modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
sentence-transformers/ce-roberta-large-stsb
2021-05-20T20:22:50.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "CECorrelationEvaluator_sts-dev_results.csv", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
121
transformers
sentence-transformers/distilbert-base-nli-stsb-mean-tokens
2021-06-04T21:48:43.000Z
[ "pytorch", "distilbert", "en", "dataset:stsb", "transformers", "feature-extraction" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
24,465
transformers
--- language: en tags: - feature-extraction datasets: - stsb widget: - text: "Hello, world" ---
sentence-transformers/distilbert-base-nli-stsb-quora-ranking
2020-08-06T08:47:53.000Z
[ "pytorch", "distilbert", "transformers" ]
[ ".gitattributes", "binary_similarity_evaluation_results.csv", "config.json", "modules.json", "paraphrase_mining_evaluation_dev_results.csv", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
165
transformers
sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
2020-08-28T17:57:35.000Z
[ "pytorch", "distilbert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
918
transformers
sentence-transformers/msmarco-MiniLM-L-12-v3
2021-05-20T05:28:25.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
54
transformers
# Sentence Embedding Model for MS MARCO Passage Retrieval This a `distilroberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages. You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html). This model was optimized to be used with **cosine-similarity** as similarity function between queries and documents. ## Training Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html) ## Performance For performance details, see: [SBERT.net - Pre-Trained Models - MS MARCO](https://www.sbert.net/docs/pretrained-models/msmarco-v3.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences): #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] query_embeddings = model.encode(queries) passage_embeddings = model.encode(passages) ``` ## Changes in v3 The models from v2 have been used for find for all training queries similar passages. An [MS MARCO Cross-Encoder](ce-msmarco.md) based on the electra-base-model has been then used to classify if these retrieved passages answer the question. If they received a low score by the cross-encoder, we saved them as hard negatives: They got a high score from the bi-encoder, but a low-score from the (better) cross-encoder. We then trained the v2 models with these new hard negatives. ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/msmarco-MiniLM-L-6-v3
2021-05-20T05:28:50.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
100
transformers
# Sentence Embedding Model for MS MARCO Passage Retrieval This a `distilroberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages. You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html). This model was optimized to be used with **cosine-similarity** as similarity function between queries and documents. ## Training Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html) ## Performance For performance details, see: [SBERT.net - Pre-Trained Models - MS MARCO](https://www.sbert.net/docs/pretrained-models/msmarco-v3.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences): #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] query_embeddings = model.encode(queries) passage_embeddings = model.encode(passages) ``` ## Changes in v3 The models from v2 have been used for find for all training queries similar passages. An [MS MARCO Cross-Encoder](ce-msmarco.md) based on the electra-base-model has been then used to classify if these retrieved passages answer the question. If they received a low score by the cross-encoder, we saved them as hard negatives: They got a high score from the bi-encoder, but a low-score from the (better) cross-encoder. We then trained the v2 models with these new hard negatives. ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/msmarco-distilbert-base-dot-prod-v3
2021-04-15T19:14:25.000Z
[ "pytorch", "distilbert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
625
transformers
# Sentence Embedding Model for MS MARCO Passage Retrieval This a `distilroberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages. You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html). This model was optimized to be used with **dot-product** as similarity function between queries and documents. ## Training Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html) ## Performance For performance details, see: [SBERT.net - Pre-Trained Models - MS MARCO](https://www.sbert.net/docs/pretrained-models/msmarco-v3.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences): #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] query_embeddings = model.encode(queries) passage_embeddings = model.encode(passages) ``` ## Changes in v3 The models from v2 have been used for find for all training queries similar passages. An [MS MARCO Cross-Encoder](ce-msmarco.md) based on the electra-base-model has been then used to classify if these retrieved passages answer the question. If they received a low score by the cross-encoder, we saved them as hard negatives: They got a high score from the bi-encoder, but a low-score from the (better) cross-encoder. We then trained the v2 models with these new hard negatives. ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/msmarco-distilbert-base-v2
2021-01-11T20:53:14.000Z
[ "pytorch", "distilbert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
583
transformers
# Sentence Embedding Model for MS MARCO Passage Retrieval This a `distilroberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages. You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) and [SBERT.net - Information Retrieval](https://www.sbert.net/examples/applications/information-retrieval/README.html) ## Training Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html) ## Performance For performance details, see: [SBERT.net - Pre-Trained Models - MS MARCO](https://www.sbert.net/docs/pretrained-models/msmarco-v2.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences): #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] query_embeddings = model.encode(queries) passage_embeddings = model.encode(passages) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/msmarco-distilbert-base-v3
2021-03-01T15:03:03.000Z
[ "pytorch", "distilbert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
3,273
transformers
# Sentence Embedding Model for MS MARCO Passage Retrieval This a `distilroberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages. You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) and [SBERT.net - Information Retrieval](https://www.sbert.net/examples/applications/information-retrieval/README.html) ## Training Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html) ## Performance For performance details, see: [SBERT.net - Pre-Trained Models - MS MARCO](https://www.sbert.net/docs/pretrained-models/msmarco-v3.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences): #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] query_embeddings = model.encode(queries) passage_embeddings = model.encode(passages) ``` ## Changes in v3 The models from v2 have been used for find for all training queries similar passages. An [MS MARCO Cross-Encoder](ce-msmarco.md) based on the electra-base-model has been then used to classify if these retrieved passages answer the question. If they received a low score by the cross-encoder, we saved them as hard negatives: They got a high score from the bi-encoder, but a low-score from the (better) cross-encoder. We then trained the v2 models with these new hard negatives. ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/msmarco-distilroberta-base-v2
2021-05-20T20:25:45.000Z
[ "pytorch", "jax", "roberta", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
643
transformers
# Sentence Embedding Model for MS MARCO Passage Retrieval This a `distilroberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages. You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) and [SBERT.net - Information Retrieval](https://www.sbert.net/examples/applications/information-retrieval/README.html) ## Training Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences): #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] query_embeddings = model.encode(queries) passage_embeddings = model.encode(passages) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/msmarco-roberta-base-v2
2021-05-20T20:26:52.000Z
[ "pytorch", "jax", "roberta", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
36
transformers
# Sentence Embedding Model for MS MARCO Passage Retrieval This a `roberta-base` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [MS MARCO Passage Retrieval dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking): Given a search query, it finds the relevant passages. You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) and [SBERT.net - Information Retrieval](https://www.sbert.net/examples/applications/information-retrieval/README.html) ## Training Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences): #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] query_embeddings = model.encode(queries) passage_embeddings = model.encode(passages) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/nli-distilroberta-base-v2
2021-05-20T20:28:03.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
133
transformers
sentence-transformers/nli-mpnet-base-v2
2021-04-30T21:46:55.000Z
[ "pytorch", "mpnet", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
2,233
transformers
sentence-transformers/nli-roberta-base-v2
2021-05-20T20:28:48.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
520
transformers
sentence-transformers/nli-roberta-large
2021-05-20T20:30:52.000Z
[ "pytorch", "jax", "roberta", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
551
transformers
# Sentence Embeddings Models trained on Paraphrases This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained SNLI + MultiNLI datasets. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/nq-distilbert-base-v1
2021-02-13T20:31:36.000Z
[ "pytorch", "distilbert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
118
transformers
# Natural Questions Models [Google's Natural Questions dataset](https://ai.google.com/research/NaturalQuestions) constists of about 100k real search queries from Google with the respective, relevant passage from Wikipedia. Models trained on this dataset work well for question-answer retrieval. ## Usage (Sentence Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('nq-distilbert-base-v1') query_embedding = model.encode('How many people live in London?') #The passages are encoded as [ [title1, text1], [title2, text2], ...] passage_embedding = model.encode([['London', 'London has 9,787,426 inhabitants at the 2011 census.']]) print("Similarity:", util.pytorch_cos_sim(query_embedding, passage_embedding)) ``` Note: For the passage, we have to encode the Wikipedia article title together with a text paragraph from that article. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Queries we want embeddings for queries = ['What is the capital of France?', 'How many people live in New York City?'] # Passages that provide answers titles = ['Paris', 'New York City'] passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") def compute_embeddings(sentences, titles=None): #Tokenize sentences if titles is not None: encoded_input = tokenizer(titles, sentences, padding=True, truncation=True, return_tensors='pt') else: encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') #Compute query embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']) query_embeddings = compute_embeddings(queries) passage_embeddings = compute_embeddings(passages, titles) ``` ## Performance For performance details, see: [SBERT.net - Pre-Trained Models - Natural Questions](https://www.sbert.net/docs/pretrained-models/nq-v1.html) ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/paraphrase-MiniLM-L12-v2
2021-05-19T12:02:42.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
1,122
transformers
sentence-transformers/paraphrase-MiniLM-L3-v2
2021-05-31T12:35:09.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
224
transformers
sentence-transformers/paraphrase-MiniLM-L6-v2
2021-05-19T19:58:43.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
1,156
transformers
sentence-transformers/paraphrase-TinyBERT-L6-v2
2021-05-28T11:07:53.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
529
transformers
sentence-transformers/paraphrase-albert-base-v2
2021-05-29T19:14:44.000Z
[ "pytorch", "albert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
sentence-transformers
31
transformers
sentence-transformers/paraphrase-albert-small-v2
2021-05-31T12:34:44.000Z
[ "pytorch", "albert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
sentence-transformers
33
transformers
sentence-transformers/paraphrase-distilroberta-base-v1
2021-05-20T20:32:01.000Z
[ "pytorch", "jax", "roberta", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
2,734
transformers
# Sentence Embeddings Models trained on Paraphrases This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on millions of paraphrase sentences. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/paraphrase-distilroberta-base-v2
2021-05-20T20:32:50.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
930
transformers
sentence-transformers/paraphrase-mpnet-base-v2
2021-05-20T06:46:11.000Z
[ "pytorch", "mpnet", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
20,114
transformers
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
2021-06-09T15:06:27.000Z
[ "pytorch", "bert", "sentence-transformers", "feature-extraction" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
sentence-transformers
1,066
sentence-transformers
--- tags: - sentence-transformers - feature-extraction --- # Paraphrase multilingual MiniLM L12 v2
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
2021-06-02T11:10:24.000Z
[ "pytorch", "xlm-roberta", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
sentence-transformers
532
transformers
sentence-transformers/paraphrase-xlm-r-multilingual-v1
2021-06-03T08:22:02.000Z
[ "pytorch", "xlm-roberta", "arxiv:1908.10084", "arxiv:2004.09813", "sentence-transformers", "feature-extraction" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sentence-transformers
1,886,737
sentence-transformers
--- tags: - sentence-transformers - feature-extraction --- # Sentence Embeddings Models trained on Paraphrases This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on millions of paraphrase sentences. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) This model is the multilingual version of distilroberta-base-paraphrase-v1, trained on parallel data for 50+ languages. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813): ``` @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```
sentence-transformers/quora-distilbert-base
2021-01-12T09:53:00.000Z
[ "pytorch", "distilbert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
333
transformers
# Sentence Embeddings Models trained on Duplicate Questions This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [Quora Duplicate Questions dataset](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs). Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) For more details, see: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/quora-distilbert-multilingual
2021-01-12T09:57:01.000Z
[ "pytorch", "distilbert", "arxiv:1908.10084", "arxiv:2004.09813", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
1,527
transformers
# Sentence Embeddings Models trained on Duplicate Questions This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on the [Quora Duplicate Questions dataset](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs). Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) For more details, see: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html) This model is the multilingual version of quora-distilbert-base, trained on parallel data for 50+ languages. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ``` and for the multilingual models: If you find this model helpful, feel free to cite our publication [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813): ``` @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```
sentence-transformers/roberta-base-nli-stsb-mean-tokens
2021-05-20T20:33:57.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_roberta_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
3,944
transformers
sentence-transformers/roberta-large-nli-stsb-mean-tokens
2021-05-20T20:36:27.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_roberta_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
522
transformers
sentence-transformers/stsb-bert-large
2021-01-11T20:32:50.000Z
[ "pytorch", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "vocab.txt" ]
sentence-transformers
191
transformers
# Sentence Embeddings Models trained on Paraphrases This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on SNLI + MultiNLI and on STS benchmark dataset. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/stsb-distilbert-base
2021-01-11T20:37:25.000Z
[ "pytorch", "distilbert", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
1,959
transformers
# Sentence Embeddings Models trained on Paraphrases This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on SNLI + MultiNLI and on STS benchmark dataset. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/stsb-distilroberta-base-v2
2021-05-20T20:37:53.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
1,087
transformers
sentence-transformers/stsb-mpnet-base-v2
2021-04-30T21:55:34.000Z
[ "pytorch", "mpnet", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sentence-transformers
2,323
transformers
sentence-transformers/stsb-roberta-base-v2
2021-05-20T20:38:47.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
872
transformers
sentence-transformers/stsb-roberta-large
2021-05-20T20:41:37.000Z
[ "pytorch", "jax", "roberta", "arxiv:1908.10084", "transformers" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "sentence_bert_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sentence-transformers
1,391
transformers
# Sentence Embeddings Models trained on Paraphrases This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on SNLI + MultiNLI and on STS benchmark dataset. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ``` @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sentence-transformers/stsb-xlm-r-multilingual
2021-05-28T12:21:10.000Z
[ "pytorch", "xlm-roberta", "arxiv:1908.10084", "arxiv:2004.09813", "transformers", "sentence_transformers", "feature-extraction" ]
feature-extraction
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sentence-transformers
9,852
transformers
--- tags: - sentence_transformers - feature-extraction --- # Sentence Embeddings Models trained on Paraphrases This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on SNLI + MultiNLI and on STS benchmark dataset. Further details on SBERT can be found in the paper: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) This model is multilingual version, it was trained on parallel data for 50+ languages. For more details, see: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html) ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('model_name') sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] sentence_embeddings = model.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Citing & Authors If you find this model helpful, feel free to cite our publication [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813): ``` @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```
sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
2020-08-28T17:53:45.000Z
[ "pytorch", "xlm-roberta", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sentence-transformers
217
transformers
sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
2020-08-28T17:55:46.000Z
[ "pytorch", "xlm-roberta", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentence_bert_config.json", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sentence-transformers
6,877
transformers
seonghwayun/test-model
2021-04-28T04:04:31.000Z
[]
[ ".gitattributes" ]
seonghwayun
0
serdarakyol/interpress-turkish-news-classification
2021-05-20T05:29:35.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "tr", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
serdarakyol
36
transformers
--- language: tr Dataset: interpress_news_category_tr --- # INTERPRESS NEWS CLASSIFICATION ## Dataset The dataset downloaded from interpress. This dataset is real world data. Actually there are 273K data but I filtered them and used 108K data for this model. For more information about dataset please visit this [link](https://huggingface.co/datasets/interpress_news_category_tr_lite) ## Model Model accuracy on train data and validation data is %97. ## Usage for Torch ```sh pip install transformers or pip install transformers==4.3.3 ``` ```sh from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("serdarakyol/interpress-turkish-news-classification") model = AutoModelForSequenceClassification.from_pretrained("serdarakyol/interpress-turkish-news-classification") ``` ```sh import torch import numpy as np if torch.cuda.is_available(): device = torch.device("cuda") model = model.cuda() print('There are %d GPU(s) available.' % torch.cuda.device_count()) print('GPU name is:', torch.cuda.get_device_name(0)) else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") ``` ```sh def prediction(news): news=[news] indices=tokenizer.batch_encode_plus( news, max_length=512, add_special_tokens=True, return_attention_mask=True, padding='max_length', truncation=True, return_tensors='pt') inputs = indices["input_ids"].clone().detach().to(device) masks = indices["attention_mask"].clone().detach().to(device) with torch.no_grad(): output = model(inputs, token_type_ids=None,attention_mask=masks) logits = output[0] logits = logits.detach().cpu().numpy() pred = np.argmax(logits,axis=1)[0] return pred ``` ```sh news = r"ABD'den Prens Selman'a yaptırım yok Beyaz Saray Sözcüsü Psaki, Muhammed bin Selman'a yaptırım uygulamamanın \"doğru karar\" olduğunu savundu. Psaki, \"Tarihimizde, Demokrat ve Cumhuriyetçi başkanların yönetimlerinde diplomatik ilişki içinde olduğumuz ülkelerin liderlerine yönelik yaptırım getirilmemiştir\" dedi." ``` You can find the news in this [link](https://www.ntv.com.tr/dunya/abdden-prens-selmana-yaptirim-yok,YTeWNv0-oU6Glbhnpjs1JQ) (news date: 02/03/2021) ```sh labels = { 0 : "Culture-Art", 1 : "Economy", 2 : "Politics", 3 : "Education", 4 : "World", 5 : "Sport", 6 : "Technology", 7 : "Magazine", 8 : "Health", 9 : "Agenda" } pred = prediction(news) print(labels[pred]) # > World ``` ## Usage for Tensorflow ```sh pip install transformers or pip install transformers==4.3.3 import tensorflow as tf from transformers import BertTokenizer, TFBertForSequenceClassification import numpy as np tokenizer = BertTokenizer.from_pretrained('serdarakyol/interpress-turkish-news-classification') model = TFBertForSequenceClassification.from_pretrained("serdarakyol/interpress-turkish-news-classification") inputs = tokenizer(news, return_tensors="tf") inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1 outputs = model(inputs) loss = outputs.loss logits = outputs.logits pred = np.argmax(logits,axis=1)[0] labels[pred] # > World ``` Thanks to [@yavuzkomecoglu](https://huggingface.co/yavuzkomecoglu) for contributes If you have any question, please, don't hesitate to contact with me [![linkedin](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/serdarakyol55/) [![Github](https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white)](https://github.com/serdarakyol)
sergiyvl/ParaPhraserPlus_1epoch
2021-05-20T05:30:51.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
sergiyvl
21
transformers
sergiyvl/first_try_RuBERT_200_16_16_10ep
2021-05-20T05:34:45.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sergiyvl
16
transformers
sergiyvl/first_try_RuBERT_200_16_16_25ep
2021-05-20T05:36:09.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sergiyvl
12
transformers
sergiyvl/just_first_try_to_my_diplom_onBert
2021-05-20T05:37:44.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sergiyvl
11
transformers
sergiyvl/just_first_try_to_my_diplom_onBert_10epoch
2021-05-20T05:38:45.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sergiyvl
8
transformers
sergiyvl/just_first_try_to_my_diplom_onBert_minea_2epoch
2021-05-20T05:39:53.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sergiyvl
8
transformers
sergiyvl/model_65000_20ep
2021-05-20T05:41:04.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
sergiyvl
231
transformers
sergunow/rick-sanchez-blenderbot-400-distill
2021-06-17T22:33:55.000Z
[ "pytorch", "blenderbot", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "merges.txt", "pytorch_model.bin", "readme.md", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
sergunow
25
transformers
setu4993/LaBSE
2021-05-23T00:34:05.000Z
[ "pytorch", "tf", "jax", "bert", "af", "am", "ar", "as", "az", "be", "bg", "bn", "bo", "bs", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "he", "hi", "hmn", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "or", "pa", "pl", "pt", "ro", "ru", "rw", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tk", "tl", "tr", "tt", "ug", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu", "dataset:CommonCrawl", "dataset:Wikipedia", "arxiv:2007.01852", "transformers", "sentence_embedding", "multilingual", "google", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
setu4993
2,121
transformers
--- language: - af - am - ar - as - az - be - bg - bn - bo - bs - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - haw - he - hi - hmn - hr - ht - hu - hy - id - ig - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - or - pa - pl - pt - ro - ru - rw - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tk - tl - tr - tt - ug - uk - ur - uz - vi - wo - xh - yi - yo - zh - zu tags: - bert - sentence_embedding - multilingual - google license: Apache-2.0 datasets: - CommonCrawl - Wikipedia --- # LaBSE ## Model description Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval. - Model: [HuggingFace's model hub](https://huggingface.co/setu4993/LaBSE). - Paper: [arXiv](https://arxiv.org/abs/2007.01852). - Original model: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/1). - Blog post: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html). ## Usage Using the model: ```python import torch from transformers import BertModel, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE") model = BertModel.from_pretrained("setu4993/LaBSE") model = model.eval() english_sentences = [ "dog", "Puppies are nice.", "I enjoy taking long walks along the beach with my dog.", ] english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True) with torch.no_grad(): english_outputs = model(**english_inputs) ``` To get the sentence embeddings, use the pooler output: ```python english_embeddings = english_outputs.pooler_output ``` Output for other languages: ```python italian_sentences = [ "cane", "I cuccioli sono carini.", "Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.", ] japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"] italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True) japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True) with torch.no_grad(): italian_outputs = model(**italian_inputs) japanese_outputs = model(**japanese_inputs) italian_embeddings = italian_outputs.pooler_output japanese_embeddings = japanese_outputs.pooler_output ``` For similarity between sentences, an L2-norm is recommended before calculating the similarity: ```python import torch.nn.functional as F def similarity(embeddings_1, embeddings_2): normalized_embeddings_1 = F.normalize(embeddings_1, p=2) normalized_embeddings_2 = F.normalize(embeddings_2, p=2) return torch.matmul( normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1) ) print(similarity(english_embeddings, italian_embeddings)) print(similarity(english_embeddings, japanese_embeddings)) print(similarity(italian_embeddings, japanese_embeddings)) ``` ## Details Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852). ### BibTeX entry and citation info ```bibtex @misc{feng2020languageagnostic, title={Language-agnostic BERT Sentence Embedding}, author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang}, year={2020}, eprint={2007.01852}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
severinsimmler/bert-adapted-german-press
2021-05-20T05:44:48.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
severinsimmler
18
transformers
severinsimmler/german-press-bert
2021-05-20T05:46:27.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
severinsimmler
27
transformers
severinsimmler/literary-german-bert
2021-05-20T05:47:20.000Z
[ "pytorch", "jax", "bert", "token-classification", "de", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "eval_results.txt", "flax_model.msgpack", "kfold.png", "prosa-jahre.png", "pytorch_model.bin", "special_tokens_map.json", "test_results.txt", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
severinsimmler
131
transformers
--- language: de thumbnail: https://huggingface.co/severinsimmler/literary-german-bert/raw/main/kfold.png --- # German BERT for literary texts This German BERT is based on `bert-base-german-dbmdz-cased`, and has been adapted to the domain of literary texts by fine-tuning the language modeling task on the [Corpus of German-Language Fiction](https://figshare.com/articles/Corpus_of_German-Language_Fiction_txt_/4524680/1). Afterwards the model was fine-tuned for named entity recognition on the [DROC](https://gitlab2.informatik.uni-wuerzburg.de/kallimachos/DROC-Release) corpus, so you can use it to recognize protagonists in German novels. # Stats ## Language modeling The [Corpus of German-Language Fiction](https://figshare.com/articles/Corpus_of_German-Language_Fiction_txt_/4524680/1) consists of 3,194 documents with 203,516,988 tokens or 1,520,855 types. The publication year of the texts ranges from the 18th to the 20th century: ![years](prosa-jahre.png) ### Results After one epoch: | Model | Perplexity | | ---------------- | ---------- | | Vanilla BERT | 6.82 | | Fine-tuned BERT | 4.98 | ## Named entity recognition The provided model was also fine-tuned for two epochs on 10,799 sentences for training, validated on 547 and tested on 1,845 with three labels: `B-PER`, `I-PER` and `O`. ## Results | Dataset | Precision | Recall | F1 | | ------- | --------- | ------ | ---- | | Dev | 96.4 | 87.3 | 91.6 | | Test | 92.8 | 94.9 | 93.8 | The model has also been evaluated using 10-fold cross validation and compared with a classic Conditional Random Field baseline described in [Jannidis et al.](https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/14333/file/Jannidis_Figurenerkennung_Roman.pdf) (2015): ![kfold](kfold.png) # References Markus Krug, Lukas Weimer, Isabella Reger, Luisa Macharowsky, Stephan Feldhaus, Frank Puppe, Fotis Jannidis, [Description of a Corpus of Character References in German Novels](http://webdoc.sub.gwdg.de/pub/mon/dariah-de/dwp-2018-27.pdf), 2018. Fotis Jannidis, Isabella Reger, Lukas Weimer, Markus Krug, Martin Toepfer, Frank Puppe, [Automatische Erkennung von Figuren in deutschsprachigen Romanen](https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/14333/file/Jannidis_Figurenerkennung_Roman.pdf), 2015.
severo/autonlp-sentiment_detection-1781580
2021-06-18T18:20:55.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:severo/autonlp-data-sentiment_detection-3c8bcd36", "transformers", "autonlp" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sample_input.pkl", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
severo
5
transformers
seyonec/BPE_SELFIES_PubChem_shard00_120k
2021-05-20T20:44:11.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
21
transformers
seyonec/BPE_SELFIES_PubChem_shard00_150k
2021-05-20T20:44:59.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
15
transformers
seyonec/BPE_SELFIES_PubChem_shard00_160k
2021-05-20T20:46:05.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
20
transformers
seyonec/BPE_SELFIES_PubChem_shard00_166_5k
2021-05-20T20:46:50.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
15
transformers
seyonec/BPE_SELFIES_PubChem_shard00_50k
2021-05-20T20:48:07.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
9
transformers
seyonec/BPE_SELFIES_PubChem_shard00_70k
2021-05-20T20:49:05.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
15
transformers
seyonec/ChemBERTA_PubChem1M_shard00
2021-05-20T20:50:55.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
16
transformers
seyonec/ChemBERTA_PubChem1M_shard00_115k
2021-05-20T20:51:44.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
21
transformers
seyonec/ChemBERTA_PubChem1M_shard00_125k
2021-05-20T20:52:31.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
14
transformers
seyonec/ChemBERTA_PubChem1M_shard00_140k
2021-05-20T20:53:19.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
28
transformers
seyonec/ChemBERTA_PubChem1M_shard00_155k
2021-05-20T20:54:07.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
79
transformers
seyonec/ChemBERTA_PubChem1M_shard00_75k
2021-05-20T20:54:57.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
10
transformers
seyonec/ChemBERTa-zinc-base-v1
2021-05-20T20:55:33.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "chemistry", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
1,006
transformers
--- tags: - chemistry --- # ChemBERTa: Training a BERT-like transformer model for masked language modelling of chemical SMILES strings. Deep learning for chemistry and materials science remains a novel field with lots of potiential. However, the popularity of transfer learning based methods in areas such as NLP and computer vision have not yet been effectively developed in computational chemistry + machine learning. Using HuggingFace's suite of models and the ByteLevel tokenizer, we are able to train on a large corpus of 100k SMILES strings from a commonly known benchmark dataset, ZINC. Training RoBERTa over 5 epochs, the model achieves a decent loss of 0.398, but may likely continue to decline if trained for a larger number of epochs. The model can predict tokens within a SMILES sequence/molecule, allowing for variants of a molecule within discoverable chemical space to be predicted. By applying the representations of functional groups and atoms learned by the model, we can try to tackle problems of toxicity, solubility, drug-likeness, and synthesis accessibility on smaller datasets using the learned representations as features for graph convolution and attention models on the graph structure of molecules, as well as fine-tuning of BERT. Finally, we propose the use of attention visualization as a helpful tool for chemistry practitioners and students to quickly identify important substructures in various chemical properties. Additionally, visualization of the attention mechanism have been seen through previous research as incredibly valuable towards chemical reaction classification. The applications of open-sourcing large-scale transformer models such as RoBERTa with HuggingFace may allow for the acceleration of these individual research directions. A link to a repository which includes the training, uploading and evaluation notebook (with sample predictions on compounds such as Remdesivir) can be found [here](https://github.com/seyonechithrananda/bert-loves-chemistry). All of the notebooks can be copied into a new Colab runtime for easy execution. Thanks for checking this out! - Seyone
seyonec/ChemBERTa-zinc250k-v1
2021-05-20T20:56:13.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
31
transformers
seyonec/ChemBERTa_masked_30_PubChem_shard00_1M_150k_steps
2021-05-20T20:56:58.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
28
transformers
seyonec/ChemBERTa_zinc250k_v2_40k
2021-05-20T20:57:42.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
96
transformers
seyonec/PubChem10M_SMILES_BPE_120k
2021-05-20T20:58:35.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
9
transformers
seyonec/PubChem10M_SMILES_BPE_180k
2021-05-20T20:59:23.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
1,460
transformers
seyonec/PubChem10M_SMILES_BPE_240k
2021-05-20T21:00:08.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
18
transformers
seyonec/PubChem10M_SMILES_BPE_390k
2021-05-20T21:00:52.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
19
transformers
seyonec/PubChem10M_SMILES_BPE_396_250
2021-05-20T21:01:53.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
1,583
transformers
seyonec/PubChem10M_SMILES_BPE_450k
2021-05-20T21:02:39.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
3,837
transformers
seyonec/PubChem10M_SMILES_BPE_50k
2021-05-20T21:03:24.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
15
transformers
seyonec/PubChem10M_SMILES_BPE_60k
2021-05-20T21:04:12.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
seyonec
14
transformers
seyonec/SMILES_BPE_PubChem_100k_shard00
2021-05-20T21:05:05.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
seyonec
13
transformers
seyonec/SMILES_BPE_PubChem_250k
2021-05-20T21:06:00.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
seyonec
21
transformers
seyonec/SMILES_tokenized_PubChem_shard00_100k
2021-05-20T21:06:51.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
seyonec
14
transformers
seyonec/SMILES_tokenized_PubChem_shard00_150k
2021-05-20T21:07:44.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
seyonec
21
transformers
seyonec/SMILES_tokenized_PubChem_shard00_160k
2021-05-20T21:08:23.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json", "vocab.txt" ]
seyonec
672
transformers
seyonec/SMILES_tokenized_PubChem_shard00_40k
2021-05-20T21:09:40.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
seyonec
15
transformers
seyonec/SMILES_tokenized_PubChem_shard00_50k
2021-05-20T21:10:29.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
seyonec
463
transformers
seyonec/SmilesTokenizer_ChemBERTa_zinc250k_40k
2021-05-20T21:11:20.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
seyonec
31
transformers
seyonec/checkpoint-50000
2021-05-20T21:12:19.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "training_args.bin", "vocab.json" ]
seyonec
30
transformers
sgich/bert_case_uncased_KenyaHateSpeech
2021-04-25T19:12:40.000Z
[ "pytorch", "text-classification", "pipeline_tag:text-classification" ]
text-classification
[ ".gitattributes", "README.md", "config.json.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json.txt", "vocab.txt" ]
sgich
0
# HateSpeechDetection --- pipeline_tag: text-classification --- The model is used for classifying a text as Hatespeech or Normal. The model is trained using data from Twitter, specifically Kenyan related tweets. To maximize on the limited dataset, text augmentation was done. The dataset is available here: https://github.com/sgich/HateSpeechDetection Using a pre-trained "bert-base-uncased" transformer model, adding a dropout layer, a linear output layer and adding 10 common emojis that may be related to either Hate or Normal Speech. Then the model was tuned on a dataset of Kenyan/Kenyan-related scraped tweets with the purpose of performing text classification of "Normal Speech" or "Hate Speech" based on the text. This model was the result of realizing that majority of similar models did not cater for the African context where the target groups are not based on race and/or religious affiliation but mostly tribal differences which has proved fatal in the past. The model can be improved greatly by using a large and representative dataset and optimization of the model to a better degree.
sgk/test_model
2021-04-21T05:56:32.000Z
[]
[ ".gitattributes" ]
sgk
0
sgugger/dummy-model
2021-06-09T00:04:27.000Z
[ "tf", "camembert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "sentencepiece.bpe.model", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json" ]
sgugger
1
transformers
sgugger/finetuned-bert
2021-06-15T14:40:13.000Z
[ "pytorch", "bert", "text-classification", "dataset:glue", "transformers", "license:apache-2.0" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
sgugger
22
transformers
--- license: apache-2.0 datasets: - glue metrics: - accuracy - f1 model-index: - name: finetuned-bert results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8651960784313726 - name: F1 type: f1 value: 0.9050086355785838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3898 - Accuracy: 0.8652 - F1: 0.9050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5549 | 1.0 | 230 | 0.3806 | 0.8333 | 0.8870 | | 0.3343 | 2.0 | 460 | 0.3620 | 0.8382 | 0.8896 | | 0.181 | 3.0 | 690 | 0.3898 | 0.8652 | 0.9050 | ### Framework versions - Transformers 4.7.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.8.0.dev0 - Tokenizers 0.10.1
sgugger/funnel-random-tiny
2021-04-08T19:31:32.000Z
[ "pytorch", "tf", "funnel", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5" ]
sgugger
7,899
transformers
sgugger/resnet50d
2021-02-18T10:31:48.000Z
[ "pytorch", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "arxiv:1906.02659", "arxiv:2010.15052", "image-classification", "timm", "resnet", "license:apache-2.0" ]
image-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
sgugger
10
timm
--- tags: - image-classification - timm - resnet license: apache-2.0 datasets: - imagenet --- # ResNet-50d Pretrained model on [ImageNet](http://www.image-net.org/). The ResNet architecture was introduced in [this paper](https://arxiv.org/abs/1512.03385) and is adapted with the ResNet-D trick from [this paper](https://arxiv.org/abs/1812.01187) ## Model description ResNet are deep convolutional neural networks using residual connections. Each layer is composed of two convolutions with a ReLU in the middle, but the output is the sum of the input with the output of the convolutional blocks. ![](https://neurohive.io/wp-content/uploads/2019/01/resnet-e1548261477164.png) This way, there is a direct connection from the original inputs to even the deepest layers in the network. ## Intended uses & limitations You can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head to fine-tune it on a downstream task (another classification task with different labels, image segmentation or object detection, to name a few). ### How to use You can use this model with the usual factory method in `timm`: ```python import PIL import timm import torch model = timm.create_model("sgugger/resnet50d") img = PIL.Image.open(path_to_an_image) img = img.convert("RGB") config = model.default_cfg if isinstance(config["input_size"], tuple): img_size = config["input_size"][-2:] else: img_size = config["input_size"] transform = timm.data.transforms_factory.transforms_imagenet_eval( img_size=img_size, interpolation=config["interpolation"], mean=config["mean"], std=config["std"], ) input_tensor = transform(cat_img) input_tensor = input_tensor.unsqueeze(0) # ^ batch size = 1 with torch.no_grad(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ### Limitations and bias The training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will probably not generalize well on drawings or images containing multiple objects with different labels. The training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or models created by fine-tuning this model will work better on images picturing scenes from these countries (see [this paper](https://arxiv.org/abs/1906.02659) for examples). More generally, [recent research](https://arxiv.org/abs/2010.15052) has shown that even models trained in an unsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in the training images. ## Training data This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 millions of hand-annotated images with 1,000 categories. ## Training procedure To be completed ### Preprocessing The images are resized using bicubic interpolation to 224x224 and normalized with the usual ImageNet statistics. ## Evaluation results This model has a top1-accuracy of 80.53% and a top-5 accuracy of 95.16% in the evaluation set of ImageNet ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
sh/test
2021-04-26T08:17:59.000Z
[]
[ ".gitattributes" ]
sh
0
shahrukhx01/bert-mini-finetune-question-detection
2021-06-02T05:55:27.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
shahrukhx01
409
transformers
# KEYWORD QUERY VS STATEMENT/QUESTION CLASSIFIER FOR NEURAL SEARCH | Train Loss | Validation Acc.| Test Acc.| | ------------- |:-------------: | -----: | | 0.000806 | 0.99 | 0.997 | # USAGE ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-mini-finetune-question-detection") model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/bert-mini-finetune-question-detection") ``` Trained to add feature for classifying queries between Keyword Query or Question + Statement Query using classification in [Haystack](https://github.com/deepset-ai/haystack/issues/611) Problem Statement: One common challenge that we saw in deployments: We need to distinguish between real questions and keyword queries that come in. We only want to route questions to the Reader branch in order to maximize the accuracy of results and minimize computation efforts/costs. Baseline: https://www.kaggle.com/shahrukhkhan/question-v-statement-detection Dataset: https://www.kaggle.com/stefanondisponibile/quora-question-keyword-pairs Kaggle Notebook: https://www.kaggle.com/shahrukhkhan/question-vs-statement-classification-mini-bert/
shahrukhx01/question-vs-statement-classifier
2021-06-02T05:55:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
shahrukhx01
22
transformers
shahukareem/wav2vec2-large-xlsr-53-dhivehi
2021-03-28T08:47:31.000Z
[ "pytorch", "wav2vec2", "dv", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
shahukareem
1,061
transformers
--- language: dv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Shahu Kareem XLSR Wav2Vec2 Large 53 Dhivehi results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice dv type: common_voice args: dv metrics: - name: Test WER type: wer value: 32.85 --- # Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "dv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "dv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\،\.\؟\!\'\"\–\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.85% ## Training The Common Voice `train` and `validation` datasets were used for training. ## Example predictions ```-- reference: ކަރަންޓް ވައިރުކޮށް ބޮކި ހަރުކުރުން predicted: ކަރަންޓް ވައިރުކޮށް ބޮކި ހަރުކުރުން -- reference: ދެން އެކުދިންނާ ދިމާއަށް އަތް ދިށްކޮށްލެވެ predicted: ދެން އެކުދިންނާ ދިމާއަށް އަތް ދިއްކޮށްލެވެ ް -- reference: ރަކި ހިނިތުންވުމަކާއެކު އޭނާ އަމިއްލައަށް ތައާރަފްވި predicted: ރަކި ހިނިތުންވުމަކާއެކު އޭނާ އަމިއްލައަށް ތައަރަފްވި -- reference: ކޮޓަރީގެ ކުޑަދޮރުން ބޭރު ބަލަހައްޓައިގެން އިން ރޫނާގެ މޫނުމަތިން ފާޅުވަމުން ދިޔައީ ކަންބޮޑުވުމުގެ އަސަރުތައް predicted: ކޮޓަރީގެ ކުޑަދޮރުން ބޭރު ބަލަހައްޓައިގެން އިން ރނާގެ މޫނުމަތިން ފާޅުވަމުން ދިޔައީ ކަންބޮޑުވުމުގެ އަސަރުތައް -- ```
sharad/transpin
2021-03-31T19:33:20.000Z
[]
[ ".gitattributes" ]
sharad
0