modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
sarubi/mbart-50
2021-02-03T04:49:52.000Z
[]
[ ".gitattributes" ]
sarubi
0
satoseiji/hybridsato
2021-03-09T00:18:49.000Z
[]
[ ".gitattributes" ]
satoseiji
0
satvikag/chatbot
2021-06-04T20:08:11.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "license:mit", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
satvikag
426
transformers
--- tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small') model = AutoModelWithLMHead.from_pretrained('output-small') # Let's chat for 5 lines for step in range(100): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=500, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature = 0.8 ) # pretty print last ouput tokens from bot print("AI: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
satvikag/chatbot2
2021-06-08T22:29:12.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "license:mit", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
satvikag
172
transformers
--- tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small') model = AutoModelWithLMHead.from_pretrained('output-small') # Let's chat for 5 lines for step in range(100): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=500, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature = 0.8 ) # pretty print last ouput tokens from bot print("AI: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
savasy/TurkQP
2021-05-20T04:52:43.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
savasy
29
transformers
savasy/bert-base-turkish-ner-cased
2021-05-20T04:53:47.000Z
[ "pytorch", "jax", "bert", "token-classification", "tr", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "test_predictions.txt", "test_results.txt", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
savasy
1,021
transformers
--- language: tr --- # For Turkish language, here is an easy-to-use NER application. ** Türkçe için kolay bir python NER (Bert + Transfer Learning) (İsim Varlık Tanıma) modeli... Thanks to @stefan-it, I applied the followings for training cd tr-data for file in train.txt dev.txt test.txt labels.txt do wget https://schweter.eu/storage/turkish-bert-wikiann/$file done cd .. It will download the pre-processed datasets with training, dev and test splits and put them in a tr-data folder. Run pre-training After downloading the dataset, pre-training can be started. Just set the following environment variables: ``` export MAX_LENGTH=128 export BERT_MODEL=dbmdz/bert-base-turkish-cased export OUTPUT_DIR=tr-new-model export BATCH_SIZE=32 export NUM_EPOCHS=3 export SAVE_STEPS=625 export SEED=1 ``` Then run pre-training: ``` python3 run_ner_old.py --data_dir ./tr-data3 \ --model_type bert \ --labels ./tr-data/labels.txt \ --model_name_or_path $BERT_MODEL \ --output_dir $OUTPUT_DIR-$SEED \ --max_seq_length $MAX_LENGTH \ --num_train_epochs $NUM_EPOCHS \ --per_gpu_train_batch_size $BATCH_SIZE \ --save_steps $SAVE_STEPS \ --seed $SEED \ --do_train \ --do_eval \ --do_predict \ --fp16 ``` # Usage ``` from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("savasy/bert-base-turkish-ner-cased") tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-ner-cased") ner=pipeline('ner', model=model, tokenizer=tokenizer) ner("Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a ayak bastı.") ``` # Some results Data1: For the data above Eval Results: * precision = 0.916400580551524 * recall = 0.9342309684101502 * f1 = 0.9252298787412536 * loss = 0.11335893666411284 Test Results: * precision = 0.9192058759362955 * recall = 0.9303010230367262 * f1 = 0.9247201697271198 * loss = 0.11182546521618497 Data2: https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt The performance for the data given by @kemalaraz is as follows savas@savas-lenova:~/Desktop/trans/tr-new-model-1$ cat eval_results.txt * precision = 0.9461980692049029 * recall = 0.959309358847465 * f1 = 0.9527086063783312 * loss = 0.037054269206847804 savas@savas-lenova:~/Desktop/trans/tr-new-model-1$ cat test_results.txt * precision = 0.9458370635631155 * recall = 0.9588201928530913 * f1 = 0.952284378344882 * loss = 0.035431676572445225
savasy/bert-base-turkish-sentiment-cased
2021-05-20T04:55:01.000Z
[ "pytorch", "jax", "bert", "text-classification", "tr", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "SA-TR.py", "config.json", "eval_results_sst-2.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "turkish_movie_sentiment_dataset.csv", "vocab.txt" ]
savasy
1,681
transformers
--- language: tr --- # Bert-base Turkish Sentiment Model https://huggingface.co/savasy/bert-base-turkish-sentiment-cased This model is used for Sentiment Analysis, which is based on BERTurk for Turkish Language https://huggingface.co/dbmdz/bert-base-turkish-cased ## Dataset The dataset is taken from the studies [[2]](#paper-2) and [[3]](#paper-3), and merged. * The study [2] gathered movie and product reviews. The products are book, DVD, electronics, and kitchen. The movie dataset is taken from a cinema Web page ([Beyazperde](www.beyazperde.com)) with 5331 positive and 5331 negative sentences. Reviews in the Web page are marked in scale from 0 to 5 by the users who made the reviews. The study considered a review sentiment positive if the rating is equal to or bigger than 4, and negative if it is less or equal to 2. They also built Turkish product review dataset from an online retailer Web page. They constructed benchmark dataset consisting of reviews regarding some products (book, DVD, etc.). Likewise, reviews are marked in the range from 1 to 5, and majority class of reviews are 5. Each category has 700 positive and 700 negative reviews in which average rating of negative reviews is 2.27 and of positive reviews is 4.5. This dataset is also used by the study [[1]](#paper-1). * The study [[3]](#paper-3) collected tweet dataset. They proposed a new approach for automatically classifying the sentiment of microblog messages. The proposed approach is based on utilizing robust feature representation and fusion. *Merged Dataset* | *size* | *data* | |--------|----| | 8000 |dev.tsv| | 8262 |test.tsv| | 32000 |train.tsv| | *48290* |*total*| ### The dataset is used by following papers <a id="paper-1">[1]</a> Yildirim, Savaş. (2020). Comparing Deep Neural Networks to Traditional Models for Sentiment Analysis in Turkish Language. 10.1007/978-981-15-1216-2_12. <a id="paper-2">[2]</a> Demirtas, Erkin and Mykola Pechenizkiy. 2013. Cross-lingual polarity detection with machine translation. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM ’13) <a id="paper-3">[3]</a> Hayran, A., Sert, M. (2017), "Sentiment Analysis on Microblog Data based on Word Embedding and Fusion Techniques", IEEE 25th Signal Processing and Communications Applications Conference (SIU 2017), Belek, Turkey ## Training ```shell export GLUE_DIR="./sst-2-newall" export TASK_NAME=SST-2 python3 run_glue.py \ --model_type bert \ --model_name_or_path dbmdz/bert-base-turkish-uncased\ --task_name "SST-2" \ --do_train \ --do_eval \ --data_dir "./sst-2-newall" \ --max_seq_length 128 \ --per_gpu_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \ --output_dir "./model" ``` ## Results > 05/10/2020 17:00:43 - INFO - transformers.trainer - \*\*\*\*\* Running Evaluation \*\*\*\*\* > 05/10/2020 17:00:43 - INFO - transformers.trainer - Num examples = 7999 > 05/10/2020 17:00:43 - INFO - transformers.trainer - Batch size = 8 > Evaluation: 100% 1000/1000 [00:34<00:00, 29.04it/s] > 05/10/2020 17:01:17 - INFO - \_\_main__ - \*\*\*\*\* Eval results sst-2 \*\*\*\*\* > 05/10/2020 17:01:17 - INFO - \_\_main__ - acc = 0.9539942492811602 > 05/10/2020 17:01:17 - INFO - \_\_main__ - loss = 0.16348013816401363 Accuracy is about **95.4%** ## Code Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased") tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased") sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model) p = sa("bu telefon modelleri çok kaliteli , her parçası çok özel bence") print(p) # [{'label': 'LABEL_1', 'score': 0.9871089}] print(p[0]['label'] == 'LABEL_1') # True p = sa("Film çok kötü ve çok sahteydi") print(p) # [{'label': 'LABEL_0', 'score': 0.9975505}] print(p[0]['label'] == 'LABEL_1') # False ``` ## Test ### Data Suppose your file has lots of lines of comment and label (1 or 0) at the end (tab seperated) > comment1 ... \t label > comment2 ... \t label > ... ### Code ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased") tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased") sa = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model) input_file = "/path/to/your/file/yourfile.tsv" i, crr = 0, 0 for line in open(input_file): lines = line.strip().split("\t") if len(lines) == 2: i = i + 1 if i%100 == 0: print(i) pred = sa(lines[0]) pred = pred[0]["label"].split("_")[1] if pred == lines[1]: crr = crr + 1 print(crr, i, crr/i) ```
savasy/bert-base-turkish-squad
2021-05-20T04:56:01.000Z
[ "pytorch", "jax", "bert", "question-answering", "tr", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "nbest_predictions_.json", "predictions_.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
savasy
1,489
transformers
--- language: tr --- # Turkish SQuAD Model : Question Answering I fine-tuned Turkish-Bert-Model for Question-Answering problem with Turkish version of SQuAD; TQuAD * BERT-base: https://huggingface.co/dbmdz/bert-base-turkish-uncased * TQuAD dataset: https://github.com/TQuad/turkish-nlp-qa-dataset # Training Code ``` !python3 run_squad.py \ --model_type bert \ --model_name_or_path dbmdz/bert-base-turkish-uncased\ --do_train \ --do_eval \ --train_file trainQ.json \ --predict_file dev1.json \ --per_gpu_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 5.0 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir "./model" ``` # Example Usage > Load Model ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline import torch tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-squad") model = AutoModelForQuestionAnswering.from_pretrained("savasy/bert-base-turkish-squad") nlp=pipeline("question-answering", model=model, tokenizer=tokenizer) ``` > Apply the model ``` sait="ABASIYANIK, Sait Faik. Hikayeci (Adapazarı 23 Kasım 1906-İstanbul 11 Mayıs 1954). \ İlk öğrenimine Adapazarı’nda Rehber-i Terakki Mektebi’nde başladı. İki yıl kadar Adapazarı İdadisi’nde okudu.\ İstanbul Erkek Lisesi’nde devam ettiği orta öğrenimini Bursa Lisesi’nde tamamladı (1928). İstanbul Edebiyat \ Fakültesi’ne iki yıl devam ettikten sonra babasının isteği üzerine iktisat öğrenimi için İsviçre’ye gitti. \ Kısa süre sonra iktisat öğrenimini bırakarak Lozan’dan Grenoble’a geçti. Üç yıl başıboş bir edebiyat öğrenimi \ gördükten sonra babası tarafından geri çağrıldı (1933). Bir müddet Halıcıoğlu Ermeni Yetim Mektebi'nde Türkçe \ gurup dersleri öğretmenliği yaptı. Ticarete atıldıysa da tutunamadı. Bir ay Haber gazetesinde adliye muhabirliği\ yaptı (1942). Babasının ölümü üzerine aileden kalan emlakin geliri ile avare bir hayata başladı. Evlenemedi.\ Yazları Burgaz adasındaki köşklerinde, kışları Şişli’deki apartmanlarında annesi ile beraber geçen bu fazla \ içkili bohem hayatı ömrünün sonuna kadar sürdü." print(nlp(question="Ne zaman avare bir hayata başladı?", context=sait)) print(nlp(question="Sait Faik hangi Lisede orta öğrenimini tamamladı?", context=sait)) ``` ``` # Ask your self ! type your question print(nlp(question="...?", context=sait)) ``` Check My other Model https://huggingface.co/savasy
savasy/bert-turkish-text-classification
2021-05-20T04:56:54.000Z
[ "pytorch", "jax", "bert", "text-classification", "tr", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
savasy
48,548
transformers
--- language: tr --- # Turkish Text Classification This model is a fine-tune model of https://github.com/stefan-it/turkish-bert by using text classification data where there are 7 categories as follows ``` code_to_label={ 'LABEL_0': 'dunya ', 'LABEL_1': 'ekonomi ', 'LABEL_2': 'kultur ', 'LABEL_3': 'saglik ', 'LABEL_4': 'siyaset ', 'LABEL_5': 'spor ', 'LABEL_6': 'teknoloji '} ``` ## Data The following Turkish benchmark dataset is used for fine-tuning https://www.kaggle.com/savasy/ttc4900 ## Quick Start Bewgin with installing transformers as follows > pip install transformers ``` # Code: # import libraries from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AutoModelForSequenceClassification tokenizer= AutoTokenizer.from_pretrained("savasy/bert-turkish-text-classification") # build and load model, it take time depending on your internet connection model= AutoModelForSequenceClassification.from_pretrained("savasy/bert-turkish-text-classification") # make pipeline nlp=pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) # apply model nlp("bla bla") # [{'label': 'LABEL_2', 'score': 0.4753005802631378}] code_to_label={ 'LABEL_0': 'dunya ', 'LABEL_1': 'ekonomi ', 'LABEL_2': 'kultur ', 'LABEL_3': 'saglik ', 'LABEL_4': 'siyaset ', 'LABEL_5': 'spor ', 'LABEL_6': 'teknoloji '} code_to_label[nlp("bla bla")[0]['label']] # > 'kultur ' ``` ## How the model was trained ``` ## loading data for Turkish text classification import pandas as pd # https://www.kaggle.com/savasy/ttc4900 df=pd.read_csv("7allV03.csv") df.columns=["labels","text"] df.labels=pd.Categorical(df.labels) traind_df=... eval_df=... # model from simpletransformers.classification import ClassificationModel import torch,sklearn model_args = { "use_early_stopping": True, "early_stopping_delta": 0.01, "early_stopping_metric": "mcc", "early_stopping_metric_minimize": False, "early_stopping_patience": 5, "evaluate_during_training_steps": 1000, "fp16": False, "num_train_epochs":3 } model = ClassificationModel( "bert", "dbmdz/bert-base-turkish-cased", use_cuda=cuda_available, args=model_args, num_labels=7 ) model.train_model(train_df, acc=sklearn.metrics.accuracy_score) ``` For other training models please check https://simpletransformers.ai/ For the detailed usage of Turkish Text Classification please check [python notebook](https://github.com/savasy/TurkishTextClassification/blob/master/Bert_base_Text_Classification_for_Turkish.ipynb)
savasy/bert-turkish-uncased-qnli
2021-05-20T04:57:50.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "eval_results_qnli.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
savasy
46
transformers
# Turkish QNLI Model I fine-tuned Turkish-Bert-Model for Question-Answering problem with Turkish version of SQuAD; TQuAD https://huggingface.co/dbmdz/bert-base-turkish-uncased # Data: TQuAD I used following TQuAD data set https://github.com/TQuad/turkish-nlp-qa-dataset I convert the dataset into transformers glue data format of QNLI by the following script SQuAD -> QNLI ``` import argparse import collections import json import numpy as np import os import re import string import sys ff="dev-v0.1.json" ff="train-v0.1.json" dataset=json.load(open(ff)) i=0 for article in dataset['data']: title= article['title'] for p in article['paragraphs']: context= p['context'] for qa in p['qas']: answer= qa['answers'][0]['text'] all_other_answers= list(set([e['answers'][0]['text'] for e in p['qas']])) all_other_answers.remove(answer) i=i+1 print(i,qa['question'].replace(";",":") , answer.replace(";",":"),"entailment", sep="\t") for other in all_other_answers: i=i+1 print(i,qa['question'].replace(";",":") , other.replace(";",":"),"not_entailment" ,sep="\t") ``` Under QNLI folder there are dev and test test Training data looks like > 613 II.Friedrich’in bilginler arasındaki en önemli şahsiyet olarak belirttiği kişi kimdir? filozof, kimyacı, astrolog ve çevirmen not_entailment > 614 II.Friedrich’in bilginler arasındaki en önemli şahsiyet olarak belirttiği kişi kimdir? kişisel eğilimi ve özel temaslar nedeniyle not_entailment > 615 Michael Scotus’un mesleği nedir? filozof, kimyacı, astrolog ve çevirmen entailment > 616 Michael Scotus’un mesleği nedir? Palermo’ya not_entailment # Training Training the model with following environment ``` export GLUE_DIR=./glue/glue_dataTR/QNLI export TASK_NAME=QNLI ``` ``` python3 run_glue.py \ --model_type bert \ --model_name_or_path dbmdz/bert-base-turkish-uncased\ --task_name $TASK_NAME \ --do_train \ --do_eval \ --data_dir $GLUE_DIR \ --max_seq_length 128 \ --per_gpu_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \ --output_dir /tmp/$TASK_NAME/ ``` # Evaluation Results == | acc | 0.9124060613527165 | loss| 0.21582801340189717 == > See all my model > https://huggingface.co/savasy
savasy/checkpoint-1250
2021-05-20T04:58:13.000Z
[ "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "training_args.bin" ]
savasy
13
transformers
savasy/checkpoint-1875
2021-05-20T04:58:17.000Z
[ "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "training_args.bin" ]
savasy
10
transformers
savasy/model
2021-05-20T04:58:20.000Z
[ "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json" ]
savasy
12
transformers
savasy/offLangDetectionTurkish
2021-05-20T04:59:03.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "log_history.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
savasy
71
transformers
sberbank-ai/rugpt2large
2020-10-22T17:35:10.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "vocab.json" ]
sberbank-ai
393
transformers
sberbank-ai/rugpt3large_based_on_gpt2
2021-05-23T12:44:44.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
sberbank-ai
5,186
transformers
sberbank-ai/rugpt3medium_based_on_gpt2
2020-10-22T17:10:46.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "vocab.json" ]
sberbank-ai
2,446
transformers
sberbank-ai/rugpt3small_based_on_gpt2
2021-05-23T12:48:22.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
sberbank-ai
6,443
transformers
sberbank-ai/rugpt3xl
2021-01-27T21:46:37.000Z
[]
[ ".gitattributes", "README.md", "deepspeed_config.json", "merges.txt", "mp_rank_00_model_states.pt", "vocab.json" ]
sberbank-ai
0
ruGPT3xl language model with sparse attention
sberbank-ai/sbert_large_mt_nlu_ru
2021-06-03T12:08:36.000Z
[ "pytorch", "tf", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
sberbank-ai
317
transformers
# BERT large model multitask (cased) for Sentence Embeddings in Russian language. The model is described [in this article](https://habr.com/ru/company/sberdevices/blog/560748/) Russian SuperGLUE [metrics](https://russiansuperglue.com/login/submit_info/944) For better quality, use mean token embeddings. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['Привет! Как твои дела?', 'А правда, что 42 твое любимое число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_mt_nlu_ru") model = AutoModel.from_pretrained("sberbank-ai/sbert_large_mt_nlu_ru") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ```
sberbank-ai/sbert_large_nlu_ru
2021-05-20T05:03:57.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sberbank-ai
30,467
transformers
# BERT large model (uncased) for Sentence Embeddings in Russian language. The model is described [in this article](https://habr.com/ru/company/sberdevices/blog/527576/) For better quality, use mean token embeddings. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['Привет! Как твои дела?', 'А правда, что 42 твое любимое число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_nlu_ru") model = AutoModel.from_pretrained("sberbank-ai/sbert_large_nlu_ru") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ```
sbiswal/OdiaBert
2021-05-20T05:05:41.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "log_history.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sbiswal
11
transformers
sbiswal/odia-bert-classifier
2021-05-20T05:06:25.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
sbiswal
14
transformers
sbrandeis/test
2021-05-28T10:34:13.000Z
[]
[ ".gitattributes" ]
sbrandeis
0
schauhan/question-answering
2021-05-05T17:36:25.000Z
[]
[ ".gitattributes" ]
schauhan
0
schen/longformer-chinese-base-4096
2021-05-20T05:07:16.000Z
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
schen
1,297
transformers
schmidek/electra-small-cased
2020-12-11T22:01:28.000Z
[ "tf", "electra", "pretraining", "en", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "config.json", "tf_model.h5" ]
schmidek
13
transformers
--- language: en license: apache-2.0 --- ## ELECTRA-small-cased This is a cased version of `google/electra-small-discriminator`, trained on the [OpenWebText corpus](https://skylion007.github.io/OpenWebTextCorpus/). Uses the same tokenizer and vocab from `bert-base-cased`
schmmd/test
2021-02-24T16:05:25.000Z
[]
[ ".gitattributes" ]
schmmd
0
scikit-learn-examples/example
2021-06-11T14:40:37.000Z
[ "joblib", "sklearn" ]
[ ".gitattributes", "sklearn_model.joblib" ]
scikit-learn-examples
0
scikit-learn-examples/test
2021-06-11T15:14:47.000Z
[ "sklearn" ]
[ ".gitattributes", "README.md", "sklearn_model.pickle" ]
scikit-learn-examples
0
--- tags: - sklearn --- Just a test
scribd/test
2021-02-11T08:59:55.000Z
[]
[ ".gitattributes", "test" ]
scribd
0
scribd/testingrepo
2021-02-11T06:07:59.000Z
[]
[ ".gitattributes" ]
scribd
0
sdfghdfh/xvxdfhbdfjhn
2021-04-07T16:52:02.000Z
[]
[ ".gitattributes" ]
sdfghdfh
0
sdfufygvjh/ydtuuyyiuu
2021-04-08T22:54:34.000Z
[]
[ ".gitattributes" ]
sdfufygvjh
0
seamew/Weibo
2021-05-20T05:08:03.000Z
[ "tf", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
seamew
48
transformers
seamew/amazon_reviews_zh
2021-05-20T05:08:28.000Z
[ "tf", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
seamew
29
transformers
sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco
2021-03-18T10:35:12.000Z
[ "pytorch", "ColBERT", "en", "dataset:ms_marco", "arxiv:2004.12832", "arxiv:2010.02666", "transformers", "dpr", "dense-passage-retrieval", "knowledge-distillation" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sebastian-hofstaetter
163
transformers
--- language: "en" tags: - dpr - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # Margin-MSE Trained ColBERT We provide a retrieval trained DistilBert-based ColBERT model (https://arxiv.org/pdf/2004.12832.pdf). Our model is trained with Margin-MSE using a 3 teacher BERT_Cat (concatenated BERT scoring) ensemble on MSMARCO-Passage. This instance can be used to **re-rank a candidate set** or **directly for a vector index based dense retrieval**. The architecure is a 6-layer DistilBERT, with an additional single linear layer at the end. If you want to know more about our simple, yet effective knowledge distillation method for efficient information retrieval models for a variety of student architectures that is used for this model instance check out our paper: https://arxiv.org/abs/2010.02666 🎉 For more information, training data, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/neural-ranking-kd ## Configuration - fp16 trained, so fp16 inference shouldn't be a problem - We use no compression: 768 dim output vectors (better suited for re-ranking, or storage for smaller collections, MSMARCO gets to ~1TB vector storage with fp16 ... ups) - Query [MASK] augmention = 8x regardless of batch-size (needs to be added before the model, see the usage example in GitHub repo for more) ## Model Code ````python from transformers import AutoTokenizer,AutoModel, PreTrainedModel,PretrainedConfig from typing import Dict import torch class ColBERTConfig(PretrainedConfig): model_type = "ColBERT" bert_model: str compression_dim: int = 768 dropout: float = 0.0 return_vecs: bool = False trainable: bool = True class ColBERT(PreTrainedModel): """ ColBERT model from: https://arxiv.org/pdf/2004.12832.pdf We use a dot-product instead of cosine per term (slightly better) """ config_class = ColBERTConfig base_model_prefix = "bert_model" def __init__(self, cfg) -> None: super().__init__(cfg) self.bert_model = AutoModel.from_pretrained(cfg.bert_model) for p in self.bert_model.parameters(): p.requires_grad = cfg.trainable self.compressor = torch.nn.Linear(self.bert_model.config.hidden_size, cfg.compression_dim) def forward(self, query: Dict[str, torch.LongTensor], document: Dict[str, torch.LongTensor]): query_vecs = self.forward_representation(query) document_vecs = self.forward_representation(document) score = self.forward_aggregation(query_vecs,document_vecs,query["attention_mask"],document["attention_mask"]) return score def forward_representation(self, tokens, sequence_type=None) -> torch.Tensor: vecs = self.bert_model(**tokens)[0] # assuming a distilbert model here vecs = self.compressor(vecs) # if encoding only, zero-out the mask values so we can compress storage if sequence_type == "doc_encode" or sequence_type == "query_encode": vecs = vecs * tokens["tokens"]["mask"].unsqueeze(-1) return vecs def forward_aggregation(self,query_vecs, document_vecs,query_mask,document_mask): # create initial term-x-term scores (dot-product) score = torch.bmm(query_vecs, document_vecs.transpose(2,1)) # mask out padding on the doc dimension (mask by -1000, because max should not select those, setting it to 0 might select them) exp_mask = document_mask.bool().unsqueeze(1).expand(-1,score.shape[1],-1) score[~exp_mask] = - 10000 # max pooling over document dimension score = score.max(-1).values # mask out paddding query values score[~(query_mask.bool())] = 0 # sum over query values score = score.sum(-1) return score tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # honestly not sure if that is the best way to go, but it works :) model = ColBERT.from_pretrained("sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco") ```` ## Effectiveness on MSMARCO Passage & TREC Deep Learning '19 We trained our model on the MSMARCO standard ("small"-400K query) training triples with knowledge distillation with a batch size of 32 on a single consumer-grade GPU (11GB memory). For re-ranking we used the top-1000 BM25 results. ### MSMARCO-DEV Here, we use the larger 49K query DEV set (same range as the smaller 7K DEV set, minimal changes possible) | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .194 | .241 | | **Margin-MSE ColBERT** (Re-ranking) | .375 | .436 | ### TREC-DL'19 For MRR we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers. | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .689 | .501 | | **Margin-MSE ColBERT** (Re-ranking) | .878 | .744 | For more metrics, baselines, info and analysis, please see the paper: https://arxiv.org/abs/2010.02666 ## Limitations & Bias - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @misc{hofstaetter2020_crossarchitecture_kd, title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation}, author={Sebastian Hofst{\"a}tter and Sophia Althammer and Michael Schr{\"o}der and Mete Sertkan and Allan Hanbury}, year={2020}, eprint={2010.02666}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```
sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco
2021-03-18T15:59:30.000Z
[ "pytorch", "BERT_Cat", "en", "dataset:ms_marco", "arxiv:2010.02666", "transformers", "re-ranking", "passage-ranking", "knowledge-distillation" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sebastian-hofstaetter
29
transformers
--- language: "en" tags: - re-ranking - passage-ranking - knowledge-distillation datasets: - ms_marco --- # Margin-MSE Trained DistilBERT-Cat (vanilla/mono/concatenated DistilBERT re-ranker) We provide a retrieval trained DistilBERT-Cat model. Our model is trained with Margin-MSE using a 3 teacher BERT_Cat (concatenated BERT scoring) ensemble on MSMARCO-Passage. This instance can be used to **re-rank a candidate set**. The architecure is a 6-layer DistilBERT, with an additional single linear layer at the end. If you want to know more about our simple, yet effective knowledge distillation method for efficient information retrieval models for a variety of student architectures that is used for this model instance check out our paper: https://arxiv.org/abs/2010.02666 🎉 For more information, training data, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/neural-ranking-kd ## Configuration - fp16 trained, so fp16 inference shouldn't be a problem ## Model Code ````python from transformers import AutoTokenizer,AutoModel, PreTrainedModel,PretrainedConfig from typing import Dict import torch class BERT_Cat_Config(PretrainedConfig): model_type = "BERT_Cat" bert_model: str trainable: bool = True class BERT_Cat(PreTrainedModel): """ The vanilla/mono BERT concatenated (we lovingly refer to as BERT_Cat) architecture -> requires input concatenation before model, so that batched input is possible """ config_class = BERT_Cat_Config base_model_prefix = "bert_model" def __init__(self, cfg) -> None: super().__init__(cfg) self.bert_model = AutoModel.from_pretrained(cfg.bert_model) for p in self.bert_model.parameters(): p.requires_grad = cfg.trainable self._classification_layer = torch.nn.Linear(self.bert_model.config.hidden_size, 1) def forward(self, query_n_doc_sequence): vecs = self.bert_model(**query_n_doc_sequence)[0][:,0,:] # assuming a distilbert model here score = self._classification_layer(vecs) return score tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # honestly not sure if that is the best way to go, but it works :) model = BERT_Cat.from_pretrained("sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco") ```` ## Effectiveness on MSMARCO Passage & TREC Deep Learning '19 We trained our model on the MSMARCO standard ("small"-400K query) training triples with knowledge distillation with a batch size of 32 on a single consumer-grade GPU (11GB memory). For re-ranking we used the top-1000 BM25 results. ### MSMARCO-DEV Here, we use the larger 49K query DEV set (same range as the smaller 7K DEV set, minimal changes possible) | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .194 | .241 | | **Margin-MSE DistilBERT_Cat** (Re-ranking) | .391 | .451 | ### TREC-DL'19 For MRR we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers. | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .689 | .501 | | **Margin-MSE DistilBERT_Cat** (Re-ranking) | .891 | .747 | For more metrics, baselines, info and analysis, please see the paper: https://arxiv.org/abs/2010.02666 ## Limitations & Bias - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @misc{hofstaetter2020_crossarchitecture_kd, title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation}, author={Sebastian Hofst{\"a}tter and Sophia Althammer and Michael Schr{\"o}der and Mete Sertkan and Allan Hanbury}, year={2020}, eprint={2010.02666}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```
sebastian-hofstaetter/distilbert-dot-margin_mse-T2-msmarco
2021-03-16T17:03:58.000Z
[ "pytorch", "distilbert", "en", "dataset:ms_marco", "arxiv:2010.02666", "transformers", "dpr", "dense-passage-retrieval", "knowledge-distillation" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sebastian-hofstaetter
66
transformers
--- language: "en" tags: - dpr - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # Margin-MSE Trained DistilBert for Dense Passage Retrieval We provide a retrieval trained DistilBert-based model (we call the architecture BERT_Dot). Our model is trained with Margin-MSE using a 3 teacher BERT_Cat (concatenated BERT scoring) ensemble on MSMARCO-Passage. This instance can be used to **re-rank a candidate set** or **directly for a vector index based dense retrieval**. The architecture is a 6-layer DistilBERT, without architecture additions or modifications (we only change the weights during training) - to receive a query/passage representation we pool the CLS vector. We use the same BERT layers for both query and passage encoding (yields better results, and lowers memory requirements). If you want to know more about our simple, yet effective knowledge distillation method for efficient information retrieval models for a variety of student architectures that is used for this model instance check out our paper: https://arxiv.org/abs/2010.02666 🎉 For more information, training data, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/neural-ranking-kd ## Effectiveness on MSMARCO Passage & TREC-DL'19 We trained our model on the MSMARCO standard ("small"-400K query) training triples with knowledge distillation with a batch size of 32 on a single consumer-grade GPU (11GB memory). For re-ranking we used the top-1000 BM25 results. ### MSMARCO-DEV | | MRR@10 | NDCG@10 | Recall@1K | |----------------------------------|--------|---------|-----------------------------| | BM25 | .194 | .241 | .868 | | **Margin-MSE BERT_Dot** (Re-ranking) | .332 | .391 | .868 (from BM25 candidates) | | **Margin-MSE BERT_Dot** (Retrieval) | .323 | .381 | .957 | ### TREC-DL'19 For MRR and Recall we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers. | | MRR@10 | NDCG@10 | Recall@1K | |----------------------------------|--------|---------|-----------------------------| | BM25 | .689 | .501 | .739 | | **Margin-MSE BERT_Dot** (Re-ranking) | .862 | .712 | .739 (from BM25 candidates) | | **Margin-MSE BERT_Dot** (Retrieval) | .868 | .697 | .769 | For more baselines, info and analysis, please see the paper: https://arxiv.org/abs/2010.02666 ## Limitations & Bias - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @misc{hofstaetter2020_crossarchitecture_kd, title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation}, author={Sebastian Hofst{\"a}tter and Sophia Althammer and Michael Schr{\"o}der and Mete Sertkan and Allan Hanbury}, year={2020}, eprint={2010.02666}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```
sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
2021-04-15T08:54:28.000Z
[ "pytorch", "distilbert", "en", "dataset:ms_marco", "arxiv:2104.06967", "transformers", "dpr", "dense-passage-retrieval", "knowledge-distillation" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sebastian-hofstaetter
223
transformers
--- language: "en" tags: - dpr - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # DistilBert for Dense Passage Retrieval trained with Balanced Topic Aware Sampling (TAS-B) We provide a retrieval trained DistilBert-based model (we call the *dual-encoder then dot-product scoring* architecture BERT_Dot) trained with Balanced Topic Aware Sampling on MSMARCO-Passage. This instance was trained with a batch size of 256 and can be used to **re-rank a candidate set** or **directly for a vector index based dense retrieval**. The architecture is a 6-layer DistilBERT, without architecture additions or modifications (we only change the weights during training) - to receive a query/passage representation we pool the CLS vector. We use the same BERT layers for both query and passage encoding (yields better results, and lowers memory requirements). If you want to know more about our efficient (can be done on a single consumer GPU in 48 hours) batch composition procedure and dual supervision for dense retrieval training, check out our paper: https://arxiv.org/abs/2104.06967 🎉 For more information and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/tas-balanced-dense-retrieval ## Effectiveness on MSMARCO Passage & TREC-DL'19 We trained our model on the MSMARCO standard ("small"-400K query) training triples re-sampled with our TAS-B method. As teacher models we used the BERT_CAT pairwise scores as well as the ColBERT model for in-batch-negative signals published here: https://github.com/sebastian-hofstaetter/neural-ranking-kd ### MSMARCO-DEV (7K) | | MRR@10 | NDCG@10 | Recall@1K | |----------------------------------|--------|---------|-----------------------------| | BM25 | .194 | .241 | .857 | | **TAS-B BERT_Dot** (Retrieval) | .347 | .410 | .978 | ### TREC-DL'19 For MRR and Recall we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers. | | MRR@10 | NDCG@10 | Recall@1K | |----------------------------------|--------|---------|-----------------------------| | BM25 | .689 | .501 | .739 | | **TAS-B BERT_Dot** (Retrieval) | .883 | .717 | .843 | ### TREC-DL'20 For MRR and Recall we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers. | | MRR@10 | NDCG@10 | Recall@1K | |----------------------------------|--------|---------|-----------------------------| | BM25 | .649 | .475 | .806 | | **TAS-B BERT_Dot** (Retrieval) | .843 | .686 | .875 | For more baselines, info and analysis, please see the paper: https://arxiv.org/abs/2104.06967 ## Limitations & Bias - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @inproceedings{Hofstaetter2021_tasb_dense_retrieval, author = {Sebastian Hofst{\"a}tter and Sheng-Chieh Lin and Jheng-Hong Yang and Jimmy Lin and Allan Hanbury}, title = {{Efficiently Teaching an Effective Dense Retriever with Balanced Topic Aware Sampling}}, booktitle = {Proc. of SIGIR}, year = {2021}, } ```
sebastian-hofstaetter/idcm-distilbert-msmarco_doc
2021-05-26T14:14:50.000Z
[ "pytorch", "IDCM", "en", "dataset:ms_marco", "arxiv:2105.09816", "transformers", "document-retrieval", "knowledge-distillation" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sebastian-hofstaetter
13
transformers
--- language: "en" tags: - document-retrieval - knowledge-distillation datasets: - ms_marco --- # Intra-Document Cascading (IDCM) We provide a retrieval trained IDCM model. Our model is trained on MSMARCO-Document with up to 2000 tokens. This instance can be used to **re-rank a candidate set** of long documents. The base BERT architecure is a 6-layer DistilBERT. If you want to know more about our intra document cascading model & training procedure using knowledge distillation check out our paper: https://arxiv.org/abs/2105.09816 🎉 For more information, training data, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/intra-document-cascade ## Configuration - Trained with fp16 mixed precision - We select the top 4 windows of size (50 + 2*7 overlap words) with our fast CK model and score them with BERT - The published code here is only usable for inference (we removed the training code) ## Model Code ````python from transformers import AutoTokenizer,AutoModel, PreTrainedModel,PretrainedConfig from typing import Dict import torch from torch import nn as nn class IDCM_InferenceOnly(PreTrainedModel): ''' IDCM is a neural re-ranking model for long documents, it creates an intra-document cascade between a fast (CK) and a slow module (BERT_Cat) This code is only usable for inference (we removed the training mechanism for simplicity) ''' config_class = IDCM_Config base_model_prefix = "bert_model" def __init__(self, cfg) -> None: super().__init__(cfg) # # bert - scoring # if isinstance(cfg.bert_model, str): self.bert_model = AutoModel.from_pretrained(cfg.bert_model) else: self.bert_model = cfg.bert_model # # final scoring (combination of bert scores) # self._classification_layer = torch.nn.Linear(self.bert_model.config.hidden_size, 1) self.top_k_chunks = cfg.top_k_chunks self.top_k_scoring = nn.Parameter(torch.full([1,self.top_k_chunks], 1, dtype=torch.float32, requires_grad=True)) # # local self attention # self.padding_idx= cfg.padding_idx self.chunk_size = cfg.chunk_size self.overlap = cfg.overlap self.extended_chunk_size = self.chunk_size + 2 * self.overlap # # sampling stuff # self.sample_n = cfg.sample_n self.sample_context = cfg.sample_context if self.sample_context == "ck": i = 3 self.sample_cnn3 = nn.Sequential( nn.ConstantPad1d((0,i - 1), 0), nn.Conv1d(kernel_size=i, in_channels=self.bert_model.config.dim, out_channels=self.bert_model.config.dim), nn.ReLU() ) elif self.sample_context == "ck-small": i = 3 self.sample_projector = nn.Linear(self.bert_model.config.dim,384) self.sample_cnn3 = nn.Sequential( nn.ConstantPad1d((0,i - 1), 0), nn.Conv1d(kernel_size=i, in_channels=384, out_channels=128), nn.ReLU() ) self.sampling_binweights = nn.Linear(11, 1, bias=True) torch.nn.init.uniform_(self.sampling_binweights.weight, -0.01, 0.01) self.kernel_alpha_scaler = nn.Parameter(torch.full([1,1,11], 1, dtype=torch.float32, requires_grad=True)) self.register_buffer("mu",nn.Parameter(torch.tensor([1.0, 0.9, 0.7, 0.5, 0.3, 0.1, -0.1, -0.3, -0.5, -0.7, -0.9]), requires_grad=False).view(1, 1, 1, -1)) self.register_buffer("sigma", nn.Parameter(torch.tensor([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), requires_grad=False).view(1, 1, 1, -1)) def forward(self, query: Dict[str, torch.LongTensor], document: Dict[str, torch.LongTensor], use_fp16:bool = True, output_secondary_output: bool = False): # # patch up documents - local self attention # document_ids = document["input_ids"][:,1:] if document_ids.shape[1] > self.overlap: needed_padding = self.extended_chunk_size - (((document_ids.shape[1]) % self.chunk_size) - self.overlap) else: needed_padding = self.extended_chunk_size - self.overlap - document_ids.shape[1] orig_doc_len = document_ids.shape[1] document_ids = nn.functional.pad(document_ids,(self.overlap, needed_padding),value=self.padding_idx) chunked_ids = document_ids.unfold(1,self.extended_chunk_size,self.chunk_size) batch_size = chunked_ids.shape[0] chunk_pieces = chunked_ids.shape[1] chunked_ids_unrolled=chunked_ids.reshape(-1,self.extended_chunk_size) packed_indices = (chunked_ids_unrolled[:,self.overlap:-self.overlap] != self.padding_idx).any(-1) orig_packed_indices = packed_indices.clone() ids_packed = chunked_ids_unrolled[packed_indices] mask_packed = (ids_packed != self.padding_idx) total_chunks=chunked_ids_unrolled.shape[0] packed_query_ids = query["input_ids"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["input_ids"].shape[1])[packed_indices] packed_query_mask = query["attention_mask"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["attention_mask"].shape[1])[packed_indices] # # sampling # if self.sample_n > -1: # # ck learned matches # if self.sample_context == "ck-small": query_ctx = torch.nn.functional.normalize(self.sample_cnn3(self.sample_projector(self.bert_model.embeddings(packed_query_ids).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1) document_ctx = torch.nn.functional.normalize(self.sample_cnn3(self.sample_projector(self.bert_model.embeddings(ids_packed).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1) elif self.sample_context == "ck": query_ctx = torch.nn.functional.normalize(self.sample_cnn3((self.bert_model.embeddings(packed_query_ids).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1) document_ctx = torch.nn.functional.normalize(self.sample_cnn3((self.bert_model.embeddings(ids_packed).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1) else: qe = self.tk_projector(self.bert_model.embeddings(packed_query_ids).detach()) de = self.tk_projector(self.bert_model.embeddings(ids_packed).detach()) query_ctx = self.tk_contextualizer(qe.transpose(1,0),src_key_padding_mask=~packed_query_mask.bool()).transpose(1,0) document_ctx = self.tk_contextualizer(de.transpose(1,0),src_key_padding_mask=~mask_packed.bool()).transpose(1,0) query_ctx = torch.nn.functional.normalize(query_ctx,p=2,dim=-1) document_ctx= torch.nn.functional.normalize(document_ctx,p=2,dim=-1) cosine_matrix = torch.bmm(query_ctx,document_ctx.transpose(-1, -2)).unsqueeze(-1) kernel_activations = torch.exp(- torch.pow(cosine_matrix - self.mu, 2) / (2 * torch.pow(self.sigma, 2))) * mask_packed.unsqueeze(-1).unsqueeze(1) kernel_res = torch.log(torch.clamp(torch.sum(kernel_activations, 2) * self.kernel_alpha_scaler, min=1e-4)) * packed_query_mask.unsqueeze(-1) packed_patch_scores = self.sampling_binweights(torch.sum(kernel_res, 1)) sampling_scores_per_doc = torch.zeros((total_chunks,1), dtype=packed_patch_scores.dtype, layout=packed_patch_scores.layout, device=packed_patch_scores.device) sampling_scores_per_doc[packed_indices] = packed_patch_scores sampling_scores_per_doc = sampling_scores_per_doc.reshape(batch_size,-1,) sampling_scores_per_doc_orig = sampling_scores_per_doc.clone() sampling_scores_per_doc[sampling_scores_per_doc == 0] = -9000 sampling_sorted = sampling_scores_per_doc.sort(descending=True) sampled_indices = sampling_sorted.indices + torch.arange(0,sampling_scores_per_doc.shape[0]*sampling_scores_per_doc.shape[1],sampling_scores_per_doc.shape[1],device=sampling_scores_per_doc.device).unsqueeze(-1) sampled_indices = sampled_indices[:,:self.sample_n] sampled_indices_mask = torch.zeros_like(packed_indices).scatter(0, sampled_indices.reshape(-1), 1) # pack indices packed_indices = sampled_indices_mask * packed_indices packed_query_ids = query["input_ids"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["input_ids"].shape[1])[packed_indices] packed_query_mask = query["attention_mask"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["attention_mask"].shape[1])[packed_indices] ids_packed = chunked_ids_unrolled[packed_indices] mask_packed = (ids_packed != self.padding_idx) # # expensive bert scores # bert_vecs = self.forward_representation(torch.cat([packed_query_ids,ids_packed],dim=1),torch.cat([packed_query_mask,mask_packed],dim=1)) packed_patch_scores = self._classification_layer(bert_vecs) scores_per_doc = torch.zeros((total_chunks,1), dtype=packed_patch_scores.dtype, layout=packed_patch_scores.layout, device=packed_patch_scores.device) scores_per_doc[packed_indices] = packed_patch_scores scores_per_doc = scores_per_doc.reshape(batch_size,-1,) scores_per_doc_orig = scores_per_doc.clone() scores_per_doc_orig_sorter = scores_per_doc.clone() if self.sample_n > -1: scores_per_doc = scores_per_doc * sampled_indices_mask.view(batch_size,-1) # # aggregate bert scores # if scores_per_doc.shape[1] < self.top_k_chunks: scores_per_doc = nn.functional.pad(scores_per_doc,(0, self.top_k_chunks - scores_per_doc.shape[1])) scores_per_doc[scores_per_doc == 0] = -9000 scores_per_doc_orig_sorter[scores_per_doc_orig_sorter == 0] = -9000 score = torch.sort(scores_per_doc,descending=True,dim=-1).values score[score <= -8900] = 0 score = (score[:,:self.top_k_chunks] * self.top_k_scoring).sum(dim=1) if self.sample_n == -1: if output_secondary_output: return score,{ "packed_indices": orig_packed_indices.view(batch_size,-1), "bert_scores":scores_per_doc_orig } else: return score,scores_per_doc_orig else: if output_secondary_output: return score,scores_per_doc_orig,{ "score": score, "packed_indices": orig_packed_indices.view(batch_size,-1), "sampling_scores":sampling_scores_per_doc_orig, "bert_scores":scores_per_doc_orig } return score def forward_representation(self, ids,mask,type_ids=None) -> Dict[str, torch.Tensor]: if self.bert_model.base_model_prefix == 'distilbert': # diff input / output pooled = self.bert_model(input_ids=ids, attention_mask=mask)[0][:,0,:] elif self.bert_model.base_model_prefix == 'longformer': _, pooled = self.bert_model(input_ids=ids, attention_mask=mask.long(), global_attention_mask = ((1-ids)*mask).long()) elif self.bert_model.base_model_prefix == 'roberta': # no token type ids _, pooled = self.bert_model(input_ids=ids, attention_mask=mask) else: _, pooled = self.bert_model(input_ids=ids, token_type_ids=type_ids, attention_mask=mask) return pooled tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # honestly not sure if that is the best way to go, but it works :) model = IDCM_InferenceOnly.from_pretrained("sebastian-hofstaetter/idcm-distilbert-msmarco_doc") ```` ## Effectiveness on MSMARCO Passage & TREC Deep Learning '19 We trained our model on the MSMARCO-Document collection. We trained the selection module CK with knowledge distillation from the stronger BERT model. For re-ranking we used the top-100 BM25 results. The throughput of IDCM should be ~600 documents with max 2000 tokens per second. ### MSMARCO-Document-DEV | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .252 | .311 | | **IDCM** | .380 | .446 | ### TREC-DL'19 (Document Task) For MRR we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers. | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .661 | .488 | | **IDCM** | .916 | .688 | For more metrics, baselines, info and analysis, please see the paper: https://arxiv.org/abs/2105.09816 ## Limitations & Bias - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on longer documents of MSMARCO, so it might struggle with especially short document text - for short text we recommend one of our MSMARCO-Passage trained models. ## Citation If you use our model checkpoint please cite our work as: ``` @inproceedings{Hofstaetter2021_idcm, author = {Sebastian Hofst{\"a}tter and Bhaskar Mitra and Hamed Zamani and Nick Craswell and Allan Hanbury}, title = {{Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking}}, booktitle = {Proc. of SIGIR}, year = {2021}, } ```
sebaverde/bertitude-ita-tweets
2021-05-20T05:09:11.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sebaverde
30
transformers
sebbagj/test-bert
2021-03-23T15:55:26.000Z
[]
[ ".gitattributes" ]
sebbagj
0
seccily/wav2vec-lt-lite
2021-04-06T05:40:27.000Z
[ "pytorch", "wav2vec2", "lt", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "optimizer-002.pt", "preprocessor_config.json", "pytorch_model.bin", "scheduler.pt", "trainer_state.json", "training_args.bin", "vocab.json" ]
seccily
8
transformers
--- language: lt datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Lithuanian by Seçilay KUTAL results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lt type: common_voice args: lt metrics: - name: Test WER type: wer --- # wav2vec-lt-lite ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("seccily/wav2vec-lt-lite") model = Wav2Vec2ForCTC.from_pretrained("seccily/wav2vec-lt-lite") resampler = torchaudio.transforms.Resample(48_000, 16_000) ``` Test Result: 59.47
seduerr/cola
2021-01-22T05:53:12.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
seduerr
21
transformers
hello
seduerr/fuser
2021-06-02T14:56:42.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".DS_Store", ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
25
transformers
seduerr/lang_det
2021-04-04T15:46:57.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".DS_Store", ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
6
transformers
seduerr/mt5-paraphrases-espanol
2020-12-10T22:56:03.000Z
[ "pytorch", "mt5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".DS_Store", ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
53
transformers
seduerr/pai-tl
2021-04-06T05:37:09.000Z
[ "pytorch", "t5", "lm-head", "seq2seq", "en", "fr", "ro", "de", "dataset:c4", "arxiv:1910.10683", "transformers", "summarization", "translation", "license:apache-2.0", "text2text-generation" ]
translation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tokenizer.json" ]
seduerr
12
transformers
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Pretraining Dataset: [C4](https://huggingface.co/datasets/c4) Other Community Checkpoints: [here](https://huggingface.co/models?search=t5) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
seduerr/pai_comma
2021-05-05T14:38:46.000Z
[ "pytorch" ]
[ ".gitattributes", "pytorch_model.bin" ]
seduerr
0
seduerr/pai_con
2021-01-31T18:24:58.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
seduerr
6
transformers
‘contrast: ‘
seduerr/pai_emotion
2021-03-14T07:40:57.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
21
transformers
seduerr/pai_exem
2021-01-27T07:01:57.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
6
transformers
seduerr/pai_f2m
2021-01-24T14:11:49.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
8
transformers
seduerr/pai_formtrans
2021-05-20T06:20:23.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
6
transformers
seduerr/pai_fuser_short
2021-05-01T13:43:18.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
21
transformers
seduerr/pai_infi
2021-05-23T12:49:38.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "additional_ids_to_tokens.pkl", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
seduerr
8
transformers
seduerr/pai_joke
2021-05-23T12:50:42.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
seduerr
12
transformers
seduerr/pai_m2f
2021-01-25T05:01:41.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
7
transformers
seduerr/pai_meaningfulness
2021-05-06T07:30:35.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
13
transformers
seduerr/pai_paraph
2021-06-08T08:43:43.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".DS_Store", ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json" ]
seduerr
7
transformers
input_ = paraphrase: + str(input_) + ' </s>'
seduerr/pai_pol
2021-01-31T18:29:36.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
seduerr
8
transformers
input_ = polite: + str(input_) + ' </s>'
seduerr/pai_pos2neg
2021-02-16T09:40:02.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "readme.md" ]
seduerr
19
transformers
hello
seduerr/pai_simplifier
2021-03-03T06:31:58.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
32
transformers
seduerr/pai_simplifier_abstract
2021-03-03T11:54:40.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
38
transformers
seduerr/pai_splitter_short
2021-05-09T20:32:03.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".DS_Store", ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
14
transformers
seduerr/pai_subject
2021-06-09T10:20:17.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
10
transformers
seduerr/paiformalityclassifier
2021-05-20T05:09:56.000Z
[ "tf", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "tf_model.h5" ]
seduerr
30
transformers
seduerr/paiintent
2021-03-20T05:20:17.000Z
[ "pytorch", "squeezebert", "en", "dataset:mulit_nli", "transformers", "zero-shot-classification", "pipeline_tag:zero-shot-classification" ]
zero-shot-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "vocab.txt" ]
seduerr
128
transformers
--- language: en pipeline_tag: zero-shot-classification tags: - squeezebert datasets: - mulit_nli metrics: - accuracy --- # SqueezeBERT
seduerr/paraphrase
2021-05-25T19:43:51.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
43
transformers
seduerr/sentiment
2021-01-12T10:50:07.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
seduerr
14
transformers
hello hello
seduerr/soccer
2021-03-16T05:15:03.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
6
transformers
seduerr/splitter
2021-06-02T14:56:03.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".DS_Store", ".gitattributes", "config.json", "pytorch_model.bin" ]
seduerr
24
transformers
seduerr/t5-pawraphrase
2020-11-19T08:26:23.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
seduerr
195
transformers
# Invoking more Creativity with Pawraphrases based on T5 ## This micro-service allows to find paraphrases for a given text based on T5. ![Imgur](https://i.imgur.com/v6DFBE0.png) We explain how we finetune the architecture T5 with the dataset PAWS (both from Google) to get the capability of creating paraphrases (or pawphrases since we are using the PAWS dataset :smile:). With this, we can create paraphrases for any given textual input. Find the code for the service in this [Github Repository](https://github.com/seduerr91/pawraphrase_public). In order to create your own __'pawrasphrase tool'__, follow these steps: ### Step 1: Find a Useful Architecture and Datasets Since Google's [T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) has been trained on multiple tasks (e.g., text summarization, question-answering) and it is solely based on Text-to-Text tasks it is pretty useful for extending its task-base through finetuning it with paraphrases. Luckily, the [PAWS](https://github.com/google-research-datasets/paws) dataset consists of approximately 50.000 labeled paraphrases that we can use to fine-tune T5. ### Step 2: Prepare the PAWS Dataset for the T5 Architecture Once identified, it is crucial to prepare the PAWS dataset to feed it into the T5 architecture for finetuning. Since PAWS is coming both with paraphrases and non-paraphases, it needs to be filtered for paraphrases only. Next, after packing it into a Pandas DataFrame, the necessary table headers had to be created. Next, you split the resulting training samples into test, train, and validation set. ![Imgur](https://i.imgur.com/MTM6apI.png) ### Step 3: Fine-tune T5-base with PAWS Next, following these [training instructions](https://towardsdatascience.com/paraphrase-any-question-with-t5-text-to-text-transfer-transformer-pretrained-model-and-cbb9e35f1555), in which they used the Quora dataset, we use the PAWS dataset and feed into T5. Central is the following code to ensure that T5 understands that it has to _paraphrase_. The adapted version can be found [here](https://github.com/seduerr91/pawraphrase_public/blob/master/t5_pawraphrase_training.ipynb). ![Imgur](https://i.imgur.com/uAd0bVo.png) Additionally, it is helpful to force the old versions of _torch==1.4.0, transformers==2.9.0_ and *pytorch_lightning==0.7.5*, since the newer versions break (trust me, I am speaking from experience). However, when doing such training, it is straightforward to start with the smallest architecture (here, _T5-small_) and a small version of your dataset (e.g., 100 paraphrase examples) to quickly identify where the training may fail or stop. ### Step 4: Start Inference by yourself. Next, you can use the fine-tuned T5 Architecture to create paraphrases from every input. As seen in the introductory image. The corresponding code can be found [here](https://github.com/seduerr91/pawraphrase_public/blob/master/t5_pawraphrase_inference.ipynb). ### Step 5: Using the fine-tuning through a GUI Finally, to make the service useful we can provide it as an API as done with the infilling model [here](https://seduerr91.github.io/blog/ilm-fastapi) or with this [frontend](https://github.com/renatoviolin/T5-paraphrase-generation) which was prepared by Renato. Kudos! Thank you for reading this article. I'd be curious about your opinion. #### Who am I? I am Sebastian an NLP Deep Learning Research Scientist (M.Sc. in IT and Business). In my former life, I was a manager at Austria's biggest bank. In the future, I want to work remotely flexibly & in the field of NLP. Drop me a message on [LinkedIn](https://www.linkedin.com/in/sebastianduerr/) if you want to get in touch!
seduerr/t5-small-pytorch
2021-04-06T04:48:50.000Z
[ "pytorch", "t5", "lm-head", "seq2seq", "en", "fr", "ro", "de", "dataset:c4", "arxiv:1910.10683", "transformers", "summarization", "translation", "license:apache-2.0", "text2text-generation" ]
translation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tokenizer.json" ]
seduerr
28
transformers
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Pretraining Dataset: [C4](https://huggingface.co/datasets/c4) Other Community Checkpoints: [here](https://huggingface.co/models?search=t5) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
seduerr/t5_base_paws_ger
2020-11-30T11:17:06.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
seduerr
9
transformers
# T5 Base with Paraphrases in German Language This T5 base model has been trained with the German part of the PAWS-X data set. It can be used as any T5 model and will generated paraphrases with the prompt keyword: 'paraphrase: '__GermanSentence__ Please contact me, if you need more information ([email protected]). Thank you. Sebastian
seduerr/t5_base_verbs
2020-12-19T15:35:02.000Z
[]
[ ".gitattributes" ]
seduerr
0
seguinanto/brevert
2021-01-07T15:00:16.000Z
[]
[ ".gitattributes" ]
seguinanto
0
seiya/oubiobert-base-uncased
2021-05-20T05:10:40.000Z
[ "pytorch", "jax", "bert", "pretraining", "arxiv:2005.07202", "transformers", "exbert", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
seiya
631
transformers
--- tags: - exbert license: apache-2.0 --- # ouBioBERT-Base, Uncased Bidirectional Encoder Representations from Transformers for Biomedical Text Mining by Osaka University (ouBioBERT) is a language model based on the BERT-Base (Devlin, et al., 2019) architecture. We pre-trained ouBioBERT on PubMed abstracts from the PubMed baseline (ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline) via our method. The details of the pre-training procedure can be found in Wada, et al. (2020). ## Evaluation We evaluated the performance of ouBioBERT in terms of the biomedical language understanding evaluation (BLUE) benchmark (Peng, et al., 2019). The numbers are mean (standard deviation) on five different random seeds. | Dataset | Task Type | Score | |:----------------|:-----------------------------|-------------:| | MedSTS | Sentence similarity | 84.9 (0.6) | | BIOSSES | Sentence similarity | 92.3 (0.8) | | BC5CDR-disease | Named-entity recognition | 87.4 (0.1) | | BC5CDR-chemical | Named-entity recognition | 93.7 (0.2) | | ShARe/CLEFE | Named-entity recognition | 80.1 (0.4) | | DDI | Relation extraction | 81.1 (1.5) | | ChemProt | Relation extraction | 75.0 (0.3) | | i2b2 2010 | Relation extraction | 74.0 (0.8) | | HoC | Document classification | 86.4 (0.5) | | MedNLI | Inference | 83.6 (0.7) | | **Total** | Macro average of the scores |**83.8 (0.3)**| ## Code for Fine-tuning We made the source code for fine-tuning freely available at [our repository](https://github.com/sy-wada/blue_benchmark_with_transformers). ## Citation If you use our work in your research, please kindly cite the following paper: ```bibtex @misc{2005.07202, Author = {Shoya Wada and Toshihiro Takeda and Shiro Manabe and Shozo Konishi and Jun Kamohara and Yasushi Matsumura}, Title = {A pre-training technique to localize medical BERT and enhance BioBERT}, Year = {2020}, Eprint = {arXiv:2005.07202}, } ``` <a href="https://huggingface.co/exbert/?model=seiya/oubiobert-base-uncased&sentence=Coronavirus%20disease%20(COVID-19)%20is%20caused%20by%20SARS-COV2%20and%20represents%20the%20causative%20agent%20of%20a%20potentially%20fatal%20disease%20that%20is%20of%20great%20global%20public%20health%20concern."> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
sello-ralethe/bert-base-frozen-generics-mlm
2021-05-20T05:11:38.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
sello-ralethe
6
transformers
BERT model finetuned for masked language modeling on generics dataset by freezing all the weights of pretrained BERT except the last layer. The aim is to investigate if the model will overgeneralize generics and treat quantified statements such as 'All ducks lay eggs', 'All tigers have stripes' as if these are generics.
sello-ralethe/bert-base-generics-mlm
2021-05-20T05:12:57.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
sello-ralethe
6
transformers
sello-ralethe/roberta-base-frozen-generics-mlm
2021-05-20T20:08:48.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
sello-ralethe
7
transformers
sello-ralethe/roberta-base-generics-mlm
2021-05-20T20:10:26.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
sello-ralethe
14
transformers
sentence-transformers/LaBSE
2021-06-03T07:01:47.000Z
[ "pytorch", "jax", "bert", "arxiv:2007.01852", "sentence-transformers", "feature-extraction" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
18,517
sentence-transformers
--- tags: - sentence-transformers - feature-extraction --- # LaBSE Pytorch Version This is a pytorch port of the tensorflow version of [LaBSE](https://tfhub.dev/google/LaBSE/1). To get the sentence embeddings, you can use the following code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/LaBSE") model = AutoModel.from_pretrained("sentence-transformers/LaBSE") sentences = ["Hello World", "Hallo Welt"] encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=64, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = model_output.pooler_output embeddings = torch.nn.functional.normalize(embeddings) print(embeddings) ``` When you have [sentence-transformers](https://www.sbert.net/) installed, you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Hello World", "Hallo Welt"] model = SentenceTransformer('LaBSE') embeddings = model.encode(sentences) print(embeddings) ``` ## Reference: Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Narveen Ari, Wei Wang. [Language-agnostic BERT Sentence Embedding](https://arxiv.org/abs/2007.01852). July 2020 License: [https://tfhub.dev/google/LaBSE/1](https://tfhub.dev/google/LaBSE/1)
sentence-transformers/bert-base-nli-cls-token
2021-06-03T07:02:30.000Z
[ "pytorch", "jax", "bert", "en", "dataset:snli", "dataset:multi_nli", "arxiv:1908.10084", "exbert", "sentence-transformers", "feature-extraction", "license:apache-2.0" ]
feature-extraction
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
2,936
sentence-transformers
--- language: en tags: - exbert - sentence-transformers - feature-extraction license: apache-2.0 datasets: - snli - multi_nli --- # BERT base model (uncased) for Sentence Embeddings This is the `bert-base-nli-cls-token` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings. The model is described in the paper [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings. The CLS token of each input represents the sentence embedding: ```python from transformers import AutoTokenizer, AutoModel import torch #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/bert-base-nli-cls-token") model = AutoModel.from_pretrained("sentence-transformers/bert-base-nli-cls-token") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = model_output[0][:,0] #Take the first token ([CLS]) from each sentence print("Sentence embeddings:") print(sentence_embeddings) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('bert-base-nli-cls-token') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/bert-base-nli-max-tokens
2021-06-09T08:27:55.000Z
[ "pytorch", "jax", "bert", "en", "dataset:snli", "dataset:multi_nli", "arxiv:1908.10084", "exbert", "sentence-transformers", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
917
sentence-transformers
--- language: en tags: - exbert - sentence-transformers - transformers license: apache-2.0 datasets: - snli - multi_nli --- # BERT base model (uncased) for Sentence Embeddings This is the `bert-base-nli-max-tokens` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings. The model is described in the paper [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings. It uses max pooling to generate a fixed sized sentence embedding: ```python from transformers import AutoTokenizer, AutoModel import torch #Max Pooling - Take the max value over time for every dimension def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value max_over_time = torch.max(token_embeddings, 1)[0] return max_over_time #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/bert-base-nli-max-tokens") model = AutoModel.from_pretrained("sentence-transformers/bert-base-nli-max-tokens") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, max pooling sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('bert-base-nli-max-tokens') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/bert-base-nli-mean-tokens
2021-05-20T05:19:27.000Z
[ "pytorch", "jax", "bert", "en", "dataset:snli", "dataset:multi_nli", "arxiv:1908.10084", "transformers", "exbert", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
30,764
transformers
--- language: en tags: - exbert license: apache-2.0 datasets: - snli - multi_nli --- # BERT base model (uncased) for Sentence Embeddings This is the `bert-base-nli-mean-tokens` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings. The model is described in the paper [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/bert-base-nli-mean-tokens") model = AutoModel.from_pretrained("sentence-transformers/bert-base-nli-mean-tokens") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('bert-base-nli-mean-tokens') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/bert-base-nli-stsb-mean-tokens
2021-05-20T05:20:18.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
28,391
transformers
sentence-transformers/bert-large-nli-cls-token
2020-07-10T12:23:53.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
41
transformers
sentence-transformers/bert-large-nli-max-tokens
2021-05-20T05:22:13.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
66
transformers
sentence-transformers/bert-large-nli-mean-tokens
2021-05-20T05:24:36.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
898
transformers
sentence-transformers/ce-distilroberta-base-quora
2021-05-20T20:13:52.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CEBinaryClassificationEvaluator_Quora-dev_results.csv", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
38
transformers
sentence-transformers/ce-distilroberta-base-stsb
2021-05-20T20:14:39.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CECorrelationEvaluator_sts-dev_results.csv", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
443
transformers
sentence-transformers/ce-ms-marco-TinyBERT-L-2
2021-05-20T05:26:47.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
145
transformers
# Cross-Encoder for MS Marco This model uses [BERT-Tiny](https://github.com/google-research/bert), a tiny BERT model with only 2 layers, 2 attention heads and 128 dimension size. It was trained on [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Information Retrieval](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/information-retrieval) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Usage and Performance Pre-trained models can be used like this: ``` from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) ``` In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec (BertTokenizerFast) | Docs / Sec | | ------------- |:-------------| -----| --- | --- | | sentence-transformers/ce-ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | 780 | sentence-transformers/ce-ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | 760 | sentence-transformers/ce-ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | 660 | sentence-transformers/ce-ms-marco-electra-base | 71.99 | 36.41 | 340 | 340 | *Other models* | | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | 760 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | 340| | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | 100 | | Capreolus/electra-base-msmarco | 71.23 | | 340 | 340 | | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | | 330 | 330 Note: Runtime was computed on a V100 GPU. A bottleneck for smaller models is the standard Python tokenizer from Huggingface. Replacing it with the fast tokenizer based on Rust, the throughput is significantly improved: ``` from sentence_transformers import CrossEncoder import transformers model = CrossEncoder('model_name', max_length=512) model.tokenizer = transformers.BertTokenizerFast.from_pretrained('model_name') ```
sentence-transformers/ce-ms-marco-TinyBERT-L-4
2021-05-20T05:27:08.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CERerankingEvaluator_results.csv", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_script.py", "vocab.txt" ]
sentence-transformers
325
transformers
# Cross-Encoder for MS Marco This model uses [TinyBERT](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT), a tiny BERT model with only 4 layers. The base model is: General_TinyBERT_v2(4layer-312dim) It was trained on [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Information Retrieval](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/information-retrieval) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Usage and Performance Pre-trained models can be used like this: ``` from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) ``` In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec (BertTokenizerFast) | Docs / Sec | | ------------- |:-------------| -----| --- | --- | | sentence-transformers/ce-ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | 780 | sentence-transformers/ce-ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | 760 | sentence-transformers/ce-ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | 660 | sentence-transformers/ce-ms-marco-electra-base | 71.99 | 36.41 | 340 | 340 | *Other models* | | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | 760 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | 340| | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | 100 | | Capreolus/electra-base-msmarco | 71.23 | | 340 | 340 | | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | | 330 | 330 Note: Runtime was computed on a V100 GPU. A bottleneck for smaller models is the standard Python tokenizer from Huggingface. Replacing it with the fast tokenizer based on Rust, the throughput is significantly improved: ``` from sentence_transformers import CrossEncoder import transformers model = CrossEncoder('model_name', max_length=512) model.tokenizer = transformers.BertTokenizerFast.from_pretrained('model_name') ```
sentence-transformers/ce-ms-marco-TinyBERT-L-6
2021-05-20T05:27:40.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CERerankingEvaluator_results.csv", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_script.py", "vocab.txt" ]
sentence-transformers
546
transformers
# Cross-Encoder for MS Marco This model uses [TinyBERT](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT), a tiny BERT model with only 6 layers. The base model is: General_TinyBERT_v2(6layer-768dim) It was trained on [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Information Retrieval](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/information-retrieval) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Usage and Performance Pre-trained models can be used like this: ``` from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) ``` In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec (BertTokenizerFast) | Docs / Sec | | ------------- |:-------------| -----| --- | --- | | sentence-transformers/ce-ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | 780 | sentence-transformers/ce-ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | 760 | sentence-transformers/ce-ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | 660 | sentence-transformers/ce-ms-marco-electra-base | 71.99 | 36.41 | 340 | 340 | *Other models* | | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | 760 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | 340| | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | 100 | | Capreolus/electra-base-msmarco | 71.23 | | 340 | 340 | | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | | 330 | 330 Note: Runtime was computed on a V100 GPU. A bottleneck for smaller models is the standard Python tokenizer from Huggingface. Replacing it with the fast tokenizer based on Rust, the throughput is significantly improved: ``` from sentence_transformers import CrossEncoder import transformers model = CrossEncoder('model_name', max_length=512) model.tokenizer = transformers.BertTokenizerFast.from_pretrained('model_name') ```
sentence-transformers/ce-ms-marco-electra-base
2020-11-24T10:45:10.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CEBinaryClassificationEvaluator_MS-Marco_results.csv", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
525
transformers
# Cross-Encoder for MS Marco This model uses [Electra-base](https://huggingface.co/google/electra-base-discriminator). It was trained on [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Information Retrieval](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/information-retrieval) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Usage and Performance Pre-trained models can be used like this: ``` from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) ``` In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec (BertTokenizerFast) | Docs / Sec | | ------------- |:-------------| -----| --- | --- | | sentence-transformers/ce-ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | 780 | sentence-transformers/ce-ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | 760 | sentence-transformers/ce-ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | 660 | sentence-transformers/ce-ms-marco-electra-base | 71.99 | 36.41 | 340 | 340 | *Other models* | | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | 760 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | 340| | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | 100 | | Capreolus/electra-base-msmarco | 71.23 | | 340 | 340 | | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | | 330 | 330 Note: Runtime was computed on a V100 GPU. A bottleneck for smaller models is the standard Python tokenizer from Huggingface. Replacing it with the fast tokenizer based on Rust, the throughput is significantly improved: ``` from sentence_transformers import CrossEncoder import transformers model = CrossEncoder('model_name', max_length=512) model.tokenizer = transformers.BertTokenizerFast.from_pretrained('model_name') ```
sentence-transformers/ce-roberta-base-quora
2021-05-20T20:15:36.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CEBinaryClassificationEvaluator_Quora-dev_results.csv", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
55
transformers
sentence-transformers/ce-roberta-base-stsb
2021-05-20T20:17:59.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CECorrelationEvaluator_sts-dev_results.csv", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
44
transformers
sentence-transformers/ce-roberta-large-quora
2021-05-20T20:19:59.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CEBinaryClassificationEvaluator_Quora-dev_results.csv", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
22
transformers