modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
julien-c/EsperBERTo-small-pos
2021-05-20T17:28:42.000Z
[ "pytorch", "jax", "roberta", "token-classification", "eo", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
julien-c
30
transformers
--- language: eo thumbnail: https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png widget: - text: "Mi estas viro kej estas tago varma." --- # EsperBERTo: RoBERTa-like Language model trained on Esperanto **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥 ## Training Details - current checkpoint: 566000 - machine name: `galinette` ![](https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png) ## Example pipeline ```python from transformers import TokenClassificationPipeline, pipeline MODEL_PATH = "./models/EsperBERTo-small-pos/" nlp = pipeline( "ner", model=MODEL_PATH, tokenizer=MODEL_PATH, ) # or instantiate a TokenClassificationPipeline directly. nlp("Mi estas viro kej estas tago varma.") # {'entity': 'PRON', 'score': 0.9979867339134216, 'word': ' Mi'} # {'entity': 'VERB', 'score': 0.9683094620704651, 'word': ' estas'} # {'entity': 'VERB', 'score': 0.9797462821006775, 'word': ' estas'} # {'entity': 'NOUN', 'score': 0.8509314060211182, 'word': ' tago'} # {'entity': 'ADJ', 'score': 0.9996201395988464, 'word': ' varma'} ```
julien-c/EsperBERTo-small
2021-05-20T17:29:32.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "eo", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
julien-c
60
transformers
--- language: eo thumbnail: https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png widget: - text: "Jen la komenco de bela <mask>." - text: "Uno du <mask>" - text: "Jen finiĝas bela <mask>." --- # EsperBERTo: RoBERTa-like Language model trained on Esperanto **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥 ## Training Details - current checkpoint: 566000 - machine name: `galinette` ![](https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png) ## Example pipeline ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="julien-c/EsperBERTo-small", tokenizer="julien-c/EsperBERTo-small" ) fill_mask("Jen la komenco de bela <mask>.") # This is the beginning of a beautiful <mask>. # => # { # 'score':0.06502299010753632 # 'sequence':'<s> Jen la komenco de bela vivo.</s>' # 'token':1099 # } # { # 'score':0.0421181358397007 # 'sequence':'<s> Jen la komenco de bela vespero.</s>' # 'token':5100 # } # { # 'score':0.024884626269340515 # 'sequence':'<s> Jen la komenco de bela laboro.</s>' # 'token':1570 # } # { # 'score':0.02324388362467289 # 'sequence':'<s> Jen la komenco de bela tago.</s>' # 'token':1688 # } # { # 'score':0.020378097891807556 # 'sequence':'<s> Jen la komenco de bela festo.</s>' # 'token':4580 # } ```
julien-c/bert-xsmall-dummy
2021-05-19T20:53:10.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
julien-c
14,857
transformers
## How to build a dummy model ```python from transformers BertConfig, BertForMaskedLM, BertTokenizer, TFBertForMaskedLM SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy" DIRNAME = "./bert-xsmall-dummy" config = BertConfig(10, 20, 1, 1, 40) model = BertForMaskedLM(config) model.save_pretrained(DIRNAME) tf_model = TFBertForMaskedLM.from_pretrained(DIRNAME, from_pt=True) tf_model.save_pretrained(DIRNAME) # Slightly different for tokenizer. # tokenizer = BertTokenizer.from_pretrained(DIRNAME) # tokenizer.save_pretrained() ```
julien-c/distilbert-feature-extraction
2021-06-04T21:47:24.000Z
[ "pytorch", "distilbert", "transformers", "feature-extraction" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
julien-c
30
transformers
--- tags: - feature-extraction widget: - text: "Hello world" --- # Distilbert, used as a Feature Extractor
julien-c/distilbert-sagemaker-1609798709
2021-01-04T22:24:57.000Z
[]
[ ".gitattributes" ]
julien-c
0
julien-c/distilbert-sagemaker-1609799155
2021-01-04T22:32:03.000Z
[]
[ ".gitattributes" ]
julien-c
0
julien-c/distilbert-sagemaker-1609801242
2021-01-04T23:06:59.000Z
[]
[ ".gitattributes" ]
julien-c
0
julien-c/distilbert-sagemaker-1609802168
2021-01-05T10:42:33.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:imdb", "transformers", "sagemaker" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "eval_results.txt", "pytorch_model.bin", "tokenizer_config.json", "training_args.bin", "vocab.txt", "checkpoint-500/config.json", "checkpoint-500/optimizer.pt", "checkpoint-500/pytorch_model.bin", "checkpoint-500/scheduler.pt", "checkpoint-500/trainer_state.json", "checkpoint-500/training_args.bin" ]
julien-c
278
transformers
--- tags: - sagemaker datasets: - imdb --- ## distilbert-sagemaker-1609802168 Trained from SageMaker HuggingFace extension. Fine-tuned from [distilbert-base-uncased](/distilbert-base-uncased) on [imdb](/datasets/imdb) 🔥 #### Eval | key | value | | --- | ----- | | eval_loss | 0.19187863171100616 | | eval_accuracy | 0.9259 | | eval_f1 | 0.9272173656811707 | | eval_precision | 0.9147286821705426 | | eval_recall | 0.9400517825134436 | | epoch | 1.0 |
julien-c/dummy-diff-tokenizer
2021-05-20T17:30:11.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
julien-c
8,074
transformers
julien-c/dummy-for-flat
2021-05-19T19:15:05.000Z
[]
[ ".gitattributes" ]
julien-c
0
julien-c/dummy-model-from-colab
2021-05-20T17:30:49.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
julien-c
7
transformers
julien-c/dummy-unknown
2021-05-20T17:31:14.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "transformers", "ci", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tf_model.h5", "vocab.json" ]
julien-c
39,458
transformers
--- tags: - ci --- ## Dummy model used for unit testing and CI ```python import json import os from transformers import RobertaConfig, RobertaForMaskedLM, TFRobertaForMaskedLM DIRNAME = "./dummy-unknown" config = RobertaConfig(10, 20, 1, 1, 40) model = RobertaForMaskedLM(config) model.save_pretrained(DIRNAME) tf_model = TFRobertaForMaskedLM.from_pretrained(DIRNAME, from_pt=True) tf_model.save_pretrained(DIRNAME) # Tokenizer: vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] vocab_file = os.path.join(DIRNAME, "vocab.json") merges_file = os.path.join(DIRNAME, "merges.txt") with open(vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) ```
julien-c/fasttext-language-id
2021-01-11T18:19:43.000Z
[ "multilingual", "dataset:wikipedia", "dataset:tatoeba", "dataset:setimes", "fasttext", "license:cc-by-sa-3.0" ]
[ ".gitattributes", "README.md", "lid.176.bin", "lid.176.ftz" ]
julien-c
0
fasttext
--- language: multilingual tags: - fasttext datasets: - wikipedia - tatoeba - setimes license: cc-by-sa-3.0 library_name: fasttext inference: false --- ## FastText model for language identification #### ♻️ Imported from https://fasttext.cc/docs/en/language-identification.html > [1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification ```bibtex @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` > [2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models ```bibtex @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ```
julien-c/flair-de-ner
2020-11-26T21:59:38.000Z
[ "pytorch", "de", "dataset:conll2003", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
[ ".gitattributes", "README.md", "loss.tsv", "pytorch_model.bin", "test.tsv", "training.log", "weights.txt" ]
julien-c
0
flair
--- tags: - flair - token-classification - sequence-tagger-model language: de datasets: - conll2003 inference: false --- ## Flair NER model `de-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/de-ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "Mein Name ist Julien, ich lebe zurzeit in Paris, ich arbeite bei Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-de-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
julien-c/flair-ner
2020-11-26T22:01:14.000Z
[ "pytorch", "en", "dataset:conll2003", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
[ ".gitattributes", "README.md", "config.yaml", "loss.tsv", "pytorch_model.bin", "test.tsv", "training.log", "weights.txt" ]
julien-c
11
flair
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - conll2003 inference: false --- ## Flair NER model `en-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "My name is Julien, I currently live in Paris, I work at Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
julien-c/kan-bayashi-jsut_tts_train_tacotron2
2020-12-27T18:48:06.000Z
[ "ja", "dataset:jsut", "arxiv:1804.00015", "espnet", "audio", "text-to-speech", "license:cc-by-4.0" ]
text-to-speech
[ ".gitattributes", "README.md", "meta.yaml", "exp/tts_stats_raw_phn_jaconv_pyopenjtalk_accent/train/feats_stats.npz", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/config.yaml", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/train.loss.ave_5best.pth", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/attn_loss.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/backward_time.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/bce_loss.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/forward_time.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/iter_time.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/l1_loss.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/loss.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/lr_0.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/mse_loss.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/optim_step_time.png", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/train_time.png" ]
julien-c
0
espnet
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 inference: false --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4381098/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Training ![](./exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/attn_loss.png) ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
julien-c/kan-bayashi-jsut_tts_train_tacotron2_ja
2021-04-30T10:08:45.000Z
[ "ja", "dataset:jsut", "arxiv:1804.00015", "espnet", "audio", "text-to-speech", "license:cc-by-4.0" ]
text-to-speech
[ ".gitattributes", "README.md", "meta.yaml", "exp/tts_stats_raw_phn_jaconv_pyopenjtalk/train/feats_stats.npz", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk/199epoch.pth", "exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk/config.yaml" ]
julien-c
0
espnet
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 inference: false --- ## Example ESPnet2 TTS model ♻️ Imported from https://zenodo.org/record/3963886/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). Model id: `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_train.loss.best` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
julien-c/kan-bayashi_csmsc_tacotron2
2020-12-31T11:13:04.000Z
[ "zh", "dataset:csmsc", "arxiv:1804.00015", "espnet", "audio", "text-to-speech", "license:cc-by-4.0" ]
text-to-speech
[ ".gitattributes", "README.md", "meta.yaml", "exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/feats_stats.npz", "exp/tts_train_tacotron2_raw_phn_pypinyin_g2p_phone/199epoch.pth", "exp/tts_train_tacotron2_raw_phn_pypinyin_g2p_phone/config.yaml" ]
julien-c
0
espnet
--- tags: - espnet - audio - text-to-speech language: zh datasets: - csmsc license: cc-by-4.0 widget: - text: "请您说得慢些好吗" --- ## ESPnet2 TTS model ### `kan-bayashi/csmsc_tacotron2` ♻️ Imported from https://zenodo.org/record/3969118 This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train
2020-12-27T18:47:01.000Z
[ "en", "dataset:ljspeech", "arxiv:1804.00015", "espnet", "audio", "text-to-speech", "license:cc-by-4.0" ]
text-to-speech
[ ".gitattributes", "README.md", "meta.yaml", "exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/feats_stats.npz", "exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/199epoch.pth", "exp/tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space/config.yaml" ]
julien-c
7
espnet
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 widget: - text: "Hello, how are you doing?" --- ## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3989498#.X90RlOlKjkM This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: conf/tuning/train_tacotron2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_tacotron2_raw ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
julien-c/mini_an4_asr_train_raw_bpe_valid
2021-01-12T20:20:17.000Z
[ "en", "dataset:ljspeech", "arxiv:1804.00015", "espnet", "audio", "automatic-speech-recognition", "license:cc-by-4.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "meta.yaml", "data/token_list/bpe_unigram30/bpe.model", "exp/asr_stats_raw/train/feats_stats.npz", "exp/asr_train_raw_bpe/1epoch.pth", "exp/asr_train_raw_bpe/RESULTS.md", "exp/asr_train_raw_bpe/config.yaml", "exp/lm_train_bpe/8epoch.pth", "exp/lm_train_bpe/config.yaml" ]
julien-c
0
espnet
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - ljspeech license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3957940#.X90XNelKjkM This model was trained by kamo-naoyuki using mini_an4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
julien-c/policy-distilbert-7d
2020-12-26T10:04:20.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
julien-c
9
transformers
julien-c/reactiongif-roberta
2021-06-11T15:59:26.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:julien-c/reactiongif", "transformers", "license:apache-2.0", "generated-from-trainer" ]
text-classification
[ ".gitattributes", ".gitignore", "README.md", "all_results.json", "config.json", "eval_results.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json", "runs/events.out.tfevents.1623421858.galinette.10127.0", "runs/events.out.tfevents.1623421858.galinette.10127.2", "runs/events.out.tfevents.1623422249.galinette.10127.4", "runs/events.out.tfevents.1623422249.galinette.10127.5", "runs/events.out.tfevents.1623426165.galinette.454.0", "runs/events.out.tfevents.1623426693.galinette.454.2", "runs/00000/default/metadata.tsv", "runs/1623421858.6564128/events.out.tfevents.1623421858.galinette.10127.1", "runs/1623421858.6746485/events.out.tfevents.1623421858.galinette.10127.3", "runs/1623426481.7616172/events.out.tfevents.1623426481.galinette.454.1", "runs/1623426697.0685365/events.out.tfevents.1623426697.galinette.454.3" ]
julien-c
10
transformers
--- license: apache-2.0 tags: - generated-from-trainer datasets: - julien-c/reactiongif metrics: - accuracy model-index: - name: model results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.2662102282047272 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.9150 - Accuracy: 0.2662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.0528 | 0.44 | 1000 | 3.0265 | 0.2223 | | 2.9836 | 0.89 | 2000 | 2.9263 | 0.2332 | | 2.7409 | 1.33 | 3000 | 2.9041 | 0.2533 | | 2.7905 | 1.77 | 4000 | 2.8763 | 0.2606 | | 2.4359 | 2.22 | 5000 | 2.9072 | 0.2642 | | 2.4507 | 2.66 | 6000 | 2.9230 | 0.2644 | ### Framework versions - Transformers 4.7.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
julien-c/roberta-threejs
2021-02-18T09:50:34.000Z
[]
[ ".gitattributes", "README.md" ]
julien-c
0
<style> @import url('https://fonts.googleapis.com/css2?family=Roboto+Slab:wght@900&family=Rokkitt:wght@900&display=swap'); .text1 { position: absolute; top: 3vh; left: calc(50% - 50vh); } .text2 { position: absolute; bottom: 4vh; left: 50%; } .retro { font-family: "Roboto Slab"; font-size: 13vh; display: block; color: #000; text-shadow: -0.5vh 0 #8800aa, 0 0.5vh #8800aa, 0.5vh 0 #aa0088, 0 -0.5vh #aa0088; } </style> <div class="text1"> <span class="retro">RETRO</span> </div> <div class="text2"> <span class="retro">WAVE</span> </div> <script type="module"> import * as THREE from "https://cdn.jsdelivr.net/npm/[email protected]/build/three.module.js"; import { OrbitControls } from "https://cdn.jsdelivr.net/npm/[email protected]/examples/jsm/controls/OrbitControls.js"; import { TWEEN } from "https://cdn.jsdelivr.net/npm/[email protected]/examples/jsm/libs/tween.module.min.js"; let scene = new THREE.Scene(); let camera = new THREE.PerspectiveCamera(60, innerWidth / innerHeight, 1, 100); camera.position.set(-5, 10, 20); let renderer = new THREE.WebGLRenderer({antialias: true}); renderer.setSize(innerWidth, innerHeight); document.querySelector("div.prose").appendChild(renderer.domElement); const textureCube = generateCubeMap(); let controls = new OrbitControls(camera, renderer.domElement); controls.enableZoom = false; controls.enablePan = false; controls.enableKeys = false; let square = new THREE.GridHelper(20, 1, 0xaaaaff, 0xaaaff); square.position.y = 0.01; scene.add(square); let grid = new THREE.GridHelper(20, 10, "magenta", "magenta"); console.log(grid.geometry.attributes.position.count); let moveable = []; for(let i = 0; i < grid.geometry.attributes.position.count / 4; i++){ moveable.push(1, 1, 0, 0); } console.log(moveable.length) grid.geometry.setAttribute("moveable", new THREE.Float32BufferAttribute(moveable, 1)); let uniforms = { time: {value: 0}, speed: {value: 1}, size: {value: 20} } grid.material.onBeforeCompile = shader => { shader.uniforms.time = uniforms.time; shader.uniforms.speed = uniforms.speed; shader.uniforms.size = uniforms.size; shader.vertexShader = ` uniform float time; uniform float speed; uniform float size; attribute float moveable; ${shader.vertexShader} `.replace( `#include <begin_vertex>`, `#include <begin_vertex> if (floor(moveable + 0.1) > 0.5){ float start = size * -0.5; float zPos = mod( (position.z - start) + (time * speed), size) + start; transformed.z = zPos; } ` ); console.log(shader.vertexShader) } scene.add(grid); // palm let base = new THREE.Object3D(); let baseSpline = new THREE.CatmullRomCurve3([ new THREE.Vector2(), new THREE.Vector2(3, 0), new THREE.Vector2(2.5, -7), new THREE.Vector2(-4, -6), new THREE.Vector2(-4.8, 0) ], true, "catmullrom", 0.1); let baseG = new THREE.ExtrudeBufferGeometry(new THREE.Shape(baseSpline.getPoints(50)), {depth: 0.2, bevelEnabled: true, bevelThickness: 0.8, bevelSize: 0.2}); let baseObject = new THREE.Mesh(baseG, new THREE.MeshBasicMaterial({color: "magenta", wireframe: false, envMap: textureCube})); base.add(baseObject); scene.add(base); let phalanxes = []; let f1 = createFinger(new THREE.Object3D(), 0.8, false); // pinky let f2 = createFinger(new THREE.Object3D(), 0.95, false); // ring let f3 = createFinger(new THREE.Object3D(), 1, false); // middle let f4 = createFinger(new THREE.Object3D(), 0.95, false); // index let f5Base = new THREE.Object3D(); let f5 = createFinger(new THREE.Object3D(), 0.75, true); // thumb f5Base.add(f5); base.add(f1, f2, f3, f4, f5Base); f1.position.set( -4, 0.2, 0); f2.position.set( -2, 0.2, 0); f3.position.set( 0, 0.2, 0); f4.position.set( 2, 0.2, 0); f5Base.position.set( 3, -3, 0); f5Base.rotation.set( 0, 0, THREE.MathUtils.degToRad(-60)); f5Base.updateMatrixWorld(); let g = createPhalanxGeom(1, 3); let m = new THREE.MeshBasicMaterial({color: "aqua", wireframe: false, envMap: textureCube}); let o = new THREE.InstancedMesh(g, m, phalanxes.length); phalanxes.forEach( (ph, i) => { ph.updateMatrixWorld(); o.setMatrixAt(i, ph.matrixWorld); }) scene.add(o); window.addEventListener( 'resize', onWindowResize, false ); let t = new TWEEN.Tween({value: Math.PI * 0.075}) .to({value: Math.PI * 0.45}, 4000) .easing(TWEEN.Easing.Quadratic.InOut) .repeat(Infinity) .yoyo(true) .onUpdate(val => { phalanxes.forEach((ph, i) => { ph.rotation.x = val.value; ph.updateMatrixWorld(); o.setMatrixAt(i, ph.matrixWorld) }); o.instanceMatrix.needsUpdate = true; }); t.start(); let clock = new THREE.Clock(); renderer.setAnimationLoop(() => { let t = clock.getElapsedTime(); TWEEN.update(); uniforms.time.value = t; base.rotation.x = (Math.sin(t * 0.125) * 0.5 + 0.5) * -Math.PI * 0.5; base.rotation.y = -t * 0.125; renderer.render(scene, camera); }); function onWindowResize() { camera.aspect = innerWidth / innerHeight; camera.updateProjectionMatrix(); renderer.setSize( innerWidth, innerHeight ); } function createFinger(phalanx, scale, isThumb){ phalanxes.push(phalanx); let current = phalanx; for(let i = 0; i < (isThumb ? 1 : 2); i++){ let p = new THREE.Object3D(); p.position.y = 3; p.scale.setScalar(0.85); current.add(p); phalanxes.push(p); current = p; } phalanx.scale.setScalar(scale); return phalanx; } function createPhalanxGeom(R, L){ let r = R * 0.85; let R1 = R - r; let a = Math.asin(R1 / L); let path = new THREE.Path(); path.absarc(0, 0, R, Math.PI * 1.5, a); path.absarc(0, L, r, a, Math.PI * 0.5); let pts = path.getPoints(5); let g = new THREE.LatheBufferGeometry(pts); return g; } function generateCubeMap(){ let images = []; let c = document.createElement("canvas"); c.width = 4; c.height = c.width; let ctx = c.getContext("2d"); for(let i= 0; i < 6;i++){ ctx.fillStyle = "#fff"; ctx.fillRect(0, 0, c.width, c.height); for(let j = 0; j < (c.width * c.height) / 2; j++){ ctx.fillStyle = Math.random() < 0.5 ? "#f0f" : "#40f"; ctx.fillRect( Math.floor(Math.random() * c.width), Math.floor(Math.random() * c.height), 2, 1 ); } images.push(c.toDataURL()); } let cm = new THREE.CubeTextureLoader().load(images); console.log(cm); return cm; } </script>
julien-c/t5-3b-fork
2020-11-20T15:39:22.000Z
[ "pytorch" ]
[ ".gitattributes", "pytorch_model.bin" ]
julien-c
0
julien-c/t5-3b-fork2
2020-11-20T15:55:55.000Z
[ "pytorch", "t5", "lm-head", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
julien-c
13
transformers
julien-c/tensorboard-traces
2021-05-28T13:07:49.000Z
[ "tensorboard" ]
[ ".gitattributes", "README.md", "runs/Feb13_17-19-38_galinette/events.out.tfevents.1581614378.galinette.16858.0", "runs/Feb13_17-22-34_galinette/events.out.tfevents.1581614554.galinette.17000.0", "runs/Feb13_17-28-13_galinette/events.out.tfevents.1581614893.galinette.18082.0", "runs/Feb13_17-35-38_galinette/events.out.tfevents.1581615338.galinette.19335.0", "runs/May28_14-37-00_juliens-macbook-pro-1.home/events.out.tfevents.1622205420.juliens-macbook-pro-1.home.1158.0" ]
julien-c
0
## Dummy model containing only Tensorboard traces from multiple different experiments
julien-c/timm-dpn92
2021-02-18T11:18:56.000Z
[ "pytorch", "dataset:imagenet", "arxiv:1707.01629", "arxiv:1906.02659", "arxiv:2010.15052", "image-classification", "timm", "dpn", "license:apache-2.0" ]
image-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
julien-c
8
timm
--- tags: - image-classification - timm - dpn license: apache-2.0 datasets: - imagenet --- # `dpn92` from `rwightman/pytorch-image-models` From [`rwightman/pytorch-image-models`](https://github.com/rwightman/pytorch-image-models): ``` """ PyTorch implementation of DualPathNetworks Based on original MXNet implementation https://github.com/cypw/DPNs with many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs. This implementation is compatible with the pretrained weights from cypw's MXNet implementation. Hacked together by / Copyright 2020 Ross Wightman """ ``` ## Model description [Dual Path Networks](https://arxiv.org/abs/1707.01629) ## Intended uses & limitations You can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head to fine-tune it on a downstream task (another classification task with different labels, image segmentation or object detection, to name a few). ### How to use You can use this model with the usual factory method in `timm`: ```python import PIL import timm import torch model = timm.create_model("julien-c/timm-dpn92") img = PIL.Image.open(path_to_an_image) img = img.convert("RGB") config = model.default_cfg if isinstance(config["input_size"], tuple): img_size = config["input_size"][-2:] else: img_size = config["input_size"] transform = timm.data.transforms_factory.transforms_imagenet_eval( img_size=img_size, interpolation=config["interpolation"], mean=config["mean"], std=config["std"], ) input_tensor = transform(cat_img) input_tensor = input_tensor.unsqueeze(0) # ^ batch size = 1 with torch.no_grad(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ### Limitations and bias The training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will probably not generalize well on drawings or images containing multiple objects with different labels. The training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or models created by fine-tuning this model will work better on images picturing scenes from these countries (see [this paper](https://arxiv.org/abs/1906.02659) for examples). More generally, [recent research](https://arxiv.org/abs/2010.15052) has shown that even models trained in an unsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in the training images. ## Training data This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 millions of hand-annotated images with 1,000 categories. ## Training procedure To be completed ### Preprocessing To be completed ## Evaluation results To be completed ### BibTeX entry and citation info ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` and ```bibtex @misc{chen2017dual, title={Dual Path Networks}, author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng}, year={2017}, eprint={1707.01629}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
julien-c/voice-activity-detection
2020-12-21T22:38:05.000Z
[ "pytorch", "dataset:dihard", "arxiv:1910.10655", "pyannote", "audio", "voice-activity-detection", "license:mit" ]
voice-activity-detection
[ ".gitattributes", "README.md", "TheBigBangTheory.wav", "config.yml", "hparams.yml", "pytorch_model.bin" ]
julien-c
0
pyannote
--- tags: - pyannote - audio - voice-activity-detection datasets: - dihard license: mit inference: false --- ## Example pyannote-audio Voice Activity Detection model ### `pyannote.audio.models.segmentation.PyanNet` ♻️ Imported from https://github.com/pyannote/pyannote-audio-hub This model was trained by @hbredin. ### Demo: How to use in pyannote-audio ```python from pyannote.audio.core.inference import Inference model = Inference('julien-c/voice-activity-detection', device='cuda') model({ "audio": "TheBigBangTheory.wav" }) ``` ### Citing pyannote-audio ```BibTex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ``` or ```bibtex @inproceedings{Lavechin2020, author = {Marvin Lavechin and Marie-Philippe Gill and Ruben Bousbib and Herv\'{e} Bredin and Leibny Paola Garcia-Perera}, title = {{End-to-end Domain-Adversarial Voice Activity Detection}}, year = {2020}, url = {https://arxiv.org/abs/1910.10655}, } ```
julien-c/wine-quality
2021-06-03T13:40:56.000Z
[ "joblib", "sklearn", "structured-data-classification" ]
[ ".gitattributes", "README.md", "config.yml", "sklearn_model.joblib", "winequality-red.csv" ]
julien-c
0
scikit-learn
--- tags: - structured-data-classification dataset: - wine-quality library_name: scikit-learn --- ## Wine Quality classification ### A Simple Example of Scikit-learn Pipeline > Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya ### How to use ```python from huggingface_hub import hf_hub_url, cached_download import joblib import pandas as pd REPO_ID = "julien-c/wine-quality" FILENAME = "sklearn_model.joblib" model = joblib.load(cached_download( hf_hub_url(REPO_ID, FILENAME) )) # model is a `sklearn.pipeline.Pipeline` ``` #### Get sample data from this repo ```python data_file = cached_download( hf_hub_url(REPO_ID, "winequality-red.csv") ) winedf = pd.read_csv(data_file, sep=";") X = winedf.drop(["quality"], axis=1) Y = winedf["quality"] print(X[:3]) ``` | | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | pH | sulphates | alcohol | |---:|----------------:|-------------------:|--------------:|-----------------:|------------:|----------------------:|-----------------------:|----------:|-----:|------------:|----------:| | 0 | 7.4 | 0.7 | 0 | 1.9 | 0.076 | 11 | 34 | 0.9978 | 3.51 | 0.56 | 9.4 | | 1 | 7.8 | 0.88 | 0 | 2.6 | 0.098 | 25 | 67 | 0.9968 | 3.2 | 0.68 | 9.8 | | 2 | 7.8 | 0.76 | 0.04 | 2.3 | 0.092 | 15 | 54 | 0.997 | 3.26 | 0.65 | 9.8 | #### Get your prediction ```python labels = model.predict(X[:3]) # [5, 5, 5] ``` #### Eval ```python model.score(X, Y) # 0.6616635397123202 ``` ### 🍷 Disclaimer No red wine was drunk (unfortunately) while training this model 🍷
julioburgos/xlm-roberta-base
2021-03-19T11:00:00.000Z
[]
[ ".gitattributes" ]
julioburgos
0
julioburgos/xlm
2021-03-19T10:58:06.000Z
[]
[ ".gitattributes" ]
julioburgos
0
junaidEqbal/bert-base-roman-urdu
2021-01-16T16:00:48.000Z
[]
[ ".gitattributes" ]
junaidEqbal
0
junaidqadir/balochi
2021-04-30T05:29:33.000Z
[]
[ ".gitattributes", "README.md" ]
junaidqadir
0
junnyu/bert_chinese_mc_base
2021-05-20T05:28:56.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
junnyu
49
transformers
https://github.com/alibaba-research/ChineseBLUE
junnyu/electra_small_discriminator
2021-05-18T03:58:46.000Z
[ "pytorch", "electra", "pretraining", "en", "dataset:openwebtext", "transformers", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
junnyu
34
transformers
--- language: "en" thumbnail: "https://github.com/junnyu" tags: - pytorch - electra license: "MIT" datasets: - openwebtext --- # 一、 个人在openwebtext数据集上训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |Metrics|MCC|Acc|Acc|Spearman|Acc|Acc|Acc|Acc|| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-Small-OWT (this)**| 55.82 |89.67|87.0|86.96|89.28|80.08|87.50|66.07|80.30| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 62.5W - GPU RTX3090 - 训练时间总共耗费2.5天 # 四、 使用 ```python import torch from transformers.models.electra import ElectraModel, ElectraTokenizer tokenizer = ElectraTokenizer.from_pretrained("junnyu/electra_small_discriminator") model = ElectraModel.from_pretrained("junnyu/electra_small_discriminator") inputs = tokenizer("Beijing is the capital of China.", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) print(outputs[0].shape) ```
junnyu/electra_small_generator
2021-05-16T12:02:43.000Z
[ "pytorch", "electra", "masked-lm", "en", "dataset:openwebtext", "transformers", "license:mit", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
junnyu
21
transformers
--- language: "en" thumbnail: "https://github.com/junnyu" tags: - pytorch - electra - masked-lm license: "MIT" datasets: - openwebtext --- # 一、 个人在openwebtext数据集上训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-Small-OWT (this)**| 55.82 |89.67|87.0|86.96|89.28|80.08|87.50|66.07|80.30| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 62.5W - GPU RTX3090 - 训练时间总共耗费2.5天 # 四、 使用 ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="junnyu/electra_small_generator", tokenizer="junnyu/electra_small_generator" ) print( fill_mask("HuggingFace is creating a [MASK] that the community uses to solve NLP tasks.") ) ```
junnyu/roformer_chinese_base
2021-06-10T10:03:27.000Z
[ "pytorch", "tf", "roformer", "masked-lm", "zh", "arxiv:2104.09864", "transformers", "tf2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
junnyu
1,600
transformers
--- language: zh tags: - roformer - pytorch - tf2.0 --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
junnyu/roformer_chinese_char_base
2021-05-25T07:38:11.000Z
[ "pytorch", "tf", "roformer", "masked-lm", "zh", "arxiv:2104.09864", "transformers", "tf2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
junnyu
889
transformers
--- language: zh tags: - roformer - pytorch - tf2.0 --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
junnyu/roformer_chinese_small
2021-05-21T12:03:21.000Z
[ "pytorch", "tf", "roformer", "masked-lm", "zh", "arxiv:2104.09864", "transformers", "tf2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tf_model.h5", "vocab.txt" ]
junnyu
86
transformers
--- language: zh tags: - roformer - pytorch - tf2.0 inference: false --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
junnyu/roformer_small_discriminator
2021-05-21T12:03:56.000Z
[ "pytorch", "roformer", "en", "dataset:openwebtext", "transformers", "electra", "rotary position embedding", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
junnyu
14
transformers
--- language: "en" thumbnail: "https://github.com/junnyu" tags: - pytorch - electra - roformer - rotary position embedding license: "MIT" datasets: - openwebtext --- # 一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-RoFormer-Small-OWT (this)**|55.76|90.45|87.3|86.64|89.61|81.17|88.85|62.71|80.31| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 50W - GPU RTX3090 - 训练时间总共耗费55h # 四、wandb日志 - [**预训练日志**](https://wandb.ai/junyu/electra_rotary_small_pretrain?workspace=user-junyu) - [**GLUE微调日志**](https://wandb.ai/junyu/electra_rotary_glue_100?workspace=user-junyu) # 五、 使用 ```python import torch from transformers import ElectraTokenizer,RoFormerModel tokenizer = ElectraTokenizer.from_pretrained("junnyu/roformer_small_discriminator") model = RoFormerModel.from_pretrained("junnyu/roformer_small_discriminator") inputs = tokenizer("Beijing is the capital of China.", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) print(outputs[0].shape) ```
junnyu/roformer_small_generator
2021-05-21T12:04:35.000Z
[ "pytorch", "roformer", "masked-lm", "en", "dataset:openwebtext", "transformers", "electra", "rotary position embedding", "license:mit", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
junnyu
36
transformers
--- language: "en" thumbnail: "https://github.com/junnyu" tags: - pytorch - electra - masked-lm - rotary position embedding license: "MIT" datasets: - openwebtext --- # 一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-RoFormer-Small-OWT (this)**|55.76|90.45|87.3|86.64|89.61|81.17|88.85|62.71|80.31| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 50W - GPU RTX3090 - 训练时间总共耗费55h # 四、wandb日志 - [**预训练日志**](https://wandb.ai/junyu/electra_rotary_small_pretrain?workspace=user-junyu) - [**GLUE微调日志**](https://wandb.ai/junyu/electra_rotary_glue_100?workspace=user-junyu) # 五、 使用 ```python import torch from transformers import ElectraTokenizer,RoFormerForMaskedLM text = "Beijing is the capital of [MASK]." tokenizer = ElectraTokenizer.from_pretrained("junnyu/roformer_small_generator") pt_model = RoFormerForMaskedLM.from_pretrained( "junnyu/roformer_small_generator") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))+" " print(pt_outputs_sentence) # pytorch: beijing is the capital of [china||beijing||taiwan||india||shanghai]. ```
junnyu/wobert_chinese_base
2021-05-19T20:54:49.000Z
[ "pytorch", "jax", "bert", "masked-lm", "zh", "transformers", "wobert", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
junnyu
641
transformers
--- language: zh tags: - wobert inference: false --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/WoBERT ### pytorch版本 https://github.com/JunnYu/WoBERT_pytorch ## 安装(主要为了安装WoBertTokenizer) ```bash pip install git+https://github.com/JunnYu/WoBERT_pytorch.git ``` ## 使用 ```python import torch from transformers import BertForMaskedLM as WoBertForMaskedLM from wobert import WoBertTokenizer pretrained_model_or_path_list = [ "junnyu/wobert_chinese_plus_base", "junnyu/wobert_chinese_base" ] for path in pretrained_model_or_path_list: text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = WoBertTokenizer.from_pretrained(path) model = WoBertForMaskedLM.from_pretrained(path) inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits[0] outputs_sentence = "" for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1]) outputs_sentence += "[" + "||".join(tokens) + "]" else: outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(outputs_sentence) # RoFormer 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。 # PLUS WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||打算||准备||就]去公园玩。 # WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||就||准备||也]去公园玩。 ``` ## 引用 Bibtex: ```tex @techreport{zhuiyiwobert, title={WoBERT: Word-based Chinese BERT model - ZhuiyiAI}, author={Jianlin Su}, year={2020}, url="https://github.com/ZhuiyiTechnology/WoBERT", } ```
junnyu/wobert_chinese_plus_base
2021-05-19T20:55:48.000Z
[ "pytorch", "jax", "bert", "masked-lm", "zh", "transformers", "wobert", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
junnyu
956
transformers
--- language: zh tags: - wobert inference: false --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/WoBERT ### pytorch版本 https://github.com/JunnYu/WoBERT_pytorch ## 安装(主要为了安装WoBertTokenizer) ```bash pip install git+https://github.com/JunnYu/WoBERT_pytorch.git ``` ## 使用 ```python import torch from transformers import BertForMaskedLM as WoBertForMaskedLM from wobert import WoBertTokenizer pretrained_model_or_path_list = [ "junnyu/wobert_chinese_plus_base", "junnyu/wobert_chinese_base" ] for path in pretrained_model_or_path_list: text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = WoBertTokenizer.from_pretrained(path) model = WoBertForMaskedLM.from_pretrained(path) inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits[0] outputs_sentence = "" for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1]) outputs_sentence += "[" + "||".join(tokens) + "]" else: outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(outputs_sentence) # RoFormer 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。 # PLUS WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||打算||准备||就]去公园玩。 # WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||就||准备||也]去公园玩。 ``` ## 引用 Bibtex: ```tex @techreport{zhuiyiwobert, title={WoBERT: Word-based Chinese BERT model - ZhuiyiAI}, author={Jianlin Su}, year={2020}, url="https://github.com/ZhuiyiTechnology/WoBERT", } ```
junzai/bert_finetuning_test
2021-05-19T20:56:52.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results_mrpc.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
junzai
16
transformers
junzai/bert_finetuning_test_demo
2021-01-20T03:51:37.000Z
[]
[ ".gitattributes" ]
junzai
0
jwouts/belabBERT_115k
2021-05-20T17:32:05.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
jwouts
17
transformers
k948181/ybdH-1
2021-04-22T13:34:20.000Z
[]
[ ".gitattributes", "README.md" ]
k948181
0
>tr|Q8ZR27|Q8ZR27_SALTY Putative glycerol dehydrogenase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=ybdH PE=3 SV=1 MNHTEIRVVTGPANYFSHAGSLERLTDFFTPEQLSHAVWVYGERAIAAARPYLPEAFERA GAKHLPFTGHCSERHVAQLAHACNDDRQVVIGVGGGALLDTAKALARRLALPFVAIPTIA ATCAAWTPLSVWYNDAGQALQFEIFDDANFLVLVEPRIILQAPDDYLLAGIGDTLAKWYE AVVLAPQPETLPLTVRLGINSACAIRDLLLDSSEQALADKQQRRLTQAFCDVVDAIIAGG GMVGGLGERYTRVAAAHAVHNGLTVLPQTEKFLHGTKVAYGILVQSALLGQDDVLAQLIT AYRRFHLPARLSELDVDIHNTAEIDRVIAHTLRPVESIHYLPVTLTPDTLRAAFEKVEFF RI
k948181/ybdH
2021-04-22T13:26:15.000Z
[]
[ ".gitattributes", "README.md" ]
k948181
0
kadirselcuk/demo
2021-04-08T20:49:47.000Z
[]
[ ".gitattributes", "README.md" ]
kadirselcuk
0
kadirselcuk/model
2021-04-08T20:47:31.000Z
[]
[ ".gitattributes" ]
kadirselcuk
0
kaen2891/jw_0411
2021-04-11T08:37:59.000Z
[]
[ ".gitattributes" ]
kaen2891
0
kaen2891/jw_second
2021-04-11T08:54:34.000Z
[]
[ ".gitattributes" ]
kaen2891
0
kaen2891/jw_third
2021-04-11T09:08:09.000Z
[]
[ ".gitattributes", "merges.txt", "vocab.json" ]
kaen2891
0
kaesve/BERT_patent_reference_extraction
2021-05-19T20:57:51.000Z
[ "pytorch", "jax", "bert", "masked-lm", "arxiv:2101.01039", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "model_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kaesve
16
transformers
# Reference extraction in patents This repository contains a finetuned BERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
kaesve/BioBERT_patent_reference_extraction
2021-05-19T20:58:49.000Z
[ "pytorch", "jax", "bert", "masked-lm", "arxiv:2101.01039", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "model_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kaesve
16
transformers
# Reference extraction in patents This repository contains a finetuned BioBERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
kaesve/SciBERT_patent_reference_extraction
2021-01-12T14:59:37.000Z
[ "pytorch", "arxiv:2101.01039", "transformers" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "model_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kaesve
12
transformers
# Reference extraction in patents This repository contains a finetuned SciBERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
kaldan7/lotsawa
2021-06-07T04:58:20.000Z
[]
[ ".gitattributes" ]
kaldan7
0
kaleb/vohbik-translate
2021-03-29T08:18:07.000Z
[]
[ ".gitattributes", "README.md", "model.npz" ]
kaleb
0
kalki7/distilgpt2-ratatouille
2021-05-23T06:11:59.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
kalki7
37
transformers
kamalkraj/bioelectra-base-discriminator-pubmed-pmc-lt
2021-06-10T14:22:08.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
kamalkraj
0
transformers
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
kamalkraj/bioelectra-base-discriminator-pubmed-pmc
2021-06-10T13:45:44.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
kamalkraj
3
transformers
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
kamalkraj/bioelectra-base-discriminator-pubmed
2021-06-10T12:53:49.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
kamalkraj
47
transformers
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
kamivao/autonlp-cola_gram-208681
2021-05-21T12:43:57.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:kamivao/autonlp-data-cola_gram", "transformers", "autonlp" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sample_input.pkl", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kamivao
89
transformers
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kamivao/autonlp-data-cola_gram --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 208681 ## Validation Metrics - Loss: 0.37569838762283325 - Accuracy: 0.8365019011406845 - Precision: 0.8398058252427184 - Recall: 0.9453551912568307 - AUC: 0.9048838797814208 - F1: 0.8894601542416453 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kamivao/autonlp-cola_gram-208681 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kamivao/autonlp-cola_gram-208681", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kamivao/autonlp-cola_gram-208681", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
kanarupan/abstr
2021-04-28T23:41:13.000Z
[]
[ ".gitattributes" ]
kanarupan
0
kangnichaluo/cb
2021-05-30T12:29:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kangnichaluo
13
transformers
learning rate: 5e-5 training epochs: 5 batch size: 8 seed: 42 model: bert-base-uncased trained on CB which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-1
2021-05-25T11:36:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kangnichaluo
6
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 42 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-2
2021-05-25T11:40:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kangnichaluo
6
transformers
learning rate: 3e-5 training epochs: 3 batch size: 64 seed: 0 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-3
2021-05-25T11:46:40.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kangnichaluo
6
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 13 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-4
2021-05-25T12:36:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kangnichaluo
6
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 87 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-5
2021-05-25T12:41:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kangnichaluo
6
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 111 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-cb
2021-05-30T12:29:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kangnichaluo
13
transformers
learning rate: 3e-5 training epochs: 5 batch size: 8 seed: 42 model: bert-base-uncased The model is pretrained on MNLI (we use kangnichaluo/mnli-2 directly) and then finetuned on CB which is converted into two-way nli classification (predict entailment or not-entailment class)
kareemah/amma
2021-06-07T21:52:52.000Z
[]
[ ".gitattributes", "README.md" ]
kareemah
0
karinev/lanuitdudroit
2021-05-17T14:08:03.000Z
[]
[ ".gitattributes", "README.md", "chatbot", "chatbot.html" ]
karinev
0
karishnu/cuttle-test
2021-06-05T07:19:06.000Z
[]
[ ".gitattributes" ]
karishnu
0
karthikgali/summary_news
2021-06-01T05:16:57.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
karthikgali
24
transformers
kashishk/model_name
2021-05-09T17:58:09.000Z
[]
[ ".gitattributes" ]
kashishk
0
katoensp/GG-12
2021-03-30T15:55:30.000Z
[]
[ ".gitattributes", "README.md" ]
katoensp
0
https://www.geogebra.org/m/cwcveget https://www.geogebra.org/m/b8dzxk6z https://www.geogebra.org/m/nqanttum https://www.geogebra.org/m/pd3g8a4u https://www.geogebra.org/m/jw8324jz https://www.geogebra.org/m/wjbpvz5q https://www.geogebra.org/m/qm3g3ma6 https://www.geogebra.org/m/sdajgph8 https://www.geogebra.org/m/e3ghhcbf https://www.geogebra.org/m/msne4bfm https://www.geogebra.org/m/nmcv2te5 https://www.geogebra.org/m/hguqx6cn https://www.geogebra.org/m/jnyvpgqu https://www.geogebra.org/m/syctd97g https://www.geogebra.org/m/nq9erdby https://www.geogebra.org/m/au4har8c
kcarrig/CoffeeMatey
2021-05-19T20:59:26.000Z
[ "tf", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "tf_model.h5", "tokenizer/config.json", "tokenizer/special_tokens_map.json", "tokenizer/tokenizer_config.json", "tokenizer/vocab.txt" ]
kcarrig
7
transformers
kennyhsu5/example
2021-05-20T03:56:45.000Z
[]
[ ".gitattributes" ]
kennyhsu5
0
keshan/SinhalaBERTo
2021-05-20T17:33:02.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "si", "dataset:oscar", "arxiv:1907.11692", "transformers", "SinhalaBERTo", "Sinhala", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "tf_model.h5", "vocab.json" ]
keshan
96
transformers
--- language: si tags: - SinhalaBERTo - Sinhala - roberta datasets: - oscar --- ### Overview This is a slightly smaller model trained on [OSCAR](https://oscar-corpus.com/) Sinhala dedup dataset. As Sinhala is one of those low resource languages, there are only a handful of models been trained. So, this would be a great place to start training for more downstream tasks. ## Model Specification The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications: 1. vocab_size=52000 2. max_position_embeddings=514 3. num_attention_heads=12 4. num_hidden_layers=6 5. type_vocab_size=1 ## How to Use You can use this model directly with a pipeline for masked language modeling: ```py from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline model = BertForMaskedLM.from_pretrained("keshan/SinhalaBERTo") tokenizer = BertTokenizer.from_pretrained("keshan/SinhalaBERTo") fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask("මම ගෙදර <mask>.") ```
kevinfd/test
2021-04-22T23:19:10.000Z
[]
[ ".gitattributes", "README.md" ]
kevinfd
0
kevinrobinson/perturbations_table_quickstart
2021-05-19T20:59:32.000Z
[ "tf", "bert", "transformers" ]
[ ".DS_Store", ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kevinrobinson
12
transformers
kevinrobinson/perturbations_table_quickstart_sst
2021-05-19T20:59:38.000Z
[ "tf", "bert", "transformers" ]
[ ".DS_Store", ".gitattributes", "README.md", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kevinrobinson
11
transformers
# kevinrobinson/perturbations_table_quickstart model card This is just for UI smoke testing, and shouldn't be used for anything else. It's built from https://github.com/PAIR-code/lit/blob/main/lit_nlp/examples/quickstart_sst_demo.py.
khanh98/model3
2021-05-20T17:35:31.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
khanh98
11
transformers
kingabzpro/wav2vec2-large-xlsr-53-wolof
2021-06-07T07:19:40.000Z
[ "pytorch", "wav2vec2", "WOLOF", "dataset:AI4D Baamtu Datamation - Automatic Speech Recognition in WOLOF", "transformers", "speech", "audio", "automatic-speech-recognition", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
kingabzpro
43
transformers
--- language: WOLOF datasets: - AI4D Baamtu Datamation - Automatic Speech Recognition in WOLOF tags: - speech - audio - automatic-speech-recognition license: apache-2.0 metrics: - WER --- ## Evaluation on WOLOF Test [![github](https://img.shields.io/badge/github-ffbf00?logo=github&color=black&style=for-the-badge)](https://github.com/kingabzpro/WOLOF-ASR-Wav2Vec2) ```python import pandas as pd from datasets import load_dataset, load_metric,Dataset from tqdm import tqdm import torch import soundfile as sf import torchaudio from transformers import Wav2Vec2ForCTC from transformers import Wav2Vec2Processor from transformers import Wav2Vec2FeatureExtractor from transformers import Wav2Vec2CTCTokenizer model_name = "kingabzpro/wav2vec2-large-xlsr-53-wolof" device = "cuda" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) val =pd.read_csv("../input/automatic-speech-recognition-in-wolof/Test.csv") val["path"] = "../input/automatic-speech-recognition-in-wolof/Noise Removed/tmp/WOLOF_ASR_dataset/noise_remove/"+val["ID"]+".wav" val.rename(columns = {'transcription':'sentence'}, inplace = True) common_voice_val = Dataset.from_pandas(val) def speech_file_to_array_fn_test(batch): speech_array, sampling_rate = sf.read(batch["path"])#(.wav) 16000 sample rate batch["speech"] = speech_array batch["sampling_rate"] = sampling_rate return batch def prepare_dataset_test(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor(batch["speech"], padding=True,sampling_rate=batch["sampling_rate"][0]).input_values return batch common_voice_val = common_voice_val.remove_columns([ "ID","age", "down_votes", "gender", "up_votes"]) # Remove columns common_voice_val = common_voice_val.map(speech_file_to_array_fn_test, remove_columns=common_voice_val.column_names)# Applying speech_file_to_array function common_voice_val = common_voice_val.map(prepare_dataset_test, remove_columns=common_voice_val.column_names, batch_size=8, num_proc=4, batched=True)# Applying prepare_dataset_test function final_pred = [] for i in tqdm(range(common_voice_val.shape[0])):# Testing model on Wolof Dataset input_dict = processor(common_voice_val[i]["input_values"], return_tensors="pt", padding=True) logits = model(input_dict.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1)[0] prediction = processor.decode(pred_ids) final_pred.append(prediction) ``` You can check my result on [Zindi](https://zindi.africa/competitions/ai4d-baamtu-datamation-automatic-speech-recognition-in-wolof/leaderboard), I got 8th rank in AI4D Baamtu Datamation - Automatic Speech Recognition in WOLOF **Result**: 7.88 %
kiri-ai/distiluse-base-multilingual-cased-et
2020-12-11T21:48:24.000Z
[ "pytorch", "distilbert", "et", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_distilbert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kiri-ai
350
transformers
--- language: et --- ## Model Description This model is based off **Sentence-Transformer's** `distiluse-base-multilingual-cased` multilingual model that has been extended to understand sentence embeddings in Estonian. ## Sentence-Transformers This model can be imported directly via the SentenceTransformers package as shown below: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('kiri-ai/distiluse-base-multilingual-cased-et') sentences = ['Here is a sample sentence','Another sample sentence'] embeddings = model.encode(sentences) print("Sentence embeddings:") print(embeddings) ``` ## Fine-tuning The fine-tuning and training processes were inspired by [sbert's](https://www.sbert.net/) multilingual training techniques which are available [here](https://www.sbert.net/examples/training/multilingual/README.html). The documentation shows and explains the step-by-step process of using parallel sentences to train models in a different language. ### Resources The model was fine-tuned on English-Estonian parallel sentences taken from [OPUS](http://opus.nlpl.eu/) and [ParaCrawl](https://paracrawl.eu/).
kiri-ai/gpt2-large-quantized
2021-05-23T06:13:04.000Z
[ "gpt2", "lm-head", "causal-lm", "en", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model_quantized.bin", "tokenizer.json", "vocab.json" ]
kiri-ai
8
transformers
--- language: - en --- # Pytorch int8 quantized version of gpt2-large ## Usage Download the .bin file locally. Load with: Rest of the usage according to [original instructions](https://huggingface.co/gpt2-large). ```python import torch model = torch.load("path/to/pytorch_model_quantized.bin") ```
kiri-ai/t5-base-qa-summary-emotion
2021-02-13T10:39:32.000Z
[ "pytorch", "t5", "seq2seq", "en", "dataset:coqa", "dataset:squad_v2", "dataset:go_emotions", "dataset:cnn_dailymail", "transformers", "question-answering", "emotion-detection", "summarisation", "license:apache 2.0", "text2text-generation", "pipeline_tag:text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "pytorch_model_quantized.bin", "spiece.model", "tokenizer.json" ]
kiri-ai
1,041
transformers
--- language: - en tags: - question-answering - emotion-detection - summarisation license: Apache 2.0 datasets: - coqa - squad_v2 - go_emotions - cnn_dailymail metrics: - f1 pipeline_tag: text2text-generation widget: - text: "q: Who is Elon Musk? a: an entrepreneur q: When was he born? c: Elon Musk is an entrepreneur born in 1971. </s>" - text: "emotion: I hope this works! </s>" --- # T5 Base with QA + Summary + Emotion ## Dependencies Requires transformers>=4.0.0 ## Description This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail. It achieves a score of **F1 79.5** on the Squad 2 dev set and a score of **F1 70.6** on the CoQa dev set. Summarisation and emotion detection has not been evaluated yet. ## Usage ### Question answering #### With Transformers ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") def get_answer(question, prev_qa, context): input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa] input_text.append(f"q: {question}") input_text.append(f"c: {context}") input_text = " ".join(input_text) features = tokenizer([input_text], return_tensors='pt') tokens = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=64) return tokenizer.decode(tokens[0], skip_special_tokens=True) print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla." print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla ``` #### With Kiri ```python from kiri.models import T5QASummaryEmotion context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla." prev_qa = [("Does Elon Musk still work with OpenAI", "No")] model = T5QASummaryEmotion() # Leave prev_qa blank for non conversational question-answering model.qa("Why not?", context, prev_qa=prev_qa) > "to avoid possible future conflicts with his role as CEO of Tesla" ``` ### Summarisation #### With Transformers ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") def summary(context): input_text = f"summarize: {context}" features = tokenizer([input_text], return_tensors='pt') tokens = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=64) return tokenizer.decode(tokens[0], skip_special_tokens=True) ``` #### With Kiri ```python from kiri.models import T5QASummaryEmotion model = T5QASummaryEmotion() model.summarise("Long text to summarise") > "Short summary of long text" ``` ### Emotion detection #### With Transformers ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") def emotion(context): input_text = f"emotion: {context}" features = tokenizer([input_text], return_tensors='pt') tokens = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=64) return tokenizer.decode(tokens[0], skip_special_tokens=True) ``` #### With Kiri ```python from kiri.models import T5QASummaryEmotion model = T5QASummaryEmotion() model.emotion("I hope this works!") > "optimism" ``` ## About us Kiri makes using state-of-the-art models easy, accessible and scalable. [Website](https://kiri.ai) | [Natural Language Engine](https://github.com/kiri-ai/kiri)
kitaev/tetra-tag-en
2021-05-19T21:01:26.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kitaev
15
transformers
klue/bert-base
2021-05-25T14:56:51.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
klue
6,504
transformers
klue/roberta-base
2021-05-25T14:57:56.000Z
[ "pytorch", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
klue
1,045
transformers
klue/roberta-large
2021-05-25T14:59:34.000Z
[ "pytorch", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
klue
1,379
transformers
klue/roberta-small
2021-05-25T14:57:28.000Z
[ "pytorch", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
klue
1,007
transformers
kmfoda/wav2vec2-large-xlsr-arabic
2021-03-29T19:51:16.000Z
[ "pytorch", "wav2vec2", "ar", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "all_results.json", "config.json", "eval_results.json", "preprocessor_config.json", "pytorch_model.bin", "run_common_voice.py", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "vocab.json" ]
kmfoda
264
transformers
--- language: ar datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Arabic by Othmane Rifki results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ar type: common_voice args: ar metrics: - name: Test WER type: wer value: 46.77 --- # Wav2Vec2-Large-XLSR-53-Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ar", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") resamplers = { # all three sampling rates exist in test split 48000: torchaudio.transforms.Resample(48000, 16000), 44100: torchaudio.transforms.Resample(44100, 16000), 32000: torchaudio.transforms.Resample(32000, 16000), } def prepare_example(example): speech, sampling_rate = torchaudio.load(example["path"]) example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy() return example test_dataset = test_dataset.map(prepare_example) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ar", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\؟\_\؛\ـ\—]' resamplers = { # all three sampling rates exist in test split 48000: torchaudio.transforms.Resample(48000, 16000), 44100: torchaudio.transforms.Resample(44100, 16000), 32000: torchaudio.transforms.Resample(32000, 16000), } def prepare_example(example): speech, sampling_rate = torchaudio.load(example["path"]) example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy() return example test_dataset = test_dataset.map(prepare_example) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 52.53 ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://huggingface.co/kmfoda/wav2vec2-large-xlsr-arabic/tree/main)
kodoc/kodoc-bert-base
2021-06-18T13:22:52.000Z
[ "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kodoc
0
transformers
kodoc/roberta-base
2021-06-04T07:13:31.000Z
[ "pytorch", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kodoc
195
transformers
kodoc/roberta-large
2021-06-04T07:15:37.000Z
[ "pytorch", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kodoc
68
transformers
kodoc/roberta-small
2021-06-04T07:13:58.000Z
[ "pytorch", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kodoc
6
transformers
kornosk/bert-election2020-twitter-stance-biden-KE-MLM
2021-05-24T04:29:36.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers", "twitter", "stance-detection", "election2020", "license:gpl-3.0" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kornosk
24
transformers
--- language: "en" tags: - twitter - stance-detection - election2020 license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Joe Biden (KE-MLM) Pre-trained weights for **KE-MLM model** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Joe Biden. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Joe Biden. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Joe Biden. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-biden-KE-MLM" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Biden!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Biden is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
kornosk/bert-election2020-twitter-stance-biden
2021-05-24T04:28:29.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers", "twitter", "stance-detection", "election2020", "license:gpl-3.0" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kornosk
18
transformers
--- language: "en" tags: - twitter - stance-detection - election2020 license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Joe Biden (f-BERT) Pre-trained weights for **f-BERT** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Joe Biden. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Joe Biden. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Joe Biden. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-biden" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Biden!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Biden is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```