wc) ``` from transformers import pipeline fill_mask = pipeline("fill-mask", model="jimregan/BERTreach", tokenizer="jimregan/BERTreach") ```
jimregan/wav2vec2-large-xlsr-irish-basic
2021-03-27T08:26:49.000Z
[ "pytorch", "wav2vec2", "ga", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jimregan
35
transformers
--- language: ga datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2 model-index: - name: XLSR Wav2Vec2 Irish by Jim O'Regan results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ga-IE type: common_voice args: ga-IE metrics: - name: Test WER type: wer value: 47.4 --- # Wav2Vec2-Large-XLSR-Irish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Irish Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Irish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ga-IE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") model.to("cuda") # So, tolower() for Irish is a bit complicated: tAthar -> t-athair # toupper() is non-deterministic :) def is_upper_vowel(letter): if letter in ['A', 'E', 'I', 'O', 'U', 'Á', 'É', 'Í', 'Ó', 'Ú']: return True else: return False def irish_lower(word): if len(word) > 1 and word[0] in ['n', 't'] and is_upper_vowel(word[1]): return word[0] + '-' + word[1:].lower() else: return word.lower() def irish_lower_sentence(sentence): return " ".join([irish_lower(w) for w in sentence.split(" ")]) chars_to_ignore_regex = '[,\?\.\!\;\:\"\“\%\‘\”\(\)\*]' def remove_special_characters(sentence): tmp = re.sub('’ ', ' ', sentence) tmp = re.sub("’$", '', tmp) tmp = re.sub('’', '\'', tmp) tmp = re.sub(chars_to_ignore_regex, '', tmp) sentence = irish_lower_sentence(tmp) + ' ' return sentence resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = remove_special_characters(batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 43.7 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://github.com/jimregan/wav2vec2-sprint/blob/main/irish/fine-tune-xlsr-wav2vec2-on-irish-asr-with-transformers.ipynb)
jimregan/wav2vec2-large-xlsr-latvian-cv
2021-03-22T10:35:47.000Z
[ "pytorch", "wav2vec2", "lv", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jimregan
10
transformers
--- language: lv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2 model-index: - name: jimregan/wav2vec2-large-xlsr-latvian-cv results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lv type: common_voice args: lv metrics: - name: Test WER type: wer value: 29.95 --- # Wav2Vec2-Large-XLSR-Latvian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Latvian Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Latvian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "lv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv") model.to("cuda") chars_to_ignore_regex = '[,\?\.\!\;\:\"\“\%\‘\”\(\)\*\…\—\–\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 29.95 %
jimregan/wav2vec2-large-xlsr-slovakian
2021-03-31T22:11:08.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jimregan
14
transformers
jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed
2021-03-29T18:12:57.000Z
[ "pytorch", "wav2vec2", "hsb", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jimregan
10
transformers
--- language: hsb datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Upper Sorbian mixed by Jim O'Regan results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hsb type: common_voice args: hsb metrics: - name: Test WER type: wer value: 43.48 --- # Wav2Vec2-Large-XLSR-Upper-Sorbian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Upper Sorbian Common Voice dataset](https://huggingface.co/datasets/common_voice), with an extra 28 minutes of audio from an online [Sorbian course](https://sprachkurs.sorbischlernen.de/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Upper Sorbian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ga-IE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�„«»–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = remove_special_characters(batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 48.2 % ## Training The Common Voice `train` and `validation` datasets were used for training, with the vocabulary from the English A1 lesson from an online [Sorbian course](https://sprachkurs.sorbischlernen.de/) The script used for training can be found [here](https://github.com/jimregan/wav2vec2-sprint/blob/main/upper_sorbian/fine-tune-xlsr-wav2vec2-on-upper-sorbian-asr-with-transformers.ipynb) The script used for cleaning the transcripts of the vocabulary data is [here](https://github.com/jimregan/wav2vec2-sprint/blob/main/upper_sorbian/sprachkurs.ipynb)
jitrrrronic/thehum
2021-04-10T13:43:07.000Z
[]
[ ".gitattributes" ]
jitrrrronic
0
jiwoo/Pinobot01
2021-04-15T08:51:57.000Z
[]
[ ".gitattributes", "README.md" ]
jiwoo
0
jiyingz/gpt2-clinicalnotes-mimic-iii
2021-02-28T15:48:21.000Z
[]
[ ".gitattributes" ]
jiyingz
0
jkeruotis/LitBERTa-uncased
2021-05-20T17:15:42.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "lt", "transformers", "exbert", "license:mit", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.txt", "trainer_state.json", "training_args.bin", "vocab.json" ]
jkeruotis
38
transformers
--- language: lt tags: - exbert license: mit --- # LitBERTa uncased model Not the best model because of limited resources (Trained on ~4.7 GB of data on RTX2070 8GB for ~10 days) but it covers special lithuanian symbols `ąčęėįšųūž`. 128K vocabulary chosen because language has a lot of word forms. ## How to use ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='jkeruotis/LitBERTa-uncased') unmasker('lietuvių kalba yra viena iš <mask> kalbų pasaulyje.') [{'sequence': 'lietuvių kalba yra viena iš populiariausių kalbų pasaulyje.', 'score': 0.13887910544872284, 'token': 9404, 'token_str': ' populiariausių'}, {'sequence': 'lietuvių kalba yra viena iš pirmaujančių kalbų pasaulyje.', 'score': 0.13532795011997223, 'token': 27431, 'token_str': ' pirmaujančių'}, {'sequence': 'lietuvių kalba yra viena iš seniausių kalbų pasaulyje.', 'score': 0.1184583529829979, 'token': 14775, 'token_str': ' seniausių'}, {'sequence': 'lietuvių kalba yra viena iš geriausių kalbų pasaulyje.', 'score': 0.09306756407022476, 'token': 5617, 'token_str': ' geriausių'}, {'sequence': 'lietuvių kalba yra viena iš nedaugelio kalbų pasaulyje.', 'score': 0.08187634497880936, 'token': 28150, 'token_str': ' nedaugelio'}]```
jkgrad/longformer-base-stsb
2021-02-04T07:57:06.000Z
[ "pytorch", "longformer", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
jkgrad
42
transformers
jkgrad/spanbert-base-cased-coref
2021-05-19T20:49:46.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
jkgrad
9
transformers
jkgrad/xlnet-base-cased-qqp
2021-02-05T07:32:36.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
jkgrad
8
transformers
jkgrad/xlnet-base-cased-squad-quoref
2021-01-28T06:54:08.000Z
[ "pytorch", "xlnet", "question-answering", "arxiv:1906.08237", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
jkgrad
28
transformers
# XLNet Fine-tuned on SQuAD / Quoref Dataset [XLNet](https://arxiv.org/abs/1906.08237) jointly developed by Google and CMU and fine-tuned on [SQuAD / SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) and [Quoref](https://leaderboard.allenai.org/quoref) for question answering down-stream task. ## Evaluation Result on Quoref ``` { "exact_match": 73.65591397848462, "f1": 77.9981532789881 } ``` ## Results Comparison on Quoref | Metric | XLNet Base Line | Model FT on SQuAD | | ------ | --------- | --------- | | **EM** | **61.88** | **73.66** (+11.78) | | **F1** | **70.51** | **78.00** (+7.49)| ## How to Use ``` from transformers import XLNetForQuestionAnswering, XLNetTokenizerFast model = XLNetForQuestionAnswering.from_pretrained('jkgrad/xlnet-base-cased-squad-quoref) tokenizer = XLNetTokenizerFast.from_pretrained('jkgrad/xlnet-base-cased-squad-quoref') ```
jkgrad/xlnet-base-squadv2
2021-01-17T11:52:34.000Z
[ "pytorch", "xlnet", "question-answering", "arxiv:1906.08237", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
jkgrad
70
transformers
# XLNet Fine-tuned on SQuAD 2.0 Dataset [XLNet](https://arxiv.org/abs/1906.08237) jointly developed by Google and CMU and fine-tuned on [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) for question answering down-stream task. ## Training Results (Metrics) ``` { "HasAns_exact": 74.7132253711201 "HasAns_f1": 82.11971607032643 "HasAns_total": 5928 "NoAns_exact": 73.38940285954584 "NoAns_f1": 73.38940285954584 "NoAns_total": 5945 "best_exact": 75.67590331003116 "best_exact_thresh": -19.554906845092773 "best_f1": 79.16215426779269 "best_f1_thresh": -19.554906845092773 "epoch": 4.0 "exact": 74.05036637749515 "f1": 77.74830934598614 "total": 11873 } ``` ## Results Comparison | Metric | Paper | Model | | ------ | --------- | --------- | | **EM** | **78.46** | **75.68** (-2.78) | | **F1** | **81.33** | **79.16** (-2.17)| Better fine-tuned models coming soon. ## How to Use ``` from transformers import XLNetForQuestionAnswering, XLNetTokenizerFast model = XLNetForQuestionAnswering.from_pretrained('jkgrad/xlnet-base-squadv2) tokenizer = XLNetTokenizerFast.from_pretrained('jkgrad/xlnet-base-squadv2') ```
jkulhanek/augpt-bigdata
2021-05-23T05:57:14.000Z
[ "pytorch", "gpt2", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
jkulhanek
135
transformers
jkulhanek/augpt-mw-20
2021-05-23T05:57:45.000Z
[ "pytorch", "gpt2", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "database.zip", "lexicalizer.zip", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "system_actions.txt", "tokenizer_config.json", "training_args.bin", "user_intents.txt", "vocab.json" ]
jkulhanek
13
transformers
jkulhanek/augpt-mw-21
2021-05-23T05:58:15.000Z
[ "pytorch", "gpt2", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "database.zip", "lexicalizer.zip", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "system_actions.txt", "tokenizer_config.json", "training_args.bin", "user_intents.txt", "vocab.json" ]
jkulhanek
24
transformers
jky594176/BART1_GRU
2021-05-30T12:59:07.000Z
[ "pytorch", "bart", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
jky594176
16
transformers