modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
kornosk/bert-election2020-twitter-stance-trump-KE-MLM
2021-05-24T04:31:17.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers", "twitter", "stance-detection", "election2020", "license:gpl-3.0" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kornosk
27
transformers
--- language: "en" tags: - twitter - stance-detection - election2020 license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Donald Trump (KE-MLM) Pre-trained weights for **KE-MLM model** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Donald Trump. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Donald Trump. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Donald Trump. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-trump-KE-MLM" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Trump!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Trump is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
kornosk/bert-election2020-twitter-stance-trump
2021-05-24T04:30:19.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers", "twitter", "stance-detection", "election2020", "license:gpl-3.0" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
kornosk
21
transformers
--- language: "en" tags: - twitter - stance-detection - election2020 license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Donald Trump (f-BERT) Pre-trained weights for **f-BERT** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Donald Trump. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Donald Trump. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Donald Trump. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-trump" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Trump!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Trump is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
kornosk/bert-political-election2020-twitter-mlm
2021-05-24T04:26:14.000Z
[ "pytorch", "jax", "bert", "masked-lm", "en", "transformers", "twitter", "masked-token-prediction", "election2020", "license:gpl-3.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "eval_results_lm.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kornosk
80
transformers
--- language: "en" tags: - twitter - masked-token-prediction - election2020 license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Political Election 2020 Pre-trained weights for [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. We use the initialized weights from BERT-base (uncased) or `bert-base-uncased`. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective. # Usage This pre-trained language model **can be fine-tunned to any downstream task (e.g. classification)**. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import BertTokenizer, BertForMaskedLM, pipeline import torch # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-political-election2020-twitter-mlm" # load model tokenizer = BertTokenizer.from_pretrained(pretrained_LM_path) model = BertForMaskedLM.from_pretrained(pretrained_LM_path) # fill mask example = "Trump is the [MASK] of USA" fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) outputs = fill_mask(example) print(outputs) # see embeddings inputs = tokenizer(example, return_tensors="pt") outputs = model(**inputs) print(outputs) # OR you can use this model to train on your downstream task! # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
kosuke-kitahara/wav2vec2-large-xlsr-53-phoneme
2021-03-29T03:32:30.000Z
[]
[ ".gitattributes" ]
kosuke-kitahara
0
kouohhashi/roberta_ja
2021-05-20T17:36:27.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
kouohhashi
10
transformers
hello
krevas/finance-electra-small-discriminator
2020-07-09T05:46:38.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
krevas
13
transformers
krevas/finance-electra-small-generator
2020-07-09T05:47:53.000Z
[ "pytorch", "electra", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
krevas
19
transformers
krevas/finance-koelectra-base-discriminator
2020-12-11T21:48:27.000Z
[ "pytorch", "electra", "pretraining", "ko", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
krevas
27
transformers
--- language: ko --- # ๐Ÿ“ˆ Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-base-discriminator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import ElectraForPreTraining, ElectraTokenizer import torch discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-base-discriminator") tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-base-discriminator") sentence = "๋‚ด์ผ ํ•ด๋‹น ์ข…๋ชฉ์ด ๋Œ€ํญ ์ƒ์Šนํ•  ๊ฒƒ์ด๋‹ค" fake_sentence = "๋‚ด์ผ ํ•ด๋‹น ์ข…๋ชฉ์ด ๋ง›์žˆ๊ฒŒ ์ƒ์Šนํ•  ๊ฒƒ์ด๋‹ค" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]] print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)]) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
krevas/finance-koelectra-base-generator
2020-12-11T21:48:30.000Z
[ "pytorch", "electra", "masked-lm", "ko", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
krevas
22
transformers
--- language: ko --- # ๐Ÿ“ˆ Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-base-generator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="krevas/finance-koelectra-base-generator", tokenizer="krevas/finance-koelectra-base-generator" ) print(fill_mask(f"๋‚ด์ผ ํ•ด๋‹น ์ข…๋ชฉ์ด ๋Œ€ํญ {fill_mask.tokenizer.mask_token}ํ•  ๊ฒƒ์ด๋‹ค.")) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
krevas/finance-koelectra-small-discriminator
2020-12-11T21:48:34.000Z
[ "pytorch", "electra", "pretraining", "ko", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
krevas
40
transformers
--- language: ko --- # ๐Ÿ“ˆ Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-small-discriminator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import ElectraForPreTraining, ElectraTokenizer import torch discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-small-discriminator") tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-small-discriminator") sentence = "๋‚ด์ผ ํ•ด๋‹น ์ข…๋ชฉ์ด ๋Œ€ํญ ์ƒ์Šนํ•  ๊ฒƒ์ด๋‹ค" fake_sentence = "๋‚ด์ผ ํ•ด๋‹น ์ข…๋ชฉ์ด ๋ง›์žˆ๊ฒŒ ์ƒ์Šนํ•  ๊ฒƒ์ด๋‹ค" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]] print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)]) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
krevas/finance-koelectra-small-generator
2020-12-11T21:48:37.000Z
[ "pytorch", "electra", "masked-lm", "ko", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
krevas
27
transformers
--- language: ko --- # ๐Ÿ“ˆ Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-small-generator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="krevas/finance-koelectra-small-generator", tokenizer="krevas/finance-koelectra-small-generator" ) print(fill_mask(f"๋‚ด์ผ ํ•ด๋‹น ์ข…๋ชฉ์ด ๋Œ€ํญ {fill_mask.tokenizer.mask_token}ํ•  ๊ฒƒ์ด๋‹ค.")) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
krishnakatyal/my_model_emotion
2021-05-14T11:38:33.000Z
[]
[ ".gitattributes" ]
krishnakatyal
0
krupine/telectra-discriminator
2021-01-22T08:41:00.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
krupine
6
transformers
kssteven/ibert-roberta-base
2021-05-10T05:31:46.000Z
[ "pytorch", "ibert", "masked-lm", "arxiv:1907.11692", "arxiv:2101.01321", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
kssteven
543
transformers
# I-BERT base model This model, `ibert-roberta-base`, is an integer-only quantized version of [RoBERTa](https://arxiv.org/abs/1907.11692), and was introduced in [this papaer](https://arxiv.org/abs/2101.01321). I-BERT stores all parameters with INT8 representation, and carries out the entire inference using integer-only arithmetic. In particular, I-BERT replaces all floating point operations in the Transformer architectures (e.g., MatMul, GELU, Softmax, and LayerNorm) with closely approximating integer operations. This can result in upto 4x inference speed up as compared to floating point counterpart when tested on an Nvidia T4 GPU. The best model parameters searched via quantization-aware finetuning can be then exported (e.g., to TensorRT) for integer-only deployment of the model. ## Finetuning Procedure Finetuning of I-BERT consists of 3 stages: (1) Full-precision finetuning from the pretrained model on a down-stream task, (2) model quantization, and (3) integer-only finetuning (i.e., quantization-aware training) of the quantized model. ### Full-precision finetuning Full-precision finetuning of I-BERT is similar to RoBERTa finetuning. For instance, you can run the following command to finetune on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task. ``` python examples/text-classification/run_glue.py \ --model_name_or_path kssteven/ibert-roberta-base \ --task_name MRPC \ --do_eval \ --do_train \ --evaluation_strategy epoch \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --save_steps 115 \ --learning_rate 2e-5 \ --num_train_epochs 10 \ --output_dir $OUTPUT_DIR ``` ### Model Quantization Once you are done with full-precision finetuning, open up `config.json` in your checkpoint directory and set the `quantize` attribute as `true`. ``` { "_name_or_path": "kssteven/ibert-roberta-base", "architectures": [ "IBertForSequenceClassification" ], "attention_probs_dropout_prob": 0.1, "bos_token_id": 0, "eos_token_id": 2, "finetuning_task": "mrpc", "force_dequant": "none", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-05, "max_position_embeddings": 514, "model_type": "ibert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 1, "position_embedding_type": "absolute", "quant_mode": true, "tokenizer_class": "RobertaTokenizer", "transformers_version": "4.4.0.dev0", "type_vocab_size": 1, "vocab_size": 50265 } ``` Then, your model will automatically run as the integer-only mode when you load the checkpoint. Also, make sure to delete `optimizer.pt`, `scheduler.pt` and `trainer_state.json` in the same directory. Otherwise, HF will not reset the optimizer, scheduler, or trainer state for the following integer-only finetuning. ### Integer-only finetuning (Quantization-aware training) Finally, you will be able to run integer-only finetuning simply by loading the checkpoint file you modified. Note that the only difference in the example command below is `model_name_or_path`. ``` python examples/text-classification/run_glue.py \ --model_name_or_path $CHECKPOINT_DIR --task_name MRPC \ --do_eval \ --do_train \ --evaluation_strategy epoch \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --save_steps 115 \ --learning_rate 1e-6 \ --num_train_epochs 10 \ --output_dir $OUTPUT_DIR ``` ## Citation info If you use I-BERT, please cite [our papaer](https://arxiv.org/abs/2101.01321). ``` @article{kim2021bert, title={I-BERT: Integer-only BERT Quantization}, author={Kim, Sehoon and Gholami, Amir and Yao, Zhewei and Mahoney, Michael W and Keutzer, Kurt}, journal={arXiv preprint arXiv:2101.01321}, year={2021} } ```
kssteven/ibert-roberta-large-mnli
2021-05-10T05:35:32.000Z
[ "pytorch", "ibert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
kssteven
95
transformers
kssteven/ibert-roberta-large
2021-05-10T05:34:01.000Z
[ "pytorch", "ibert", "masked-lm", "arxiv:1907.11692", "arxiv:2101.01321", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
kssteven
161
transformers
# I-BERT large model This model, `ibert-roberta-large`, is an integer-only quantized version of [RoBERTa](https://arxiv.org/abs/1907.11692), and was introduced in [this papaer](https://arxiv.org/abs/2101.01321). I-BERT stores all parameters with INT8 representation, and carries out the entire inference using integer-only arithmetic. In particular, I-BERT replaces all floating point operations in the Transformer architectures (e.g., MatMul, GELU, Softmax, and LayerNorm) with closely approximating integer operations. This can result in upto 4x inference speed up as compared to floating point counterpart when tested on an Nvidia T4 GPU. The best model parameters searched via quantization-aware finetuning can be then exported (e.g., to TensorRT) for integer-only deployment of the model. ## Finetuning Procedure Finetuning of I-BERT consists of 3 stages: (1) Full-precision finetuning from the pretrained model on a down-stream task, (2) model quantization, and (3) integer-only finetuning (i.e., quantization-aware training) of the quantized model. ### Full-precision finetuning Full-precision finetuning of I-BERT is similar to RoBERTa finetuning. For instance, you can run the following command to finetune on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task. ``` python examples/text-classification/run_glue.py \ --model_name_or_path kssteven/ibert-roberta-large \ --task_name MRPC \ --do_eval \ --do_train \ --evaluation_strategy epoch \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --save_steps 115 \ --learning_rate 2e-5 \ --num_train_epochs 10 \ --output_dir $OUTPUT_DIR ``` ### Model Quantization Once you are done with full-precision finetuning, open up `config.json` in your checkpoint directory and set the `quantize` attribute as `true`. ``` { "_name_or_path": "kssteven/ibert-roberta-large", "architectures": [ "IBertForSequenceClassification" ], "attention_probs_dropout_prob": 0.1, "bos_token_id": 0, "eos_token_id": 2, "finetuning_task": "mrpc", "force_dequant": "none", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-05, "max_position_embeddings": 514, "model_type": "ibert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 1, "position_embedding_type": "absolute", "quant_mode": true, "tokenizer_class": "RobertaTokenizer", "transformers_version": "4.4.0.dev0", "type_vocab_size": 1, "vocab_size": 50265 } ``` Then, your model will automatically run as the integer-only mode when you load the checkpoint. Also, make sure to delete `optimizer.pt`, `scheduler.pt` and `trainer_state.json` in the same directory. Otherwise, HF will not reset the optimizer, scheduler, or trainer state for the following integer-only finetuning. ### Integer-only finetuning (Quantization-aware training) Finally, you will be able to run integer-only finetuning simply by loading the checkpoint file you modified. Note that the only difference in the example command below is `model_name_or_path`. ``` python examples/text-classification/run_glue.py \ --model_name_or_path $CHECKPOINT_DIR --task_name MRPC \ --do_eval \ --do_train \ --evaluation_strategy epoch \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --save_steps 115 \ --learning_rate 1e-6 \ --num_train_epochs 10 \ --output_dir $OUTPUT_DIR ``` ## Citation info If you use I-BERT, please cite [our papaer](https://arxiv.org/abs/2101.01321). ``` @article{kim2021bert, title={I-BERT: Integer-only BERT Quantization}, author={Kim, Sehoon and Gholami, Amir and Yao, Zhewei and Mahoney, Michael W and Keutzer, Kurt}, journal={arXiv preprint arXiv:2101.01321}, year={2021} } ```
ktalley524/Class_Eval_Results
2021-03-22T14:19:27.000Z
[]
[ ".gitattributes", "README.md" ]
ktalley524
0
I love this class
ktrapeznikov/albert-xlarge-v2-squad-v2
2020-12-11T21:48:41.000Z
[ "pytorch", "albert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "eval.csv", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
ktrapeznikov
2,587
transformers
### Model **[`albert-xlarge-v2`](https://huggingface.co/albert-xlarge-v2)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=albert-xlarge-v2 python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 3 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 814 \ --gradient_accumulation_steps 4 \ --fp16 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 84.41842836688285 | | f1 | 87.4628460501696 | | total | 11873.0 | | HasAns_exact | 80.68488529014844 | | HasAns_f1 | 86.78245127423482 | | HasAns_total | 5928.0 | | NoAns_exact | 88.1412952060555 | | NoAns_f1 | 88.1412952060555 | | NoAns_total | 5945.0 | | best_exact | 84.41842836688285 | | best_exact_thresh | 0.0 | | best_f1 | 87.46284605016956 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/albert.html#albertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
ktrapeznikov/biobert_v1.1_pubmed_squad_v2
2021-05-19T21:10:03.000Z
[ "pytorch", "jax", "tfsavedmodel", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "eval.csv", "flax_model.msgpack", "pytorch_model.bin", "saved_model.tar.gz", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ktrapeznikov
1,207
transformers
### Model **[`monologg/biobert_v1.1_pubmed`](https://huggingface.co/monologg/biobert_v1.1_pubmed)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** This model is cased. ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=monologg/biobert_v1.1_pubmed python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 18 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 550 \ --gradient_accumulation_steps 1 \ --fp16 \ --logging_steps 50 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 75.97068980038743 | | f1 | 79.37043950121722 | | total | 11873.0 | | HasAns_exact | 74.13967611336032 | | HasAns_f1 | 80.94892513460755 | | HasAns_total | 5928.0 | | NoAns_exact | 77.79646761984861 | | NoAns_f1 | 77.79646761984861 | | NoAns_total | 5945.0 | | best_exact | 75.97068980038743 | | best_exact_thresh | 0.0 | | best_f1 | 79.37043950121729 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
ktrapeznikov/gpt2-medium-topic-news-v2
2021-05-23T06:14:58.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
ktrapeznikov
26
transformers
--- language: - en thumbnail: widget: - text: "topic climate source washington post title " --- # GPT2-medium-topic-news ## Model description GPT2-medium fine tuned on a largish news corpus conditioned on a topic, source, title ## Intended uses & limitations #### How to use To generate a news article text conditioned on a topic, source, title or some subsets, prompt model with: ```python f"topic {topic} source" f"topic {topic} source {source} title" f"topic {topic} source {source} title {title} body" ``` Try the following tags for `topic: climate, weather, vaccination`. Zero shot generation works pretty well as long as `topic` is a single word and not too specific. ```python device = "cuda:0" tokenizer = AutoTokenizer.from_pretrained("ktrapeznikov/gpt2-medium-topic-small-set") model = AutoModelWithLMHead.from_pretrained("ktrapeznikov/gpt2-medium-topic-small-set") model.to(device) topic = "climate" prompt = tokenizer(f"topic {topics} source straitstimes title", return_tensors="pt") out = model.generate(prompt["input_ids"].to(device), do_sample=True,max_length=500, early_stopping=True, top_p=.9) print(tokenizer.decode(out[0].cpu(), skip_special_tokens=True)) ```
ktrapeznikov/gpt2-medium-topic-news
2021-05-23T06:18:56.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
ktrapeznikov
108
transformers
--- language: - en thumbnail: widget: - text: "topic: climate article:" --- # GPT2-medium-topic-news ## Model description GPT2-medium fine tuned on a large news corpus conditioned on a topic ## Intended uses & limitations #### How to use To generate a news article text conditioned on a topic, prompt model with: `topic: climate article:` The following tags were used during training: `arts law international science business politics disaster world conflict football sport sports artanddesign environment music film lifeandstyle business health commentisfree books technology media education politics travel stage uk society us money culture religion science news tv fashion uk australia cities global childrens sustainable global voluntary housing law local healthcare theguardian` Zero shot generation works pretty well as long as `topic` is a single word and not too specific. ```python device = "cuda:0" tokenizer = AutoTokenizer.from_pretrained("ktrapeznikov/gpt2-medium-topic-news") model = AutoModelWithLMHead.from_pretrained("ktrapeznikov/gpt2-medium-topic-news") model.to(device) topic = "climate" prompt = tokenizer(f"topic: {topic} article:", return_tensors="pt") out = model.generate(prompt["input_ids"].to(device), do_sample=True,max_length=500, early_stopping=True, top_p=.9) print(tokenizer.decode(list(out.cpu()[0]))) ``` ## Training data ## Training procedure
ktrapeznikov/gpt2-medium-topic-small-set
2021-05-23T06:21:38.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
ktrapeznikov
36
transformers
--- language: - en thumbnail: widget: - text: "topic climate source" --- # GPT2-medium-topic-news ## Model description GPT2-medium fine tuned on a small news corpus conditioned on a topic, source, title ## Intended uses & limitations #### How to use To generate a news article text conditioned on a topic, source, title or some subsets, prompt model with: ```python f"topic {topic} source" f"topic {topic} source {source} title" f"topic {topic} source {source} title {title} body" ``` Try the following tags for `topic: climate, weather, vaccination`. Zero shot generation works pretty well as long as `topic` is a single word and not too specific. ```python device = "cuda:0" tokenizer = AutoTokenizer.from_pretrained("ktrapeznikov/gpt2-medium-topic-small-set") model = AutoModelWithLMHead.from_pretrained("ktrapeznikov/gpt2-medium-topic-small-set") model.to(device) topic = "climate" prompt = tokenizer(f"topic {topics} source straitstimes title", return_tensors="pt") out = model.generate(prompt["input_ids"].to(device), do_sample=True,max_length=500, early_stopping=True, top_p=.9) print(tokenizer.decode(out[0].cpu(), skip_special_tokens=True)) ``` ## Sample Output >[topic] military [source] straitstimes [title] Trump signs bill on military aid to Israel [body] WASHINGTON (AFP) - US President Donald Trump signed into law Thursday (April 24) legislation to provide more than US$15 billion (S$20.43 billion) in military aid to Israel, a move the Obama administration had resisted for political reasons. The White House did not immediately respond to a request for comment on the Israel measure, which Trump had sought unsuccessfully to block during the Obama pres ... >[topic] military [source] straitstimes [title] Hong Kong's leaders to discuss new travel restrictions as lockdown looms [body] HONG KONG (REUTERS) - Hong Kong authorities said they would hold a meeting of the Legislative Council on Monday (July 21) to discuss new travel restrictions on Hong Kong residents, as the city reported a record daily increase in coronavirus cases. The authorities said they would consider the proposal after meeting government chiefs and reviewing other measures. The co ... >[topic] military [source] straitstimes [title] Trump signs Bill that gives US troops wider latitude to conduct operations abroad [body] WASHINGTON (AFP) - US President Donald Trump on Thursday (July 23) signed a controversial law that gives US troops more leeway to conduct operations abroad, as he seeks to shore up the embattled government's defences against the coronavirus pandemic and stave off a potentially devastating election defeat. Trump's signature Bill, named after his late father's l ... >[topic] military [source] straitstimes [title] China's Foreign Ministry responds to Japan's statement on South China Sea: 'No one should assume the role of mediator' [body] BEIJING (AFP) - The Ministry of Foreign Affairs on Tuesday (Oct 18) told Japan to stop taking sides in the South China Sea issue and not interfere in the bilateral relationship, as Japan said it would do "nothing". Foreign Ministry spokesman Zhao Lijian told reporters in Beijing that the Chinese government's position on the ... >[topic] military [source] straitstimes [title] US warns North Korea on potential nuclear strike [body] WASHINGTON - The United States warned North Korea last Friday that an attack by the North could be a "provocation" that would have "a devastating effect" on its security, as it took aim at Pyongyang over its continued efforts to develop weapons of mass destruction. US Secretary of State Mike Pompeo was speaking at the conclusion of a White House news conference when a reporter asked him how t ... >[topic] military [source] straitstimes [title] China calls Hong Kong to halt 'illegal and illegal military acts' [body] WASHINGTON โ€ข Chinese Foreign Ministry spokeswoman Hua Chunying said yesterday that Hong Kong must stop 'illegal and illegal military acts' before Beijing can recognise the city as its own. In her annual State Councillor's speech, Ms Hua made the case for Hong Kong to resume Hong Kong's status as a semi-autonomous city, and vowed to use its "great power position to actively an ... ## Training data ## Training procedure
ktrapeznikov/scibert_scivocab_uncased_squad_v2
2021-05-19T21:11:07.000Z
[ "pytorch", "jax", "tfsavedmodel", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "eval.csv", "flax_model.msgpack", "pytorch_model.bin", "saved_model.tar.gz", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
ktrapeznikov
715
transformers
### Model **[`allenai/scibert_scivocab_uncased`](https://huggingface.co/allenai/scibert_scivocab_uncased)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=allenai/scibert_scivocab_uncased python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 18 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 550 \ --gradient_accumulation_steps 1 \ --fp16 \ --logging_steps 50 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 75.07790785816559 | | f1 | 78.47735207283013 | | total | 11873.0 | | HasAns_exact | 70.76585695006747 | | HasAns_f1 | 77.57449412292718 | | HasAns_total | 5928.0 | | NoAns_exact | 79.37762825904122 | | NoAns_f1 | 79.37762825904122 | | NoAns_total | 5945.0 | | best_exact | 75.08633032931863 | | best_exact_thresh | 0.0 | | best_f1 | 78.48577454398324 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
kuaiboard/default
2021-02-18T00:35:44.000Z
[]
[ ".gitattributes" ]
kuaiboard
0
kuisailab/albert-base-arabic
2021-04-25T22:56:25.000Z
[ "pytorch", "tf", "albert", "ar", "dataset:oscar", "dataset:wikipedia", "transformers", "masked-lm", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
kuisailab
354
transformers
--- language: ar datasets: - oscar - wikipedia tags: - ar - masked-lm --- # Arabic-ALBERT Base Arabic edition of ALBERT Base pretrained language model _If you use any of these models in your work, please cite this work as:_ ``` @software{ali_safaya_2020_4718724, author = {Ali Safaya}, title = {Arabic-ALBERT}, month = aug, year = 2020, publisher = {Zenodo}, version = {1.0.0}, doi = {10.5281/zenodo.4718724}, url = {https://doi.org/10.5281/zenodo.4718724} } ``` ## Pretraining data The models were pretrained on ~4.4 Billion words: - Arabic version of [OSCAR](https://oscar-corpus.com/) (unshuffled version of the corpus) - filtered from [Common Crawl](http://commoncrawl.org/) - Recent dump of Arabic [Wikipedia](https://dumps.wikimedia.org/backup-index.html) __Notes on training data:__ - Our final version of corpus contains some non-Arabic words inlines, which we did not remove from sentences since that would affect some tasks like NER. - Although non-Arabic characters were lowered as a preprocessing step, since Arabic characters do not have upper or lower case, there is no cased and uncased version of the model. - The corpus and vocabulary set are not restricted to Modern Standard Arabic, they contain some dialectical Arabic too. ## Pretraining details - These models were trained using Google ALBERT's github [repository](https://github.com/google-research/albert) on a single TPU v3-8 provided for free from [TFRC](https://www.tensorflow.org/tfrc). - Our pretraining procedure follows training settings of bert with some changes: trained for 7M training steps with batchsize of 64, instead of 125K with batchsize of 4096. ## Models | | albert-base | albert-large | albert-xlarge | |:---:|:---:|:---:|:---:| | Hidden Layers | 12 | 24 | 24 | | Attention heads | 12 | 16 | 32 | | Hidden size | 768 | 1024 | 2048 | ## Results For further details on the models performance or any other queries, please refer to [Arabic-ALBERT](https://github.com/KUIS-AI-Lab/Arabic-ALBERT/) ## How to use You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel # loading the tokenizer base_tokenizer = AutoTokenizer.from_pretrained("kuisailab/albert-base-arabic") # loading the model base_model = AutoModelForMaskedLM.from_pretrained("kuisailab/albert-base-arabic") ``` ## Acknowledgement Thanks to Google for providing free TPU for the training process and for Huggingface for hosting these models on their servers ๐Ÿ˜Š
kuisailab/albert-large-arabic
2021-04-25T22:57:35.000Z
[ "pytorch", "tf", "albert", "ar", "dataset:oscar", "dataset:wikipedia", "transformers", "masked-lm", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
kuisailab
103
transformers
--- language: ar datasets: - oscar - wikipedia tags: - ar - masked-lm --- # Arabic-ALBERT Large Arabic edition of ALBERT Large pretrained language model _If you use any of these models in your work, please cite this work as:_ ``` @software{ali_safaya_2020_4718724, author = {Ali Safaya}, title = {Arabic-ALBERT}, month = aug, year = 2020, publisher = {Zenodo}, version = {1.0.0}, doi = {10.5281/zenodo.4718724}, url = {https://doi.org/10.5281/zenodo.4718724} } ``` ## Pretraining data The models were pretrained on ~4.4 Billion words: - Arabic version of [OSCAR](https://oscar-corpus.com/) (unshuffled version of the corpus) - filtered from [Common Crawl](http://commoncrawl.org/) - Recent dump of Arabic [Wikipedia](https://dumps.wikimedia.org/backup-index.html) __Notes on training data:__ - Our final version of corpus contains some non-Arabic words inlines, which we did not remove from sentences since that would affect some tasks like NER. - Although non-Arabic characters were lowered as a preprocessing step, since Arabic characters do not have upper or lower case, there is no cased and uncased version of the model. - The corpus and vocabulary set are not restricted to Modern Standard Arabic, they contain some dialectical Arabic too. ## Pretraining details - These models were trained using Google ALBERT's github [repository](https://github.com/google-research/albert) on a single TPU v3-8 provided for free from [TFRC](https://www.tensorflow.org/tfrc). - Our pretraining procedure follows training settings of bert with some changes: trained for 7M training steps with batchsize of 64, instead of 125K with batchsize of 4096. ## Models | | albert-base | albert-large | albert-xlarge | |:---:|:---:|:---:|:---:| | Hidden Layers | 12 | 24 | 24 | | Attention heads | 12 | 16 | 32 | | Hidden size | 768 | 1024 | 2048 | ## Results For further details on the models performance or any other queries, please refer to [Arabic-ALBERT](https://github.com/KUIS-AI-Lab/Arabic-ALBERT/) ## How to use You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel # loading the tokenizer tokenizer = AutoTokenizer.from_pretrained("kuisailab/albert-large-arabic") # loading the model model = AutoModelForMaskedLM.from_pretrained("kuisailab/albert-large-arabic") ``` ## Acknowledgement Thanks to Google for providing free TPU for the training process and for Huggingface for hosting these models on their servers ๐Ÿ˜Š
kuisailab/albert-xlarge-arabic
2021-04-25T22:58:13.000Z
[ "pytorch", "tf", "albert", "ar", "dataset:oscar", "dataset:wikipedia", "transformers", "masked-lm", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
kuisailab
129
transformers
--- language: ar datasets: - oscar - wikipedia tags: - ar - masked-lm --- # Arabic-ALBERT Xlarge Arabic edition of ALBERT Xlarge pretrained language model _If you use any of these models in your work, please cite this work as:_ ``` @software{ali_safaya_2020_4718724, author = {Ali Safaya}, title = {Arabic-ALBERT}, month = aug, year = 2020, publisher = {Zenodo}, version = {1.0.0}, doi = {10.5281/zenodo.4718724}, url = {https://doi.org/10.5281/zenodo.4718724} } ``` ## Pretraining data The models were pretrained on ~4.4 Billion words: - Arabic version of [OSCAR](https://oscar-corpus.com/) (unshuffled version of the corpus) - filtered from [Common Crawl](http://commoncrawl.org/) - Recent dump of Arabic [Wikipedia](https://dumps.wikimedia.org/backup-index.html) __Notes on training data:__ - Our final version of corpus contains some non-Arabic words inlines, which we did not remove from sentences since that would affect some tasks like NER. - Although non-Arabic characters were lowered as a preprocessing step, since Arabic characters do not have upper or lower case, there is no cased and uncased version of the model. - The corpus and vocabulary set are not restricted to Modern Standard Arabic, they contain some dialectical Arabic too. ## Pretraining details - These models were trained using Google ALBERT's github [repository](https://github.com/google-research/albert) on a single TPU v3-8 provided for free from [TFRC](https://www.tensorflow.org/tfrc). - Our pretraining procedure follows training settings of bert with some changes: trained for 7M training steps with batchsize of 64, instead of 125K with batchsize of 4096. ## Models | | albert-base | albert-large | albert-xlarge | |:---:|:---:|:---:|:---:| | Hidden Layers | 12 | 24 | 24 | | Attention heads | 12 | 16 | 32 | | Hidden size | 768 | 1024 | 2048 | ## Results For further details on the models performance or any other queries, please refer to [Arabic-ALBERT](https://github.com/KUIS-AI-Lab/Arabic-ALBERT/) ## How to use You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel # loading the tokenizer tokenizer = AutoTokenizer.from_pretrained("kuisailab/albert-xlarge-arabic") # loading the model model = AutoModelForMaskedLM.from_pretrained("kuisailab/albert-xlarge-arabic") ``` ## Acknowledgement Thanks to Google for providing free TPU for the training process and for Huggingface for hosting these models on their servers ๐Ÿ˜Š
kuppuluri/telugu_bertu
2021-05-19T21:12:30.000Z
[ "pytorch", "jax", "bert", "masked-lm", "te", "transformers", "fill-mask" ]
fill-mask
[ ".DS_Store", ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "log_history.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt", "model_cards/README.md" ]
kuppuluri
18
transformers
--- language: - - thumbnail: tags: - - - license: datasets: - - metrics: - - --- # MyModelName ## Model description You can embed local or remote images using `![](...)` ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
kuppuluri/telugu_bertu_ner
2021-05-19T21:13:30.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".DS_Store", ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "model_args.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kuppuluri
14
transformers
# Named Entity Recognition Model for Telugu #### How to use ```python from simpletransformers.ner import NERModel model = NERModel('bert', 'kuppuluri/telugu_bertu_ner', labels=[ 'B-PERSON', 'I-ORG', 'B-ORG', 'I-LOC', 'B-MISC', 'I-MISC', 'I-PERSON', 'B-LOC', 'O' ], use_cuda=False, args={"use_multiprocessing": False}) text = "เฐตเฐฟเฐฐเฐพเฐŸเฑ เฐ•เฑ‹เฐนเฑเฐฒเฑ€ เฐ•เฑ‚เฐกเฐพ เฐ…เฐฆเฑ‡ เฐจเฐฟเฐฐเฑเฐฒเฐ•เฑเฐทเฑเฐฏเฐพเฐจเฑเฐจเฐฟ เฐชเฑเฐฐเฐฆเฐฐเฑเฐถเฐฟเฐ‚เฐšเฐฟ เฐ•เฑ‡เฐตเฐฒเฐ‚ เฐ’เฐ• เฐชเฐฐเฑเฐ—เฑเฐ•เฑ‡ เฐฐเฐจเฑŒเฐŸเฑˆ เฐชเฑ†เฐตเฐฟเฐฒเฐฟเฐฏเฐจเฑ เฐšเฑ‡เฐฐเฐพเฐกเฑ ." results = model.predict([text]) ``` ## Training data Training data is from https://github.com/anikethjr/NER_Telugu ## Eval results On the test set my results were eval_loss = 0.0004407190410447974 f1_score = 0.999519076627124 precision = 0.9994389677005691 recall = 0.9995991983967936
kuppuluri/telugu_bertu_pos
2021-05-19T21:14:40.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".DS_Store", ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "model_args.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kuppuluri
14
transformers
# Part of Speech tagging Model for Telugu #### How to use ```python from simpletransformers.ner import NERModel model = NERModel('bert', 'kuppuluri/telugu_bertu_pos', args={"use_multiprocessing": False}, labels=[ 'QC', 'JJ', 'NN', 'QF', 'RDP', 'O', 'NNO', 'PRP', 'RP', 'VM', 'WQ', 'PSP', 'UT', 'CC', 'INTF', 'SYMP', 'NNP', 'INJ', 'SYM', 'CL', 'QO', 'DEM', 'RB', 'NST', ], use_cuda=False) text = "เฐตเฐฟเฐฐเฐพเฐŸเฑ เฐ•เฑ‹เฐนเฑเฐฒเฑ€ เฐ•เฑ‚เฐกเฐพ เฐ…เฐฆเฑ‡ เฐจเฐฟเฐฐเฑเฐฒเฐ•เฑเฐทเฑเฐฏเฐพเฐจเฑเฐจเฐฟ เฐชเฑเฐฐเฐฆเฐฐเฑเฐถเฐฟเฐ‚เฐšเฐฟ เฐ•เฑ‡เฐตเฐฒเฐ‚ เฐ’เฐ• เฐชเฐฐเฑเฐ—เฑเฐ•เฑ‡ เฐฐเฐจเฑŒเฐŸเฑˆ เฐชเฑ†เฐตเฐฟเฐฒเฐฟเฐฏเฐจเฑ เฐšเฑ‡เฐฐเฐพเฐกเฑ ." results = model.predict([text]) ``` ## Training data Training data is from https://github.com/anikethjr/NER_Telugu ## Eval results On the test set my results were eval_loss = 0.0036797842364565416 f1_score = 0.9983795127912227 precision = 0.9984325602401637 recall = 0.9983264709788816
kuppuluri/telugu_bertu_tydiqa
2021-05-19T21:15:58.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "nbest_predictions_.json", "predictions_.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kuppuluri
29
transformers
# Telugu Question-Answering model trained on Tydiqa dataset from Google #### How to use ```python from transformers.pipelines import pipeline, AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained("kuppuluri/telugu_bertu_tydiqa", clean_text=False, handle_chinese_chars=False, strip_accents=False, wordpieces_prefix='##') nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) result = nlp({'question': question, 'context': context}) ``` ## Training data I used Tydiqa Telugu data from Google https://github.com/google-research-datasets/tydiqa
kuzgunlar/electra-turkish-ner
2020-07-31T08:55:28.000Z
[ "pytorch", "electra", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kuzgunlar
33
transformers
kuzgunlar/electra-turkish-qa
2020-07-31T09:15:54.000Z
[ "pytorch", "electra", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kuzgunlar
21
transformers
kuzgunlar/electra-turkish-sentiment-analysis
2020-08-16T13:05:57.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "model_args.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
kuzgunlar
49
transformers
kykim/albert-kor-base
2021-01-22T00:27:49.000Z
[ "pytorch", "tf", "albert", "masked-lm", "ko", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kykim
165
transformers
--- language: ko --- # Albert base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import BertTokenizerFast, AlbertModel tokenizer_albert = BertTokenizerFast.from_pretrained("kykim/albert-kor-base") model_albert = AlbertModel.from_pretrained("kykim/albert-kor-base") ```
kykim/bert-kor-base
2021-05-19T21:17:13.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "ko", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kykim
4,960
transformers
--- language: ko --- # Bert base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import BertTokenizerFast, BertModel tokenizer_bert = BertTokenizerFast.from_pretrained("kykim/bert-kor-base") model_bert = BertModel.from_pretrained("kykim/bert-kor-base") ```
kykim/bertshared-kor-base
2021-02-23T11:49:50.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "ko", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
kykim
127
transformers
--- language: ko --- # Bert base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python # only for pytorch in transformers from transformers import BertTokenizerFast, EncoderDecoderModel tokenizer = BertTokenizerFast.from_pretrained("kykim/bertshared-kor-base") model = EncoderDecoderModel.from_pretrained("kykim/bertshared-kor-base") ```
kykim/electra-kor-base
2021-01-22T00:28:50.000Z
[ "pytorch", "tf", "electra", "pretraining", "ko", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kykim
1,483
transformers
--- language: ko --- # Electra base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import ElectraTokenizerFast, ElectraModel tokenizer_electra = ElectraTokenizerFast.from_pretrained("kykim/electra-kor-base") model = ElectraModel.from_pretrained("kykim/electra-kor-base") ```
kykim/funnel-kor-base
2021-01-22T01:56:37.000Z
[ "pytorch", "tf", "funnel", "ko", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kykim
63
transformers
--- language: ko --- # Funnel-transformer base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("kykim/funnel-kor-base") model = FunnelModel.from_pretrained("kykim/funnel-kor-base") ```
kykim/gpt3-kor-small_based_on_gpt2
2021-05-23T06:24:05.000Z
[ "pytorch", "tf", "jax", "gpt2", "ko", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kykim
670
transformers
--- language: ko --- # Bert base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import BertTokenizerFast, GPT2LMHeadModel tokenizer_gpt3 = BertTokenizerFast.from_pretrained("kykim/gpt3-kor-small_based_on_gpt2") input_ids = tokenizer_gpt3.encode("text to tokenize")[1:] # remove cls token model_gpt3 = GPT2LMHeadModel.from_pretrained("kykim/gpt3-kor-small_based_on_gpt2") ```
kykim/t5-kor-small
2021-01-29T05:33:08.000Z
[ "pytorch", "tf", "t5", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
kykim
13
transformers
kz/mt5base-finetuned-ECC-japanese-small
2021-04-08T00:48:32.000Z
[ "pytorch", "mt5", "seq2seq", "ja", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
kz
47
transformers
--- language: "ja" widget: - text: "ๅพ่ผฉใ‚’ใฏ็Œซใงใ‚ใ‚‹ใ€‚ๅๅ‰ใˆใฏใพใ ใชใ„ใ€‚" --- Google's mt5-base fine-tuned in Japanese to solve error detection and correction. #ๆ—ฅๆœฌ่ชž่ชคใ‚Š่จ‚ๆญฃ - "ๅพ่ผฉใ‚’ใฏ็Œซใงใ‚ใ‚‹ใ€‚ๅๅ‰ใˆใฏใพใ ใชใ„ใ€‚"โ†’"ๅพ่ผฉใฏ็Œซใงใ‚ใ‚‹ใ€‚ๅๅ‰ใฏใพใ ใชใ„ใ€‚" - "-small" has been trained on 20,000 text pairs. - dataset: [link](http://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9EWikipedia%E5%85%A5%E5%8A%9B%E8%AA%A4%E3%82%8A%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) - prefix: "correction: "ใ€€๏ผˆnotice: single task trained.) ##ๅ‚่€ƒ - "ๆฑๅŒ—ๅคงๅญฆใงMASKใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงMASKใฎ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"ใ€€ใ‚ธใƒ ใƒปใ‚ญใƒฃใƒชใƒผใ‚’ไธป่ชžใจใ—ใŸๅ”ฏไธ€ใฎใ‚ฌๆ ผใŒๆถˆใ•ใ‚Œใ€ใ‚ธใƒ ใƒปใ‚ญใƒฃใƒชใƒผใฏ็ ”็ฉถๅฏพ่ฑกใจใชใฃใŸใ€‚ๆ˜“่ชญๅŒ–ใฎใŸใ‚ใซ็”จใ„ใ‚‰ใ‚Œใ‚‹ไธป่ชžใจๅ‹•่ฉžใ‚’่ฟ‘ใฅใ‘ใ‚‹่จ˜ๆณ•ใฏ่ชคใ‚Šๆ‰ฑใ„๏ผŸ - "ๆฑๅŒ—ๅคงๅญฆใงใƒžใ‚นใ‚ฏใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงใƒžใ‚นใ‚ฏใฎ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"ใ€"ๆฑๅŒ—ๅคงๅญฆใงใ‚คใƒผใƒญใƒณใƒปใƒžใ‚นใ‚ฏใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงใ‚คใƒผใƒญใƒณใƒปใƒžใ‚นใ‚ฏใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"ใ€"ๆฑๅŒ—ๅคงๅญฆใงใ€Œใ‚คใƒผใƒญใƒณใƒปใƒžใ‚นใ‚ฏใ€ใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงใ€Œใ‚คใƒผใƒญใƒณใƒปใƒžใ‚นใ‚ฏใ€ใฎ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"ใ€€ๅ˜่ชžใฎๆ„ๅ‘ณใ‚‚่€ƒๆ…ฎใ•ใ‚Œใฆใ„ใ‚‹๏ผŸ - "ๆฑๅŒ—ๅคงๅญฆใงใ‚คใƒžใ‚นใ‚ฏใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงใ‚คใƒžใ‚นใ‚ฏใฎ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚" - "ๆฑๅŒ—ๅคงๅญฆใงใ‚ฏใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟใƒผใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚" ใใ‚Œใฏใกใ‚‡ใฃใจๅพ…ใฃใฆใ€‚ - "ๆฑๅŒ—ๅคงๅญฆใง ๏ผœextra_id_0๏ผž ใฎ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงๅŒ–ๅญฆใฎ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚" - "ๆฑๅŒ—ๅคงๅญฆใง ๏ผœextra_id_0๏ผž ใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"โ†’"ๆฑๅŒ—ๅคงๅญฆใงๅทฅๅญฆใŒ็ ”็ฉถใ‚’ใ—ใฆใ„ใพใ™ใ€‚"ใ€€ๅทฅๅญฆใ•ใ‚“ใ€‚ - "ๅพ่ผฉใฏ ๏ผœextra_id_0๏ผž ใงใ‚ใ‚‹ใ€‚"โ†’"ๅพ่ผฉใฏๅพ่ผฉใงใ‚ใ‚‹ใ€‚"ใ€"็ญ”ใˆใฏ็Œซใงใ™ใ€‚ๅพ่ผฉใฏ ๏ผœextra_id_0๏ผž ใงใ‚ใ‚‹ใ€‚"โ†’"็ญ”ใˆใฏ็Œซใงใ™ใ€‚ๅพ่ผฉใฏ็Œซใงใ‚ใ‚‹ใ€‚"ใ€"็ญ”ใˆใฏ็Œซใงใ™ใ€‚ๅพ่ผฉใฎ ๏ผœextra_id_0๏ผž ใงใ‚ใ‚‹ใ€‚"โ†’"็ญ”ใˆใฏ็Œซใงใ™ใ€‚ๅพ่ผฉใฎๅฟƒใฏ็Œซใงใ‚ใ‚‹ใ€‚" - "Aใฏ11ใ€Bใฏ9ใ€‚Aใฏ ๏ผœextra_id_0๏ผž ใ€‚Bใฏ ๏ผœextra_id_1๏ผž ใ€‚"โ†’"Aใฏ11ใ€Bใฏ9ใ€‚Aใฏ11ใ€‚Bใฏ9ใ€‚" **check in progress**
kz/mt5base-finetuned-patentsum-japanese-small
2021-04-23T22:06:32.000Z
[ "pytorch", "mt5", "seq2seq", "ja", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
kz
120
transformers
--- language: "ja" widget: - text: "่ซ‹ๆฑ‚้ … <extra_id_0>" --- Google's mt5-base fine-tuned in Japanese to summarize patent claims in a limited Pharmaceutical domain. #ๆ—ฅๆœฌ่ชž็‰น่จฑ่ซ‹ๆฑ‚้ …่ฆ็ด„๏ผˆๅŒป่–ฌ็‰นๅฎšใƒ‰ใƒกใ‚คใƒณ้™ๅฎš๏ผ‰ - """ใ€่ซ‹ๆฑ‚้ …๏ผ‘ใ€‘ ใƒ’ใƒˆ๏ผฃ๏ผค๏ผ“๏ผ˜๏ผˆ้…ๅˆ—็•ชๅท๏ผ‘๏ผ‰ๅŠใณใ‚ซใƒ‹ใ‚ฏใ‚คใ‚ถใƒซ๏ผฃ๏ผค๏ผ“๏ผ˜๏ผˆ้…ๅˆ—็•ชๅท๏ผ’๏ผ‰ใซ็‰น็•ฐ็š„ใซ็ตๅˆใ™ใ‚‹ๅ˜้›ขใ•ใ‚ŒใŸๆŠ—ไฝ“ใงใ‚ใฃใฆใ€ ๏ฝ๏ผ‰ไปฅไธ‹ใ‚’ๅซใ‚€้‡้Ž–ๅฏๅค‰้ ˜ๅŸŸ๏ผš ๏ฝ‰๏ผ‰้…ๅˆ—็•ชๅท๏ผ“ใ‚’ๅซใ‚€็ฌฌ๏ผ‘ใฎ๏ผฃ๏ผค๏ผฒ๏ผ› ๏ฝ‰๏ฝ‰๏ผ‰้…ๅˆ—็•ชๅท๏ผ”ใ‚’ๅซใ‚€็ฌฌ๏ผ’ใฎ๏ผฃ๏ผค๏ผฒ๏ผ› ๏ฝ‰๏ฝ‰๏ฝ‰๏ผ‰้…ๅˆ—็•ชๅท๏ผ•ใ‚’ๅซใ‚€็ฌฌ๏ผ“ใฎ๏ผฃ๏ผค๏ผฒ๏ผ›ๅŠใณ ๏ฝ‚๏ผ‰ไปฅไธ‹ใ‚’ๅซใ‚€่ปฝ้Ž–ๅฏๅค‰้ ˜ๅŸŸ๏ผš ๏ฝ‰๏ผ‰้…ๅˆ—็•ชๅท๏ผ–ใ‚’ๅซใ‚€็ฌฌ๏ผ‘ใฎ๏ผฃ๏ผค๏ผฒ๏ผ› ๏ฝ‰๏ฝ‰๏ผ‰้…ๅˆ—็•ชๅท๏ผ—ใ‚’ๅซใ‚€็ฌฌ๏ผ’ใฎ๏ผฃ๏ผค๏ผฒ๏ผ› ๏ฝ‰๏ฝ‰๏ฝ‰๏ผ‰้…ๅˆ—็•ชๅท๏ผ˜ใ‚’ๅซใ‚€็ฌฌ๏ผ“ใฎ๏ผฃ๏ผค๏ผฒ๏ผ› ใ‚’ๅซใ‚€ใ€ๆŠ—ไฝ“ใ€‚(่ซ‹ๆฑ‚้ …๏ผ’๏ฝž๏ผ‘๏ผ™็œ็•ฅ)ใ€่ซ‹ๆฑ‚้ …๏ผ’๏ผใ€‘ ๅ‰่จ˜่‡ชๅทฑๅ…็–ซ็–พๆ‚ฃใŒใ€้–ข็ฏ€ใƒชใ‚ฆใƒžใƒใ€ๅ…จ่บซๆ€งใ‚จใƒชใƒ†ใƒžใƒˆใƒผใƒ‡ใ‚นใ€็‚Ž็—‡ๆ€ง่…ธ็–พๆ‚ฃใ€ๆฝฐ็˜ๆ€งๅคง่…ธ็‚ŽๅŠใณ็งปๆค็‰‡ๅฏพๅฎฟไธป็—…ใ‹ใ‚‰ใชใ‚‹็พคใ‹ใ‚‰้ธๆŠžใ•ใ‚Œใ‚‹ใ€่ซ‹ๆฑ‚้ …๏ผ‘๏ผ™่จ˜่ผ‰ใฎๆ–นๆณ•ใ€‚ """ - โ†’"ๆœฌ็™บๆ˜Žใฏใ€ใƒ’ใƒˆCD38ใ‚ฟใƒณใƒ‘ใ‚ฏ่ณช(้…ๅˆ—็•ชๅท0)ๅŠใณใ‚ซใƒ‹ใ‚ฏใ‚คใ‚ถใƒซCD38(้…ๅˆ—็•ชๅท2)ใซ็‰น็•ฐ็š„ใซ็ตๅˆใ™ใ‚‹ๆŠ—ไฝ“ใซ้–ขใ™ใ‚‹ใ€‚ๆœฌ็™บๆ˜ŽใฏใพใŸใ€ใƒ’ใƒˆCD38ใ‚ฟใƒณใƒ‘ใ‚ฏ่ณช(้…ๅˆ—็•ชๅท0)ๅŠใณใ‚ซใƒ‹ใ‚ฏใ‚คใ‚ถใƒซCD38(้…ๅˆ—็•ชๅท2)ใซ็‰น็•ฐ็š„ใซ็ตๅˆใ™ใ‚‹ๆŠ—ไฝ“ใ‚’ใ€ใใ‚Œใ‚’ๅฟ…่ฆใจใ™ใ‚‹ๆ‚ฃ่€…ใซๆŠ•ไธŽใ™ใ‚‹ใ“ใจใ‚’ๅซใ‚€ใ€่‡ชๅทฑๅ…็–ซ็–พๆ‚ฃใฎๆฒป็™‚ๆ–นๆณ•ใซ้–ขใ™ใ‚‹ใ€‚" - "-small" has been trained on 20,000 text pairs only. - dataset: ๏ผŠ - prefix: "patent claim summarization: "ใ€€๏ผˆnotice: single task trained.) #ๅ‚่€ƒ - https://huggingface.co/blog/how-to-generate - ๅ‰ๅ‡ฆ็†ใŒๆœ€้ฉใงใฏใชใ‹ใฃใŸใ€‚ไฟฎๆญฃใ™ใ‚‹ใ€‚ - ไปปๆ„ใซไธŠไฝๆฆ‚ๅฟตใƒปไธ‹ไฝๆฆ‚ๅฟตใจๅค‰ๆ›ใงใใ‚‹ใ‚ˆใ†prefixใ‚’่ฟฝๅŠ ใ™ใ‚‹ใ€‚ - ไปปๆ„ใฎใƒ†ใƒผใƒžใซๆฒฟใฃใŸ่ฆ็ด„ใจใงใใ‚‹ใ‚ˆใ†prefixใ‚’่ฟฝๅŠ ใ™ใ‚‹ใ€‚ - prefixใ‚’่ฟฝๅŠ ใ›ใšใจใ‚‚ใ€ใ‚ใ‚‹็จ‹ๅบฆไปปๆ„ใฎใƒ†ใƒผใƒžใซๆฒฟใฃใŸ่ฆ็ด„ใจใ™ใ‚‹ใ“ใจใฏๅฏ่ƒฝใ€‚่ซ‹ๆฑ‚้ …ใฎๆง‹้€ ใ‚’ๅˆฉ็”จใ™ใ‚‹ใ€ไปปๆ„ใฎใƒ†ใƒผใƒžใซๆฒฟใฃใฆใ„ใ‚‹ใ‹ๅˆคๅฎšใ™ใ‚‹ใƒขใƒ‡ใƒซใ‚’็”จใ„็”Ÿๆˆใ‚’่ฃœๆญฃใ™ใ‚‹ใชใฉใ€‚ **check in progress**
l3cube-pune/MarathiSentiment
2021-05-18T07:35:10.000Z
[ "pytorch", "tf", "albert", "text-classification", "mr", "dataset:L3CubeMahaSent", "arxiv:2103.11408", "transformers", "license:cc-by-4.0" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
l3cube-pune
99
transformers
--- language: mr tags: - albert license: cc-by-4.0 datasets: - L3CubeMahaSent widget: - text: "I like you. </s></s> I love you." --- ## MarathiSentiment MarathiSentiment is an IndicBERT(ai4bharat/indic-bert) model fine-tuned on L3CubeMahaSent - a Marathi tweet-based sentiment analysis dataset. [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (http://arxiv.org/abs/2103.11408) ``` @inproceedings{kulkarni2021l3cubemahasent, title={L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset}, author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Joshi, Raviraj}, booktitle={Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis}, pages={213--220}, year={2021} } ```
lab01/future
2021-03-15T14:09:39.000Z
[]
[ ".gitattributes" ]
lab01
0
labbli/wetlab
2021-02-23T11:09:54.000Z
[]
[ ".gitattributes" ]
labbli
0
laboro-ai/distilbert-base-japanese-finetuned-ddqa
2020-12-18T03:10:13.000Z
[ "pytorch", "distilbert", "question-answering", "ja", "transformers", "license:cc-by-nc-4.0" ]
question-answering
[ ".gitattributes", ".gitignore", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
laboro-ai
273
transformers
--- language: ja tags: - distilbert license: cc-by-nc-4.0 ---
laboro-ai/distilbert-base-japanese-finetuned-livedoor
2020-12-18T03:09:54.000Z
[ "pytorch", "distilbert", "text-classification", "ja", "transformers", "license:cc-by-nc-4.0" ]
text-classification
[ ".gitattributes", ".gitignore", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
laboro-ai
69
transformers
--- language: ja tags: - distilbert license: cc-by-nc-4.0 ---
laboro-ai/distilbert-base-japanese
2020-12-18T03:09:19.000Z
[ "pytorch", "distilbert", "ja", "transformers", "license:cc-by-nc-4.0" ]
[ ".gitattributes", ".gitignore", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
laboro-ai
556
transformers
--- language: ja tags: - distilbert license: cc-by-nc-4.0 ---
laifuchicago/farm2tran
2020-09-16T01:15:14.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "xlm-roberta-large/special_tokens_map.json" ]
laifuchicago
12
transformers
laksh001/gpt2_manage_new
2021-05-25T17:46:17.000Z
[]
[ ".gitattributes" ]
laksh001
0
laksh001/gpt2_manage_new1
2021-05-25T17:46:53.000Z
[]
[ ".gitattributes" ]
laksh001
0
laksh001/gpt2_manage_new2
2021-05-25T17:49:39.000Z
[]
[ ".gitattributes" ]
laksh001
0
lakshayt/Full-Humor-Models
2020-12-09T03:42:04.000Z
[]
[ ".gitattributes" ]
lakshayt
0
lakshayt/roberta-valid
2020-12-08T01:35:19.000Z
[]
[ ".gitattributes" ]
lakshayt
0
lalalala1/lalala
2021-04-08T14:56:43.000Z
[]
[ ".gitattributes" ]
lalalala1
0
lalopey/benn_eifert
2021-05-23T06:25:18.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "eval_results_lm.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
lalopey
14
transformers
lalopey/pearkes
2021-05-23T06:26:23.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "eval_results_lm.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
lalopey
14
transformers
lalopey/saeed
2021-05-23T06:27:31.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "eval_results_lm.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
lalopey
22
transformers
lamhieu/distilbert-base-multilingual-cased-vietnamese-topicifier
2021-04-29T18:01:33.000Z
[ "pytorch", "distilbert", "text-classification", "vi", "transformers", "vietnamese", "topicifier", "multilingual", "tiny", "license:mit", "pipeline_tag:text-classification" ]
text-classification
[ ".DS_Store", ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
lamhieu
32
transformers
--- language: - vi tags: - vietnamese - topicifier - multilingual - tiny license: - mit pipeline_tag: text-classification widget: - text: "ฤam mรช cแปงa tรดi lร  nhiแบฟp แบฃnh" --- # distilbert-base-multilingual-cased-vietnamese-topicifier ## About Fine-tuning from `distilbert-base-multilingual-cased` with a tiny dataset about Vietnamese topics. ## Usage Try entering a message to predict what topic is being discussed. For example: ``` # Photography ฤam mรช cแปงa tรดi lร  nhiแบฟp แบฃnh # World War I Bแบกn ฤ‘รฃ tแปซng nghe vแป cuแป™c ฤ‘แบกi thแบฟ chiแบฟn ? ``` ## Other The model was fine-tuning with a tiny dataset, don't use it for a product.
lammi/audit_lm
2021-03-17T00:40:10.000Z
[]
[ ".gitattributes" ]
lammi
0
lancelvlu/auto-classification-demo
2021-06-03T02:37:41.000Z
[]
[ ".gitattributes" ]
lancelvlu
0
lannelin/bert-imdb-1hidden
2021-05-19T21:17:56.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:imdb", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
lannelin
13
transformers
--- language: - en datasets: - imdb metrics: - accuracy --- # bert-imdb-1hidden ## Model description A `bert-base-uncased` model was restricted to 1 hidden layer and fine-tuned for sequence classification on the imdb dataset loaded using the `datasets` library. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification pretrained = "lannelin/bert-imdb-1hidden" tokenizer = AutoTokenizer.from_pretrained(pretrained) model = AutoModelForSequenceClassification.from_pretrained(pretrained) LABELS = ["negative", "positive"] def get_sentiment(text: str): inputs = tokenizer.encode_plus(text, return_tensors='pt') output = model(**inputs)[0].squeeze() return LABELS[(output.argmax())] print(get_sentiment("What a terrible film!")) ``` #### Limitations and bias No special consideration given to limitations and bias. Any bias held by the imdb dataset may be reflected in the model's output. ## Training data Initialised with [bert-base-uncased](https://huggingface.co/bert-base-uncased) Fine tuned on [imdb](https://huggingface.co/datasets/imdb) ## Training procedure The model was fine-tuned for 1 epoch with a batch size of 64, a learning rate of 5e-5, and a maximum sequence length of 512. ## Eval results Accuracy on imdb test set: 0.87132
lanwuwei/BERTOverflow_stackoverflow_github
2021-05-19T00:15:32.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
lanwuwei
106
transformers
# BERTOverflow ## Model description We pre-trained BERT-base model on 152 million sentences from the StackOverflow's 10 year archive. More details of this model can be found in our ACL 2020 paper: [Code and Named Entity Recognition in StackOverflow](https://www.aclweb.org/anthology/2020.acl-main.443/). #### How to use ```python from transformers import * import torch tokenizer = AutoTokenizer.from_pretrained("lanwuwei/BERTOverflow_stackoverflow_github") model = AutoModelForTokenClassification.from_pretrained("lanwuwei/BERTOverflow_stackoverflow_github") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{tabassum2020code, title={Code and Named Entity Recognition in StackOverflow}, author={Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan }, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)}, url={https://www.aclweb.org/anthology/2020.acl-main.443/} year = {2020}, } ```
lanwuwei/GigaBERT-v3-Arabic-and-English
2021-05-19T00:17:42.000Z
[ "pytorch", "jax", "bert", "en", "ar", "dataset:gigaword", "dataset:oscar", "dataset:wikipedia", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
lanwuwei
3,161
transformers
--- language: - en - ar datasets: - gigaword - oscar - wikipedia --- ## GigaBERT-v3 GigaBERT-v3 is a customized bilingual BERT for English and Arabic. It was pre-trained in a large-scale corpus (Gigaword+Oscar+Wikipedia) with ~10B tokens, showing state-of-the-art zero-shot transfer performance from English to Arabic on information extraction (IE) tasks. More details can be found in the following paper: @inproceedings{lan2020gigabert, author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, title = {An Empirical Study of Pre-trained Transformers for Arabic Information Extraction}, booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, year = {2020} } ## Usage ``` from transformers import * tokenizer = BertTokenizer.from_pretrained("lanwuwei/GigaBERT-v3-Arabic-and-English", do_lower_case=True) model = BertForTokenClassification.from_pretrained("lanwuwei/GigaBERT-v3-Arabic-and-English") ``` More code examples can be found [here](https://github.com/lanwuwei/GigaBERT).
lanwuwei/GigaBERT-v4-Arabic-and-English
2021-05-19T21:19:13.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
lanwuwei
236
transformers
## GigaBERT-v4 GigaBERT-v4 is a continued pre-training of [GigaBERT-v3](https://huggingface.co/lanwuwei/GigaBERT-v3-Arabic-and-English) on code-switched data, showing improved zero-shot transfer performance from English to Arabic on information extraction (IE) tasks. More details can be found in the following paper: @inproceedings{lan2020gigabert, author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, title = {GigaBERT: Zero-shot Transfer Learning from English to Arabic}, booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, year = {2020} } ## Download ``` from transformers import * tokenizer = BertTokenizer.from_pretrained("lanwuwei/GigaBERT-v4-Arabic-and-English", do_lower_case=True) model = BertForTokenClassification.from_pretrained("lanwuwei/GigaBERT-v4-Arabic-and-English") ``` Here is downloadable link [GigaBERT-v4](https://drive.google.com/drive/u/1/folders/1uFGzMuTOD7iNsmKQYp_zVuvsJwOaIdar).
laqwerta/test_hf
2021-03-12T10:24:31.000Z
[]
[ ".gitattributes" ]
laqwerta
0
larskjeldgaard/senda
2021-05-19T21:20:48.000Z
[ "pytorch", "jax", "bert", "text-classification", "da", "transformers", "danish", "sentiment", "polarity", "license:cc-by-4.0" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
larskjeldgaard
15
transformers
--- language: da tags: - danish - bert - sentiment - polarity license: cc-by-4.0 widget: - text: "Sikke en dejlig dag det er i dag" --- # Danish BERT fine-tuned for Sentiment Analysis (Polarity) This model detects polarity ('positive', 'neutral', 'negative') of danish texts. It is trained and tested on Tweets annotated by [Alexandra Institute](https://github.com/alexandrainst). Here is an example on how to load the model in PyTorch using the [๐Ÿค—Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("larskjeldgaard/senda") model = AutoModelForSequenceClassification.from_pretrained("larskjeldgaard/senda") # create 'senda' sentiment analysis pipeline senda_pipeline = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) senda_pipeline("Sikke en dejlig dag det er i dag") ```
laugustyniak/roberta-polish-web-embedding-v1
2021-05-20T17:37:19.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "training_args.bin" ]
laugustyniak
28
transformers
laxya007/gpt2_BE_ISI_NE_BI_INR
2021-05-23T06:42:28.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
laxya007
9
transformers
laxya007/gpt2_BSA_Leg_ipr_OE
2021-06-10T16:10:11.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "vocab.json" ]
laxya007
22
transformers
laxya007/gpt2_BSA_Leg_ipr_OE_OS
2021-06-18T08:40:06.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "vocab.json" ]
laxya007
0
transformers
laxya007/gpt2_TS_DM_AS_CC_TM
2021-05-23T07:14:50.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
laxya007
13
transformers
laxya007/gpt2_manage
2021-05-23T07:42:33.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
laxya007
12
transformers
laxya007/gpt2_tech
2021-05-23T08:18:57.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
laxya007
53
transformers
laxya007/gpt2_till10
2021-05-23T08:21:38.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
laxya007
16
transformers
leduytan93/Fine-Tune-XLSR-Wav2Vec2-Speech2Text-Vietnamese
2021-05-30T07:25:06.000Z
[ "pytorch", "wav2vec2", "vi", "transformers", "language-modeling", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README copy.md", "README.md", "added_tokens.json", "config.json", "optimizer.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
leduytan93
415
transformers
--- language: vi datasets: - common_voice - FOSD: https://data.mendeley.com/datasets/k9sxg2twv4/4 metrics: - wer tags: - language-modeling - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: MT5 Fix Asr Vietnamese by Ontocord results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: 25.207182 ---
lee1jun/wav2vec2-base-100h-finetuned
2021-03-08T09:00:58.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "config.json", "optimizer.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "trainer_state.json", "training_args.bin" ]
lee1jun
6
transformers
leemeng/core-term-ner-v1
2021-05-19T21:21:42.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
leemeng
15
transformers
leemii18/robustqa-baseline-02
2021-05-05T17:47:41.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
leemii18
11
transformers
lemon234071/ct5-base
2020-12-16T09:27:36.000Z
[ "pytorch", "mt5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
lemon234071
9
transformers
lemon234071/ct5-small
2020-12-16T08:54:54.000Z
[ "pytorch", "mt5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
lemon234071
8
transformers
lenvl01/pegasus-reddit_tifu
2021-01-20T12:59:06.000Z
[]
[ ".gitattributes" ]
lenvl01
0
leonweber/PEDL
2021-06-16T09:19:35.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "training_args.bin", "vocab.txt" ]
leonweber
17
transformers
leslie/bert_cn_finetuning
2021-05-19T21:21:59.000Z
[ "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin" ]
leslie
13
transformers
leslie/bert_finetuning_test
2021-05-19T21:22:40.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
leslie
22
transformers
lesniewski/test
2021-04-16T17:43:04.000Z
[]
[ ".gitattributes" ]
lesniewski
0
lewish/MyModel
2021-05-29T21:38:59.000Z
[]
[ ".gitattributes" ]
lewish
0
lewtun/bert-base-uncased-finetuned-boolq
2021-05-19T21:23:35.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
lewtun
35
transformers
lewtun/bert-base-uncased-finetuned-clinc
2021-05-19T21:24:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
lewtun
12
transformers
lewtun/bert-base-uncased-finetuned-squad-v1
2021-05-19T21:25:25.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
lewtun
31
transformers
lewtun/bert-large-uncased-wwm-finetuned-boolq
2021-05-19T21:27:34.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
lewtun
23
transformers
lewtun/distilbert-base-uncased-distilled-squad-v1
2021-01-29T12:43:49.000Z
[ "pytorch", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "license:apache-2.0" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
lewtun
36
transformers
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lewtun/distilbert-base-uncased-finetuned-squad-v1
2021-01-31T11:55:20.000Z
[ "pytorch", "distilbert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
lewtun
12
transformers
lg/fexp_1
2021-05-20T23:37:11.000Z
[ "pytorch", "gpt_neo", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
lg
22
transformers
# This model is probably not what you're looking for.
lg/fexp_2
2021-05-01T17:56:11.000Z
[ "pytorch", "gpt_neo", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
lg
13
transformers
lg/fexp_3
2021-05-01T06:03:40.000Z
[ "pytorch", "gpt_neo", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
lg
14
transformers
lg/fexp_4
2021-05-01T17:25:46.000Z
[ "pytorch", "gpt_neo", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
lg
12
transformers
lg/fexp_5
2021-05-01T23:26:00.000Z
[ "pytorch", "gpt_neo", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
lg
11
transformers
lg/fexp_7
2021-05-03T05:27:39.000Z
[ "pytorch", "gpt_neo", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
lg
9
transformers