response
stringlengths 1
33.1k
| instruction
stringlengths 22
582k
|
---|---|
Simple wrapper for correctly getting rank in both distributed
/ non-distributed settings | def get_rank() -> int:
"""
Simple wrapper for correctly getting rank in both distributed
/ non-distributed settings
"""
return (
torch.distributed.get_rank()
if torch.distributed.is_available() and torch.distributed.is_initialized()
else 0
) |
Broadcast an object from a source to all workers.
Args:
obj: Object to broadcast, must be serializable
src: Source rank for broadcast (default is primary)
use_disk: If enabled, removes redundant CPU memory copies by writing to
disk | def broadcast_object(obj: Any, src: int = _PRIMARY_RANK, use_disk: bool = True) -> Any:
"""Broadcast an object from a source to all workers.
Args:
obj: Object to broadcast, must be serializable
src: Source rank for broadcast (default is primary)
use_disk: If enabled, removes redundant CPU memory copies by writing to
disk
"""
# Either broadcast from primary to the fleet (default),
# or use the src setting as the original rank
if get_rank() == src:
# Emit data
buffer = io.BytesIO()
torch.save(obj, buffer)
data_view = buffer.getbuffer()
length_tensor = torch.LongTensor([len(data_view)])
length_tensor = broadcast(length_tensor, src=src)
data_tensor = torch.ByteTensor(data_view)
data_tensor = broadcast(data_tensor, src=src)
else:
# Fetch from the source
length_tensor = torch.LongTensor([0])
length_tensor = broadcast(length_tensor, src=src)
data_tensor = torch.empty([length_tensor.item()], dtype=torch.uint8)
data_tensor = broadcast(data_tensor, src=src)
if use_disk:
with tempfile.TemporaryFile("r+b") as f:
f.write(data_tensor.numpy())
# remove reference to the data tensor and hope that Python garbage
# collects it
del data_tensor
f.seek(0)
obj = torch.load(f)
else:
buffer = io.BytesIO(data_tensor.numpy())
obj = torch.load(buffer)
return obj |
Adds generic command-line arguments for convnet training / testing to parser. | def add_generic_args(parser):
"""
Adds generic command-line arguments for convnet training / testing to parser.
"""
parser.add_argument(
"--config_file", type=str, help="path to config file for model", required=True
)
parser.add_argument(
"--checkpoint_folder",
default="",
type=str,
help="""folder to use for saving checkpoints:
epochal checkpoints are stored as model_<epoch>.torch,
latest epoch checkpoint is at checkpoint.torch""",
)
parser.add_argument(
"--checkpoint_load_path",
default="",
type=str,
help="""path to load a checkpoint from, which can be a file or a directory:
If the path is a directory, the checkpoint file is assumed to be
checkpoint.torch""",
)
parser.add_argument(
"--pretrained_checkpoint_path",
default="",
type=str,
help="""path to load a pre-trained checkpoints from, which can be a file or a
directory:
If the path is a directory, the checkpoint file is assumed to be
checkpoint.torch. This checkpoint is only used for fine-tuning
tasks, and training will not resume from this checkpoint.""",
)
parser.add_argument(
"--checkpoint_period",
default=1,
type=int,
help="""Checkpoint every x phases (default 1)""",
)
parser.add_argument(
"--show_progress",
default=False,
action="store_true",
help="shows progress bar during training / testing",
)
parser.add_argument(
"--skip_tensorboard",
default=False,
action="store_true",
help="do not perform tensorboard visualization",
)
parser.add_argument(
"--visdom_server",
default="",
type=str,
help="visdom server to use (default None)",
)
parser.add_argument(
"--visdom_port",
default=8097,
type=int,
help="port of visdom server (default = 8097)",
)
parser.add_argument(
"--profiler",
default=False,
action="store_true",
help="specify this argument to profile training code",
)
parser.add_argument(
"--debug",
default=False,
action="store_true",
help="specify this argument for debugging mode",
)
parser.add_argument(
"--ignore_checkpoint_config",
default=False,
action="store_true",
help="""specify this argument to ignore
the compatibility of the config (or lack of config) attached
to the checkpoint; this will allow mismatches between
the training specified in the config and the
actual training of the model""",
)
parser.add_argument(
"--log_freq",
default=5,
type=int,
help="Logging frequency for LossLrMeterLoggingHook (default 5)",
)
parser.add_argument(
"--image_backend",
default="PIL",
type=str,
help="torchvision image decoder backend (PIL or accimage). Default PIL",
)
parser.add_argument(
"--video_backend",
default="pyav",
type=str,
help="torchvision video decoder backend (pyav or video_reader). Default pyav",
)
parser.add_argument(
"--distributed_backend",
default="none",
type=str,
help="""Distributed backend: either 'none' (for non-distributed runs)
or 'ddp' (for distributed runs). Default none.""",
)
return parser |
Perform assertions on generic command-line arguments. | def check_generic_args(args):
"""
Perform assertions on generic command-line arguments.
"""
# check types and values:
assert is_pos_int(args.visdom_port), "incorrect visdom port"
# create checkpoint folder if it does not exist:
if args.checkpoint_folder != "" and not os.path.exists(args.checkpoint_folder):
os.makedirs(args.checkpoint_folder, exist_ok=True)
assert os.path.exists(args.checkpoint_folder), (
"could not create folder %s" % args.checkpoint_folder
)
# when in debugging mode, enter debugger upon error:
if args.debug:
import sys
from classy_vision.generic.debug import debug_info
sys.excepthook = debug_info
# check visdom server name:
if args.visdom_server != "":
if args.visdom_server.startswith("https://"):
print("WARNING: Visdom does not work over HTTPS.")
args.visdom_server = args.visdom_server[8:]
if not args.visdom_server.startswith("http://"):
args.visdom_server = "http://%s" % args.visdom_server
# return input arguments:
return args |
Return a standard command-line parser. | def get_parser():
"""
Return a standard command-line parser.
"""
parser = argparse.ArgumentParser(
description="""Start a Classy Vision training job.
This can be used for training on your local machine, using CPU or GPU, and
for distributed training. This script also supports Tensorboard, Visdom and
checkpointing."""
)
parser = add_generic_args(parser)
return parser |
Assert and parse the command-line arguments of a given (or default) parser. | def parse_train_arguments(parser=None):
"""
Assert and parse the command-line arguments of a given (or default) parser.
"""
# set input arguments:
if parser is None:
parser = get_parser()
# parse input arguments:
args = parser.parse_args()
# assertions:
args = check_generic_args(args)
return args |
Performs CPU or GPU profiling of the specified model on the specified input. | def profile(
model: nn.Module,
batchsize_per_replica: int = 32,
input_shape: Tuple[int] = (3, 224, 224),
use_nvprof: bool = False,
input_key: Optional[Union[str, List[str]]] = None,
):
"""
Performs CPU or GPU profiling of the specified model on the specified input.
"""
# assertions:
if use_nvprof:
raise ClassyProfilerError("Profiling not supported with nvprof")
# FIXME (mannatsingh): in case of use_nvprof, exit() is called at the end
# and we do not return a profile.
assert is_on_gpu(model), "can only nvprof model that lives on GPU"
logging.info("CUDA profiling: Make sure you are running under nvprof!")
# input for model:
input = get_model_dummy_input(
model,
input_shape,
input_key,
batchsize=batchsize_per_replica,
non_blocking=False,
)
# perform profiling in eval mode
with eval_model(model), torch.no_grad():
model(input) # warm up CUDA memory allocator and profiler
if use_nvprof: # nvprof profiling (TODO: Can we infer this?)
cudart().cudaProfilerStart()
model(input)
cudart().cudaProfilerStop()
exit() # exit gracefully
else: # regular profiling
with torch.autograd.profiler.profile(use_cuda=True) as profiler:
model(input)
return profiler |
Some layer may take/generate tuple/list/dict/list[dict] as input/output in forward function.
We recursively query tensor shape. | def get_shape(x: Union[Tuple, List, Dict]) -> Union[Tuple, List, Dict]:
"""
Some layer may take/generate tuple/list/dict/list[dict] as input/output in forward function.
We recursively query tensor shape.
"""
if isinstance(x, (list, tuple)):
assert len(x) > 0, "x of tuple/list type must have at least one element"
return [get_shape(xi) for xi in x]
elif isinstance(x, dict):
return {k: get_shape(v) for k, v in x.items()}
else:
assert isinstance(x, torch.Tensor), "x is expected to be a torch tensor"
return x.size() |
Computes the number of FLOPs required for a single layer.
For common layers, such as Conv1d, the flop compute is implemented in this
centralized place.
For other layers, if it defines a method to compute flops with the signature
below, we will use it to compute flops.
Class MyModule(nn.Module):
def flops(self, x):
... | def _layer_flops(layer: nn.Module, layer_args: List[Any], y: Any) -> int:
"""
Computes the number of FLOPs required for a single layer.
For common layers, such as Conv1d, the flop compute is implemented in this
centralized place.
For other layers, if it defines a method to compute flops with the signature
below, we will use it to compute flops.
Class MyModule(nn.Module):
def flops(self, x):
...
"""
x = layer_args[0]
# get layer type:
typestr = layer.__repr__()
layer_type = typestr[: typestr.find("(")].strip()
batchsize_per_replica = get_batchsize_per_replica(x)
flops = None
# 1D convolution:
if layer_type in ["Conv1d"]:
# x shape is N x C x W
out_w = int(
(x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0])
/ layer.stride[0]
+ 1
)
flops = (
batchsize_per_replica
* layer.in_channels
* layer.out_channels
* layer.kernel_size[0]
* out_w
/ layer.groups
)
# 2D convolution:
elif layer_type in ["Conv2d"]:
out_h = int(
(x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0])
/ layer.stride[0]
+ 1
)
out_w = int(
(x.size()[3] + 2 * layer.padding[1] - layer.kernel_size[1])
/ layer.stride[1]
+ 1
)
flops = (
batchsize_per_replica
* layer.in_channels
* layer.out_channels
* layer.kernel_size[0]
* layer.kernel_size[1]
* out_h
* out_w
/ layer.groups
)
# learned group convolution:
elif layer_type in ["LearnedGroupConv"]:
conv = layer.conv
out_h = int(
(x.size()[2] + 2 * conv.padding[0] - conv.kernel_size[0]) / conv.stride[0]
+ 1
)
out_w = int(
(x.size()[3] + 2 * conv.padding[1] - conv.kernel_size[1]) / conv.stride[1]
+ 1
)
count1 = _layer_flops(layer.relu, x) + _layer_flops(layer.norm, x)
count2 = (
batchsize_per_replica
* conv.in_channels
* conv.out_channels
* conv.kernel_size[0]
* conv.kernel_size[1]
* out_h
* out_w
/ layer.condense_factor
)
flops = count1 + count2
# non-linearities:
elif layer_type in ["ReLU", "ReLU6", "Tanh", "Sigmoid", "Softmax", "SiLU"]:
flops = x.numel()
# 2D pooling layers:
elif layer_type in ["AvgPool2d", "MaxPool2d"]:
in_h = x.size()[2]
in_w = x.size()[3]
if isinstance(layer.kernel_size, int):
layer.kernel_size = (layer.kernel_size, layer.kernel_size)
kernel_ops = layer.kernel_size[0] * layer.kernel_size[1]
out_h = 1 + int(
(in_h + 2 * layer.padding - layer.kernel_size[0]) / layer.stride
)
out_w = 1 + int(
(in_w + 2 * layer.padding - layer.kernel_size[1]) / layer.stride
)
flops = x.size()[0] * x.size()[1] * out_w * out_h * kernel_ops
# adaptive avg pool2d
# This is approximate and works only for downsampling without padding
# based on aten/src/ATen/native/AdaptiveAveragePooling.cpp
elif layer_type in ["AdaptiveAvgPool2d"]:
in_h = x.size()[2]
in_w = x.size()[3]
if isinstance(layer.output_size, int):
out_h, out_w = layer.output_size, layer.output_size
elif len(layer.output_size) == 1:
out_h, out_w = layer.output_size[0], layer.output_size[0]
else:
out_h, out_w = layer.output_size
if out_h > in_h or out_w > in_w:
raise ClassyProfilerNotImplementedError(layer)
batchsize_per_replica = x.size()[0]
num_channels = x.size()[1]
kh = in_h - out_h + 1
kw = in_w - out_w + 1
kernel_ops = kh * kw
flops = batchsize_per_replica * num_channels * out_h * out_w * kernel_ops
# linear layer:
elif layer_type in ["Linear"]:
weight_ops = layer.weight.numel()
bias_ops = layer.bias.numel() if layer.bias is not None else 0
flops = ((x.numel() / x.size(-1)) if x.ndim > 2 else x.size(0)) * (
weight_ops + bias_ops
)
# batch normalization / layer normalization:
elif layer_type in [
"BatchNorm1d",
"BatchNorm2d",
"BatchNorm3d",
"SyncBatchNorm",
"LayerNorm",
]:
flops = 2 * x.numel()
# 3D convolution
elif layer_type in ["Conv3d"]:
out_t = int(
(x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0])
// layer.stride[0]
+ 1
)
out_h = int(
(x.size()[3] + 2 * layer.padding[1] - layer.kernel_size[1])
// layer.stride[1]
+ 1
)
out_w = int(
(x.size()[4] + 2 * layer.padding[2] - layer.kernel_size[2])
// layer.stride[2]
+ 1
)
flops = (
batchsize_per_replica
* layer.in_channels
* layer.out_channels
* layer.kernel_size[0]
* layer.kernel_size[1]
* layer.kernel_size[2]
* out_t
* out_h
* out_w
/ layer.groups
)
# 3D pooling layers
elif layer_type in ["AvgPool3d", "MaxPool3d"]:
in_t = x.size()[2]
in_h = x.size()[3]
in_w = x.size()[4]
if isinstance(layer.kernel_size, int):
layer.kernel_size = (
layer.kernel_size,
layer.kernel_size,
layer.kernel_size,
)
if isinstance(layer.padding, int):
layer.padding = (layer.padding, layer.padding, layer.padding)
if isinstance(layer.stride, int):
layer.stride = (layer.stride, layer.stride, layer.stride)
kernel_ops = layer.kernel_size[0] * layer.kernel_size[1] * layer.kernel_size[2]
out_t = 1 + int(
(in_t + 2 * layer.padding[0] - layer.kernel_size[0]) / layer.stride[0]
)
out_h = 1 + int(
(in_h + 2 * layer.padding[1] - layer.kernel_size[1]) / layer.stride[1]
)
out_w = 1 + int(
(in_w + 2 * layer.padding[2] - layer.kernel_size[2]) / layer.stride[2]
)
flops = batchsize_per_replica * x.size()[1] * out_t * out_h * out_w * kernel_ops
# adaptive avg pool3d
# This is approximate and works only for downsampling without padding
# based on aten/src/ATen/native/AdaptiveAveragePooling3d.cpp
elif layer_type in ["AdaptiveAvgPool3d"]:
in_t = x.size()[2]
in_h = x.size()[3]
in_w = x.size()[4]
out_t = layer.output_size[0]
out_h = layer.output_size[1]
out_w = layer.output_size[2]
if out_t > in_t or out_h > in_h or out_w > in_w:
raise ClassyProfilerNotImplementedError(layer)
batchsize_per_replica = x.size()[0]
num_channels = x.size()[1]
kt = in_t - out_t + 1
kh = in_h - out_h + 1
kw = in_w - out_w + 1
kernel_ops = kt * kh * kw
flops = (
batchsize_per_replica * num_channels * out_t * out_w * out_h * kernel_ops
)
elif layer_type in ["Dropout", "Identity"]:
flops = 0
elif hasattr(layer, "flops"):
# If the module already defines a method to compute flops with the signature
# below, we use it to compute flops
#
# Class MyModule(nn.Module):
# def flops(self, x):
# ...
# or
#
# Class MyModule(nn.Module):
# def flops(self, x1, x2):
# ...
flops = layer.flops(*layer_args)
if flops is None:
raise ClassyProfilerNotImplementedError(layer)
message = [
f"module type: {typestr}",
f"input size: {get_shape(x)}",
f"output size: {get_shape(y)}",
f"params(M): {count_params(layer) / 1e6}",
f"flops(M): {int(flops) / 1e6}",
]
logging.debug("\t".join(message))
return int(flops) |
Computes the number of activations produced by a single layer.
Activations are counted only for convolutional and linear layers. To override this
behavior, a layer can define a method to compute activations with the signature
below, which will be used to compute the activations instead.
Class MyModule(nn.Module):
def activations(self, out, *layer_args):
... | def _layer_activations(layer: nn.Module, layer_args: List[Any], out: Any) -> int:
"""
Computes the number of activations produced by a single layer.
Activations are counted only for convolutional and linear layers. To override this
behavior, a layer can define a method to compute activations with the signature
below, which will be used to compute the activations instead.
Class MyModule(nn.Module):
def activations(self, out, *layer_args):
...
"""
typestr = layer.__repr__()
if hasattr(layer, "activations"):
activations = layer.activations(out, *layer_args)
elif isinstance(layer, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
activations = out.numel()
else:
return 0
message = [f"module: {typestr}", f"activations: {activations}"]
logging.debug("\t".join(message))
return int(activations) |
Summarizes the statistics in the specified profiler. | def summarize_profiler_info(prof: torch.autograd.profiler.profile) -> str:
"""
Summarizes the statistics in the specified profiler.
"""
# create sorted list of times per operator:
op2time = {}
for item in prof.key_averages():
op2time[item.key] = (
item.cpu_time_total / 1000.0,
item.cuda_time_total / 1000.0,
) # to milliseconds
op2time = sorted(op2time.items(), key=operator.itemgetter(1), reverse=True)
# created string containing information:
str = "\n%s\tCPU Time\tCUDA Time\n" % ("Key".rjust(20))
for (key, value) in op2time:
str += "%s\t%2.5f ms\t%2.5f ms\n" % (key.rjust(20), value[0], value[1])
return str |
Patch the module to compute a module's parameters, like FLOPs.
Calls compute_fn and passes the results to the complexity computer. | def _patched_computation_module(
module: nn.Module, complexity_computer: ComplexityComputer, module_name: str
):
"""
Patch the module to compute a module's parameters, like FLOPs.
Calls compute_fn and passes the results to the complexity computer.
"""
ty = type(module)
typestring = module.__repr__()
class ComputeModule(ty):
orig_type = ty
def _original_forward(self, *args, **kwargs):
return ty.forward(self, *args, **kwargs)
def forward(self, *args, **kwargs):
out = self._original_forward(*args, **kwargs)
complexity_computer.compute(self, list(args), out, module_name)
return out
def __repr__(self):
return typestring
return ComputeModule |
Modify forward pass to measure a module's parameters, like FLOPs. | def modify_forward(
model: nn.Module,
complexity_computer: ComplexityComputer,
prefix: str = "",
patch_attr: str = None,
) -> nn.Module:
"""
Modify forward pass to measure a module's parameters, like FLOPs.
"""
# Recursively update all the modules in the model. A module is patched if it
# contains the patch_attr (like the flops() function for FLOPs computation) or it is
# a leaf. We stop recursing if we patch a module since that module is supposed
# to return the results for all its children as well.
# Since this recursion can lead to the same module being patched through different
# paths, we make sure we only patch un-patched modules.
if hasattr(model, "orig_type"):
return model
if is_leaf(model) or (patch_attr is not None and hasattr(model, patch_attr)):
model.__class__ = _patched_computation_module(
model, complexity_computer, prefix
)
else:
for name, child in model.named_children():
modify_forward(
child,
complexity_computer,
prefix=f"{prefix}.{name}",
patch_attr=patch_attr,
)
return model |
Restore original forward in model. | def restore_forward(model: nn.Module, patch_attr: str = None) -> nn.Module:
"""
Restore original forward in model.
"""
for module in model.modules():
if hasattr(module, "orig_type"):
# module has been patched; un-patch it
module.__class__ = module.orig_type
return model |
Compute the complexity of a forward pass.
Args:
compute_unique: If True, the compexity for a given module is only calculated
once. Otherwise, it is counted every time the module is called.
TODO(@mannatsingh): We have some assumptions about only modules which are leaves
or have patch_attr defined. This should be fixed and generalized if possible. | def compute_complexity(
model: nn.Module,
compute_fn: Callable,
input_shape: Tuple[int],
input_key: Optional[Union[str, List[str]]] = None,
patch_attr: str = None,
compute_unique: bool = False,
) -> int:
"""
Compute the complexity of a forward pass.
Args:
compute_unique: If True, the compexity for a given module is only calculated
once. Otherwise, it is counted every time the module is called.
TODO(@mannatsingh): We have some assumptions about only modules which are leaves
or have patch_attr defined. This should be fixed and generalized if possible.
"""
# assertions, input, and upvalue in which we will perform the count:
assert isinstance(model, nn.Module)
if not isinstance(input_shape, abc.Sequence) and not isinstance(input_shape, dict):
return None
else:
input = get_model_dummy_input(model, input_shape, input_key)
complexity_computer = ComplexityComputer(compute_fn, compute_unique)
# measure FLOPs:
modify_forward(model, complexity_computer, patch_attr=patch_attr)
try:
# compute complexity in eval mode
with eval_model(model), torch.no_grad():
model.forward(input)
finally:
restore_forward(model, patch_attr=patch_attr)
return complexity_computer.count |
Compute the number of FLOPs needed for a forward pass. | def compute_flops(
model: nn.Module,
input_shape: Tuple[int] = (3, 224, 224),
input_key: Optional[Union[str, List[str]]] = None,
) -> int:
"""
Compute the number of FLOPs needed for a forward pass.
"""
return compute_complexity(
model,
_layer_flops,
input_shape,
input_key,
patch_attr="flops",
) |
Compute the number of activations created in a forward pass. | def compute_activations(
model: nn.Module,
input_shape: Tuple[int] = (3, 224, 224),
input_key: Optional[Union[str, List[str]]] = None,
) -> int:
"""
Compute the number of activations created in a forward pass.
"""
return compute_complexity(
model,
_layer_activations,
input_shape,
input_key,
patch_attr="activations",
) |
Count the number of parameters in a model. | def count_params(model: nn.Module) -> int:
"""
Count the number of parameters in a model.
"""
assert isinstance(model, nn.Module)
return sum((parameter.nelement() for parameter in model.parameters())) |
Automatically imports all packages under the root directory.
For instance, if your directories look like:
root / foo / __init__.py
root / foo / abc.py
root / bar.py
root / baz / xyz.py
This function will import the package foo, but not bar or baz. | def import_all_packages_from_directory(root: str) -> None:
"""Automatically imports all packages under the root directory.
For instance, if your directories look like:
root / foo / __init__.py
root / foo / abc.py
root / bar.py
root / baz / xyz.py
This function will import the package foo, but not bar or baz."""
for file in os.listdir(root):
# Try to import each file in the directory. Our previous implementation
# would look for directories here and see if there's a __init__.py
# under that directory, but that turns out to be unreliable while
# running on AWS: EFS filesystems cache metadata bits so the directory
# and existence checks fail even when the import succeeds. We should
# find a better workaround eventually, but this will do for now.
try:
file = Path(file)
module_name = file.name
# Dots have special meaning in Python packages -- it's a relative
# import or a subpackage. Skip these.
if "." not in module_name and module_name not in sys.modules:
logging.debug(f"Automatically importing {module_name}")
importlib.import_module(module_name)
except ModuleNotFoundError:
pass |
Returns True if a number is a positive integer. | def is_pos_int(number: int) -> bool:
"""
Returns True if a number is a positive integer.
"""
return type(number) == int and number >= 0 |
Returns True if a number is a positive float. | def is_pos_float(number: float) -> bool:
"""
Returns True if a number is a positive float.
"""
return type(number) == float and number >= 0.0 |
Returns True if a list contains positive integers | def is_pos_int_list(l: List) -> bool:
"""
Returns True if a list contains positive integers
"""
return type(l) == list and all(is_pos_int(n) for n in l) |
Returns True if a tuple contains positive integers | def is_pos_int_tuple(t: Tuple) -> bool:
"""
Returns True if a tuple contains positive integers
"""
return type(t) == tuple and all(is_pos_int(n) for n in t) |
Returns True if a tensor is a long tensor. | def is_long_tensor(tensor: torch.Tensor) -> bool:
"""
Returns True if a tensor is a long tensor.
"""
if torch.is_tensor(tensor):
return tensor.type().endswith("LongTensor")
else:
return False |
Returns True if a tensor is a float tensor. | def is_float_tensor(tensor: torch.Tensor) -> bool:
"""
Returns True if a tensor is a float tensor.
"""
if torch.is_tensor(tensor):
return tensor.type().endswith("FloatTensor")
else:
return False |
Returns True if a tensor is a double tensor. | def is_double_tensor(tensor: torch.Tensor) -> bool:
"""
Returns True if a tensor is a double tensor.
"""
if torch.is_tensor(tensor):
return tensor.type().endswith("DoubleTensor")
else:
return False |
Returns True if module is leaf in the graph. | def is_leaf(module: nn.Module) -> bool:
"""
Returns True if module is leaf in the graph.
"""
assert isinstance(module, nn.Module), "module should be nn.Module"
return len(list(module.children())) == 0 or hasattr(module, "_mask") |
Returns True if all parameters of a model live on the GPU. | def is_on_gpu(model: torch.nn.Module) -> bool:
"""
Returns True if all parameters of a model live on the GPU.
"""
assert isinstance(model, torch.nn.Module)
on_gpu = True
has_params = False
for param in model.parameters():
has_params = True
if not param.data.is_cuda:
on_gpu = False
return has_params and on_gpu |
Returns True if sample is not None and constituents are not none. | def is_not_none(sample: Any) -> bool:
"""
Returns True if sample is not None and constituents are not none.
"""
if sample is None:
return False
if isinstance(sample, (list, tuple)):
if any(s is None for s in sample):
return False
if isinstance(sample, dict):
if any(s is None for s in sample.values()):
return False
return True |
Copies a model and (optional) loss to GPU and enables cudnn benchmarking.
For multiple gpus training, the model in DistributedDataParallel for
distributed training. | def copy_model_to_gpu(model, loss=None):
"""
Copies a model and (optional) loss to GPU and enables cudnn benchmarking.
For multiple gpus training, the model in DistributedDataParallel for
distributed training.
"""
if not torch.backends.cudnn.deterministic:
torch.backends.cudnn.benchmark = True
model = model.cuda()
if loss is not None:
loss = loss.cuda()
return model, loss
else:
return model |
Recursively searches lists, tuples, dicts and copies any object which
supports an object.to API (e.g. tensors) to device if possible.
Other values are passed as-is in the result.
Note: These are all copies, so if there are two objects that reference
the same object, then after this call, there will be two different objects
referenced on the device. | def recursive_copy_to_device(
value: Any, non_blocking: bool, device: torch.device
) -> Any:
"""
Recursively searches lists, tuples, dicts and copies any object which
supports an object.to API (e.g. tensors) to device if possible.
Other values are passed as-is in the result.
Note: These are all copies, so if there are two objects that reference
the same object, then after this call, there will be two different objects
referenced on the device.
"""
if isinstance(value, list) or isinstance(value, tuple):
device_val = []
for val in value:
device_val.append(
recursive_copy_to_device(val, non_blocking=non_blocking, device=device)
)
return device_val if isinstance(value, list) else tuple(device_val)
elif isinstance(value, collections.abc.Mapping):
device_val = {}
for key, val in value.items():
device_val[key] = recursive_copy_to_device(
val, non_blocking=non_blocking, device=device
)
return device_val
elif callable(getattr(value, "to", None)):
return value.to(device=device, non_blocking=non_blocking)
return value |
Recursively searches lists, tuples, dicts and copies tensors to GPU if
possible. Non-tensor values are passed as-is in the result.
Note: These are all copies, so if there are two objects that reference
the same object, then after this call, there will be two different objects
referenced on the GPU. | def recursive_copy_to_gpu(value: Any, non_blocking: bool = True) -> Any:
"""
Recursively searches lists, tuples, dicts and copies tensors to GPU if
possible. Non-tensor values are passed as-is in the result.
Note: These are all copies, so if there are two objects that reference
the same object, then after this call, there will be two different objects
referenced on the GPU.
"""
return recursive_copy_to_device(
value=value, non_blocking=non_blocking, device=GPU_DEVICE
) |
Context manager which seeds the NumPy PRNG with the specified seed and
restores the state afterward | def numpy_seed(seed: Optional[int], *addl_seeds: int) -> None:
"""Context manager which seeds the NumPy PRNG with the specified seed and
restores the state afterward"""
if seed is None:
yield
return
if len(addl_seeds) > 0:
seed = int(hash((seed, *addl_seeds)) % 1e6)
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state) |
Loads a checkpoint on primary and broadcasts it to all replicas.
This is a collective operation which needs to be run in sync on all replicas.
See :func:`load_checkpoint` for the arguments. | def load_and_broadcast_checkpoint(
checkpoint_path: str, device: torch.device = CPU_DEVICE
) -> Optional[Dict]:
"""Loads a checkpoint on primary and broadcasts it to all replicas.
This is a collective operation which needs to be run in sync on all replicas.
See :func:`load_checkpoint` for the arguments.
"""
if is_primary():
checkpoint = load_checkpoint(checkpoint_path, device)
else:
checkpoint = None
logging.info(f"Broadcasting checkpoint loaded from {checkpoint_path}")
return broadcast_object(checkpoint) |
Loads a checkpoint from the specified checkpoint path.
Args:
checkpoint_path: The path to load the checkpoint from. Can be a file or a
directory. If it is a directory, the checkpoint is loaded from
:py:data:`CHECKPOINT_FILE` inside the directory.
device: device to load the checkpoint to
Returns:
The checkpoint, if it exists, or None. | def load_checkpoint(
checkpoint_path: str, device: torch.device = CPU_DEVICE
) -> Optional[Dict]:
"""Loads a checkpoint from the specified checkpoint path.
Args:
checkpoint_path: The path to load the checkpoint from. Can be a file or a
directory. If it is a directory, the checkpoint is loaded from
:py:data:`CHECKPOINT_FILE` inside the directory.
device: device to load the checkpoint to
Returns:
The checkpoint, if it exists, or None.
"""
if not checkpoint_path:
return None
assert device is not None, "Please specify what device to load checkpoint on"
assert device.type in ["cpu", "cuda"], f"Unknown device: {device}"
if device.type == "cuda":
assert torch.cuda.is_available()
if not PathManager.exists(checkpoint_path):
logging.warning(f"Checkpoint path {checkpoint_path} not found")
return None
if PathManager.isdir(checkpoint_path):
checkpoint_path = f"{checkpoint_path.rstrip('/')}/{CHECKPOINT_FILE}"
if not PathManager.exists(checkpoint_path):
logging.warning(f"Checkpoint file {checkpoint_path} not found.")
return None
logging.info(f"Attempting to load checkpoint from {checkpoint_path}")
# load model on specified device and not on saved device for model and return
# the checkpoint
with PathManager.open(checkpoint_path, "rb") as f:
checkpoint = torch.load(f, map_location=device)
logging.info(f"Loaded checkpoint from {checkpoint_path}")
return checkpoint |
Updates the model with the provided model state dictionary.
Args:
model: ClassyVisionModel instance to update
model_state_dict: State dict, should be the output of a call to
ClassyVisionModel.get_classy_state().
reset_heads: if False, uses the heads' state from model_state_dict.
strict: if True, strictly match the module/buffer keys in current model and
pass-in model_state_dict | def update_classy_model(
model, model_state_dict: Dict, reset_heads: bool, strict: bool = True
) -> bool:
"""
Updates the model with the provided model state dictionary.
Args:
model: ClassyVisionModel instance to update
model_state_dict: State dict, should be the output of a call to
ClassyVisionModel.get_classy_state().
reset_heads: if False, uses the heads' state from model_state_dict.
strict: if True, strictly match the module/buffer keys in current model and
pass-in model_state_dict
"""
try:
if reset_heads:
current_model_state_dict = model.get_classy_state()
# replace the checkpointed head states with source head states
model_state_dict["model"]["heads"] = current_model_state_dict["model"][
"heads"
]
model.set_classy_state(model_state_dict, strict=strict)
logging.info("Model state load successful")
return True
except Exception:
logging.exception("Could not load the model state")
return False |
Updates the task with the provided task dictionary.
Args:
task: ClassyTask instance to update
state_dict: State dict, should be the output of a call to
ClassyTask.get_classy_state(). | def update_classy_state(task, state_dict: Dict) -> bool:
"""
Updates the task with the provided task dictionary.
Args:
task: ClassyTask instance to update
state_dict: State dict, should be the output of a call to
ClassyTask.get_classy_state().
"""
logging.info("Loading classy state from checkpoint")
try:
task.set_classy_state(state_dict)
logging.info("Checkpoint load successful")
return True
except Exception:
logging.exception("Could not load the checkpoint")
return False |
Saves a state variable to the specified checkpoint folder. Returns the filename
of the checkpoint if successful. Raises an exception otherwise. | def save_checkpoint(checkpoint_folder, state, checkpoint_file=CHECKPOINT_FILE):
"""
Saves a state variable to the specified checkpoint folder. Returns the filename
of the checkpoint if successful. Raises an exception otherwise.
"""
# make sure that we have a checkpoint folder:
if not PathManager.isdir(checkpoint_folder):
try:
PathManager.mkdirs(checkpoint_folder)
except BaseException:
logging.warning("Could not create folder %s." % checkpoint_folder)
raise
# write checkpoint atomically:
try:
full_filename = f"{checkpoint_folder}/{checkpoint_file}"
with PathManager.open(full_filename, "wb") as f:
torch.save(state, f)
return full_filename
except BaseException:
logging.warning(
"Unable to write checkpoint to %s." % checkpoint_folder, exc_info=True
)
raise |
Flattens nested dict into (key, val) dict. Used for flattening meters
structure, so that they can be visualized. | def flatten_dict(value_dict: Dict, prefix="", sep="_") -> Dict:
"""
Flattens nested dict into (key, val) dict. Used for flattening meters
structure, so that they can be visualized.
"""
items = []
for k, v in value_dict.items():
key = prefix + sep + k if prefix else k
if isinstance(v, collections.abc.MutableMapping):
items.extend(flatten_dict(value_dict=v, prefix=key, sep=sep).items())
else:
items.append((key, v))
return dict(items) |
Loads a json config from a file. | def load_json(json_path):
"""
Loads a json config from a file.
"""
assert os.path.exists(json_path), "Json file %s not found" % json_path
json_file = open(json_path)
json_config = json_file.read()
json_file.close()
try:
config = json.loads(json_config)
except BaseException as err:
raise Exception("Failed to validate config with error: %s" % str(err))
return config |
Context manager which seeds the PyTorch PRNG with the specified seed and
restores the state afterward. Setting seed to None is equivalent to running
the code without the context manager. | def torch_seed(seed: Optional[int]):
"""Context manager which seeds the PyTorch PRNG with the specified seed and
restores the state afterward. Setting seed to None is equivalent to running
the code without the context manager."""
if seed is None:
yield
return
state = torch.get_rng_state()
torch.manual_seed(seed)
try:
yield
finally:
torch.set_rng_state(state) |
This function converts target class indices to one-hot vectors,
given the number of classes. | def convert_to_one_hot(targets: torch.Tensor, classes) -> torch.Tensor:
"""
This function converts target class indices to one-hot vectors,
given the number of classes.
"""
assert (
torch.max(targets).item() < classes
), "Class Index must be less than number of classes"
one_hot_targets = torch.zeros(
(targets.shape[0], classes), dtype=torch.long, device=targets.device
)
one_hot_targets.scatter_(1, targets.long(), 1)
return one_hot_targets |
This function infers whether target is integer or 0/1 encoded
and converts it to 0/1 encoding if necessary. | def maybe_convert_to_one_hot(
target: torch.Tensor, model_output: torch.Tensor
) -> torch.Tensor:
"""
This function infers whether target is integer or 0/1 encoded
and converts it to 0/1 encoding if necessary.
"""
target_shape_list = list(target.size())
if len(target_shape_list) == 1 or (
len(target_shape_list) == 2 and target_shape_list[1] == 1
):
target = convert_to_one_hot(target.view(-1, 1), model_output.shape[1])
# target are not necessarily hard 0/1 encoding. It can be soft
# (i.e. fractional) in some cases, such as mixup label
assert (
target.shape == model_output.shape
), "Target must of the same shape as model_output."
return target |
Some layer may take tuple/list/dict/list[dict] as input in forward function. We
recursively dive into the tuple/list until we meet a tensor and infer the batch size | def get_batchsize_per_replica(x: Union[Tuple, List, Dict]) -> int:
"""
Some layer may take tuple/list/dict/list[dict] as input in forward function. We
recursively dive into the tuple/list until we meet a tensor and infer the batch size
"""
while isinstance(x, (list, tuple)):
assert len(x) > 0, "input x of tuple/list type must have at least one element"
x = x[0]
if isinstance(x, (dict,)):
# index zero is always equal to batch size. select an arbitrary key.
key_list = list(x.keys())
x = x[key_list[0]]
return x.size()[0] |
Finds the set of BatchNorm parameters in the model.
Recursively traverses all parameters in the given model and returns a tuple
of lists: the first element is the set of batchnorm parameters, the second
list contains all other parameters of the model. | def split_batchnorm_params(model: nn.Module):
"""Finds the set of BatchNorm parameters in the model.
Recursively traverses all parameters in the given model and returns a tuple
of lists: the first element is the set of batchnorm parameters, the second
list contains all other parameters of the model."""
batchnorm_params = []
other_params = []
for module in model.modules():
# If module has children (i.e. internal node of constructed DAG) then
# only add direct parameters() to the list of params, else go over
# children node to find if they are BatchNorm or have "bias".
if list(module.children()) != []:
for params in module.parameters(recurse=False):
if params.requires_grad:
other_params.append(params)
elif isinstance(module, nn.modules.batchnorm._BatchNorm):
for params in module.parameters():
if params.requires_grad:
batchnorm_params.append(params)
else:
for params in module.parameters():
if params.requires_grad:
other_params.append(params)
return batchnorm_params, other_params |
Context manager which sets the train mode of a model. After returning, it
restores the state of every sub-module individually. | def _train_mode(model: nn.Module, train_mode: bool):
"""Context manager which sets the train mode of a model. After returning, it
restores the state of every sub-module individually."""
train_modes = {}
for name, module in model.named_modules():
train_modes[name] = module.training
try:
model.train(train_mode)
yield
finally:
for name, module in model.named_modules():
module.training = train_modes[name] |
This function is used to log the usage of different Classy components. | def log_class_usage(component_type, klass):
"""This function is used to log the usage of different Classy components."""
identifier = "ClassyVision"
if klass and hasattr(klass, "__name__"):
identifier += f".{component_type}.{klass.__name__}"
torch._C._log_api_usage_once(identifier) |
Get the torch version as [major, minor].
All comparisons must be done with the two version values. Revisions are not
supported. | def get_torch_version():
"""Get the torch version as [major, minor].
All comparisons must be done with the two version values. Revisions are not
supported.
"""
version_list = torch.__version__.split(".")[:2]
return [int(version_str) for version_str in version_list] |
Generator to iterate over all parameters in the optimizer param_groups.
When apex is available, uses that to guarantee we get the FP32 copy of the
parameters when O2 is enabled. Otherwise, iterate ourselves. | def master_params(optimizer):
"""Generator to iterate over all parameters in the optimizer param_groups.
When apex is available, uses that to guarantee we get the FP32 copy of the
parameters when O2 is enabled. Otherwise, iterate ourselves."""
if apex_available:
yield from apex.amp.master_params(optimizer)
else:
for group in optimizer.param_groups:
for p in group["params"]:
yield p |
Connects to a visdom server if not currently connected. | def visdom_connect(server: Optional[str] = None, port: Optional[int] = None) -> None:
"""Connects to a visdom server if not currently connected."""
if not visdom_connected():
vis.append(visdom.Visdom(server=server, port=port)) |
Returns True if the client is connected to a visdom server. | def visdom_connected() -> bool:
"""Returns True if the client is connected to a visdom server."""
return (
len(vis) > 0
and hasattr(vis[-1], "check_connection")
and vis[-1].check_connection()
) |
Plots the specified dict of learning curves in visdom. Optionally, the
environment, window handle, and title for the visdom plot can be specified. | def plot_learning_curves(
curves: Dict[str, List],
visdom_server: Optional["visdom.Visdom"] = None,
env: Optional[str] = None,
win: Optional[str] = None,
title: str = "",
) -> Any:
"""Plots the specified dict of learning curves in visdom. Optionally, the
environment, window handle, and title for the visdom plot can be specified.
"""
if visdom_server is None and visdom_connected():
visdom_server = vis[-1]
# return if we are not connected to visdom server:
if not visdom_server or not visdom_server.check_connection():
print("WARNING: Not connected to visdom. Skipping plotting.")
return
# assertions:
assert type(curves) == dict
assert all(type(curve) == list for _, curve in curves.items())
# remove batch time curves:
_curves = {k: curves[k] for k in curves.keys() if "batch time" not in k}
# show plot:
X = torch.stack([torch.FloatTensor(curve) for _, curve in _curves.items()], dim=1)
Y = torch.arange(0, X.size(0))
Y = Y.view(Y.numel(), 1).expand(Y.numel(), X.size(1))
opts = {"title": title, "legend": list(_curves.keys()), "xlabel": "Epochs"}
return visdom_server.line(X, Y, env=env, win=win, opts=opts) |
Constructs a plot of specified losses as function of y * f(x). The losses
are a list of nn.Module losses. Optionally, the environment, window handle,
and title for the visdom plot can be specified. | def plot_losses(
losses: Union[nn.Module, List[nn.Module]],
visdom_server: Optional["visdom.Visdom"] = None,
env: Optional[str] = None,
win: Optional[str] = None,
title: str = "",
) -> Any:
"""Constructs a plot of specified losses as function of y * f(x). The losses
are a list of nn.Module losses. Optionally, the environment, window handle,
and title for the visdom plot can be specified.
"""
if visdom_server is None and visdom_connected():
visdom_server = vis[-1]
# return if we are not connected to visdom server:
if not visdom_server or not visdom_server.check_connection():
print("WARNING: Not connected to visdom. Skipping plotting.")
return
# assertions:
if isinstance(losses, nn.Module):
losses = [losses]
assert type(losses) == list
assert all(isinstance(loss, nn.Module) for loss in losses)
if any(isinstance(loss, UNSUPPORTED_LOSSES) for loss in losses):
raise NotImplementedError("loss function not supported")
# loop over all loss functions:
for idx, loss in enumerate(losses):
# construct scores and targets:
score = torch.arange(-5.0, 5.0, 0.005)
if idx == 0:
loss_val = torch.FloatTensor(score.size(0), len(losses))
if isinstance(loss, REGRESSION_LOSSES):
target = torch.FloatTensor(score.size()).fill_(0.0)
else:
target = torch.LongTensor(score.size()).fill_(1)
# compute loss values:
for n in range(0, score.nelement()):
loss_val[n][idx] = loss(
score.narrow(0, n, 1), target.narrow(0, n, 1)
).item()
# show plot:
title = str(loss) if title == "" else title
legend = [str(loss) for loss in losses]
opts = {"title": title, "xlabel": "Score", "ylabel": "Loss", "legend": legend}
win = visdom_server.line(loss_val, score, env=env, win=win, opts=opts)
return win |
Visualizes a model in TensorBoard.
The TensorBoard writer can be either specified directly via `writer` or can
be specified via a `folder`.
The model can be run in training or evaluation model via the `train` argument.
Example usage on devserver:
- Install TensorBoard using: `sudo feature install tensorboard`
- Start TensorBoard using: `tensorboard --port=8098 --logdir <folder>` | def plot_model(
model: ClassyModel,
size: Tuple[int, ...] = (3, 224, 224),
input_key: Optional[Union[str, List[str]]] = None,
writer: Optional["SummaryWriter"] = None,
folder: str = "",
train: bool = False,
) -> None:
"""Visualizes a model in TensorBoard.
The TensorBoard writer can be either specified directly via `writer` or can
be specified via a `folder`.
The model can be run in training or evaluation model via the `train` argument.
Example usage on devserver:
- Install TensorBoard using: `sudo feature install tensorboard`
- Start TensorBoard using: `tensorboard --port=8098 --logdir <folder>`
"""
assert (
writer is not None or folder != ""
), "must specify SummaryWriter or folder to create SummaryWriter in"
input = get_model_dummy_input(model, size, input_key)
if writer is None:
writer = SummaryWriter(log_dir=folder, comment="Model graph")
with torch.no_grad():
orig_train = model.training
model.train(train)
writer.add_graph(model, input_to_model=(input,))
model.train(orig_train)
writer.flush() |
Constructs a 2D map of images.
The 2D coordinates for each of the images are specified in `mapcoord`, the
corresponding images are in `dataset`. Optional arguments set the size of
the map images, the size of the images themselves, the unnormalization
transform, and whether or not to snap images to a grid. | def image_map(
mapcoord: Union[np.ndarray, torch.Tensor],
dataset: Union[
torch.utils.data.dataloader.DataLoader, torch.utils.data.dataset.Dataset
],
mapsize: int = 5000,
imsize: int = 32,
unnormalize: Optional[Callable] = None,
snap_to_grid: bool = False,
) -> torch.ByteTensor:
"""Constructs a 2D map of images.
The 2D coordinates for each of the images are specified in `mapcoord`, the
corresponding images are in `dataset`. Optional arguments set the size of
the map images, the size of the images themselves, the unnormalization
transform, and whether or not to snap images to a grid.
"""
# assertions:
if type(mapcoord) == np.ndarray:
mapcoord = torch.from_numpy(mapcoord)
assert torch.is_tensor(mapcoord)
if isinstance(dataset, torch.utils.data.dataloader.DataLoader):
dataset = dataset.dataset
assert isinstance(dataset, torch.utils.data.dataset.Dataset)
assert is_pos_int(mapsize)
assert is_pos_int(imsize)
if unnormalize is not None:
assert callable(unnormalize)
# initialize some variables:
import torchvision.transforms.functional as F
background = 255
mapim = torch.ByteTensor(3, mapsize, mapsize).fill_(background)
# normalize map coordinates:
mapc = mapcoord.add(-(mapcoord.min()))
mapc.div_(mapc.max())
# loop over images:
for idx in range(len(dataset)):
# compute grid location:
if snap_to_grid:
y = 1 + int(math.floor(mapc[idx][0] * (mapsize - imsize - 2)))
x = 1 + int(math.floor(mapc[idx][1] * (mapsize - imsize - 2)))
else:
y = 1 + int(math.floor(mapc[idx][0] * (math.floor(mapsize - imsize) - 2)))
x = 1 + int(math.floor(mapc[idx][1] * (math.floor(mapsize - imsize) - 2)))
# check whether we can overwrite this location:
overwrite = not snap_to_grid
if not overwrite:
segment = mapim.narrow(1, y, imsize).narrow(2, x, imsize)
overwrite = segment.eq(background).all()
# draw image:
if overwrite:
# load, unnormalize, and resize image:
image = dataset[idx][0]
if unnormalize is not None:
image = unnormalize(image)
resized_im = F.to_tensor(
F.resize(F.to_pil_image(image), imsize, Image.BILINEAR)
)
# place image:
segment = mapim.narrow(1, y, imsize).narrow(2, x, imsize)
segment.copy_(resized_im.mul_(255.0).byte())
# return map:
return mapim |
Registers a ClassyHead subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyHead from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyHead subclass, like this:
.. code-block:: python
@register_head("my_head")
class MyHead(ClassyHead):
...
To instantiate a head from a configuration file, see
:func:`build_head`. | def register_head(name, bypass_checks=False):
"""Registers a ClassyHead subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyHead from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyHead subclass, like this:
.. code-block:: python
@register_head("my_head")
class MyHead(ClassyHead):
...
To instantiate a head from a configuration file, see
:func:`build_head`."""
def register_head_cls(cls):
if not bypass_checks:
if name in HEAD_REGISTRY:
msg = (
"Cannot register duplicate head ({}). Already registered at \n{}\n"
)
raise ValueError(msg.format(name, HEAD_REGISTRY_TB[name]))
if not issubclass(cls, ClassyHead):
raise ValueError(
"Head ({}: {}) must extend ClassyHead".format(name, cls.__name__)
)
if cls.__name__ in HEAD_CLASS_NAMES:
msg = (
"Cannot register head with duplicate class name({})."
+ "Previously registered at \n{}\n"
)
raise ValueError(
msg.format(cls.__name__, HEAD_CLASS_NAMES_TB[cls.__name__])
)
tb = "".join(traceback.format_stack())
HEAD_REGISTRY[name] = cls
HEAD_CLASS_NAMES.add(cls.__name__)
HEAD_REGISTRY_TB[name] = tb
HEAD_CLASS_NAMES_TB[cls.__name__] = tb
return cls
return register_head_cls |
Builds a ClassyHead from a config.
This assumes a 'name' key in the config which is used to determine what
head class to instantiate. For instance, a config `{"name": "my_head",
"foo": "bar"}` will find a class that was registered as "my_head"
(see :func:`register_head`) and call .from_config on it. | def build_head(config):
"""Builds a ClassyHead from a config.
This assumes a 'name' key in the config which is used to determine what
head class to instantiate. For instance, a config `{"name": "my_head",
"foo": "bar"}` will find a class that was registered as "my_head"
(see :func:`register_head`) and call .from_config on it."""
assert "name" in config, "Expect name in config"
assert "unique_id" in config, "Expect a global unique id in config"
assert config["name"] in HEAD_REGISTRY, "unknown head {}".format(config["name"])
name = config["name"]
head_config = copy.deepcopy(config)
del head_config["name"]
return HEAD_REGISTRY[name].from_config(head_config) |
Registers a :class:`ClassyHook` subclass.
This decorator allows Classy Vision to instantiate a subclass of
:class:`ClassyHook` from a configuration file, even if the class
itself is not part of the base Classy Vision framework. To use it,
apply this decorator to a ClassyHook subclass, like this:
.. code-block:: python
@register_hook('custom_hook')
class CustomHook(ClassyHook):
...
To instantiate a hook from a configuration file, see
:func:`build_hook`. | def register_hook(name, bypass_checks=False):
"""Registers a :class:`ClassyHook` subclass.
This decorator allows Classy Vision to instantiate a subclass of
:class:`ClassyHook` from a configuration file, even if the class
itself is not part of the base Classy Vision framework. To use it,
apply this decorator to a ClassyHook subclass, like this:
.. code-block:: python
@register_hook('custom_hook')
class CustomHook(ClassyHook):
...
To instantiate a hook from a configuration file, see
:func:`build_hook`.
"""
def register_hook_cls(cls):
if not bypass_checks:
if name in HOOK_REGISTRY:
msg = (
"Cannot register duplicate hook ({}). Already registered at \n{}\n"
)
raise ValueError(msg.format(name, HOOK_REGISTRY_TB[name]))
if not issubclass(cls, ClassyHook):
raise ValueError(
"Hook ({}: {}) must extend ClassyHook".format(name, cls.__name__)
)
if cls.__name__ in HOOK_CLASS_NAMES:
msg = (
"Cannot register hook with duplicate class name({})."
+ "Previously registered at \n{}\n"
)
raise ValueError(
msg.format(cls.__name__, HOOK_CLASS_NAMES_TB[cls.__name__])
)
tb = "".join(traceback.format_stack())
HOOK_REGISTRY[name] = cls
HOOK_CLASS_NAMES.add(cls.__name__)
HOOK_REGISTRY_TB[name] = tb
HOOK_CLASS_NAMES_TB[cls.__name__] = tb
return cls
return register_hook_cls |
Builds a ClassyHook from a config.
This assumes a 'name' key in the config which is used to determine
what hook class to instantiate. For instance, a config `{"name":
"my_hook", "foo": "bar"}` will find a class that was registered as
"my_hook" (see :func:`register_hook`) and call .from_config on
it. | def build_hook(hook_config: Dict[str, Any]):
"""Builds a ClassyHook from a config.
This assumes a 'name' key in the config which is used to determine
what hook class to instantiate. For instance, a config `{"name":
"my_hook", "foo": "bar"}` will find a class that was registered as
"my_hook" (see :func:`register_hook`) and call .from_config on
it."""
assert hook_config["name"] in HOOK_REGISTRY, (
"Unregistered hook. Did you make sure to use the register_hook decorator "
"AND import the hook file before calling this function??"
)
hook_config = copy.deepcopy(hook_config)
hook_name = hook_config.pop("name")
return HOOK_REGISTRY[hook_name].from_config(hook_config) |
Builds a ClassyLoss from a config.
This assumes a 'name' key in the config which is used to determine what
model class to instantiate. For instance, a config `{"name": "my_loss",
"foo": "bar"}` will find a class that was registered as "my_loss"
(see :func:`register_loss`) and call .from_config on it.
In addition to losses registered with :func:`register_loss`, we also
support instantiating losses available in the `torch.nn.modules.loss <https:
//pytorch.org/docs/stable/nn.html#loss-functions>`_
module. Any keys in the config will get expanded to parameters of the loss
constructor. For instance, the following call will instantiate a
`torch.nn.modules.CrossEntropyLoss <https://pytorch.org/docs/stable/
nn.html#torch.nn.CrossEntropyLoss>`_:
.. code-block:: python
build_loss({"name": "CrossEntropyLoss", "reduction": "sum"}) | def build_loss(config):
"""Builds a ClassyLoss from a config.
This assumes a 'name' key in the config which is used to determine what
model class to instantiate. For instance, a config `{"name": "my_loss",
"foo": "bar"}` will find a class that was registered as "my_loss"
(see :func:`register_loss`) and call .from_config on it.
In addition to losses registered with :func:`register_loss`, we also
support instantiating losses available in the `torch.nn.modules.loss <https:
//pytorch.org/docs/stable/nn.html#loss-functions>`_
module. Any keys in the config will get expanded to parameters of the loss
constructor. For instance, the following call will instantiate a
`torch.nn.modules.CrossEntropyLoss <https://pytorch.org/docs/stable/
nn.html#torch.nn.CrossEntropyLoss>`_:
.. code-block:: python
build_loss({"name": "CrossEntropyLoss", "reduction": "sum"})
"""
assert "name" in config, f"name not provided for loss: {config}"
name = config["name"]
args = copy.deepcopy(config)
del args["name"]
if "weight" in args and args["weight"] is not None:
# if we are passing weights, we need to change the weights from a list
# to a tensor
args["weight"] = torch.tensor(args["weight"], dtype=torch.float)
if name in LOSS_REGISTRY:
loss = LOSS_REGISTRY[name].from_config(config)
else:
# the name should be available in torch.nn.modules.loss
assert hasattr(torch_losses, name), (
f"{name} isn't a registered loss"
", nor is it available in torch.nn.modules.loss"
)
loss = getattr(torch_losses, name)(**args)
log_class_usage("Loss", loss.__class__)
return loss |
Registers a ClassyLoss subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyLoss from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyLoss subclass, like this:
.. code-block:: python
@register_loss("my_loss")
class MyLoss(ClassyLoss):
...
To instantiate a loss from a configuration file, see
:func:`build_loss`. | def register_loss(name, bypass_checks=False):
"""Registers a ClassyLoss subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyLoss from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyLoss subclass, like this:
.. code-block:: python
@register_loss("my_loss")
class MyLoss(ClassyLoss):
...
To instantiate a loss from a configuration file, see
:func:`build_loss`."""
def register_loss_cls(cls):
if not bypass_checks:
if name in LOSS_REGISTRY:
msg = (
"Cannot register duplicate loss ({}). Already registered at \n{}\n"
)
raise ValueError(msg.format(name, LOSS_REGISTRY_TB[name]))
if not issubclass(cls, ClassyLoss):
raise ValueError(
"Loss ({}: {}) must extend ClassyLoss".format(name, cls.__name__)
)
tb = "".join(traceback.format_stack())
LOSS_REGISTRY[name] = cls
LOSS_CLASS_NAMES.add(cls.__name__)
LOSS_REGISTRY_TB[name] = tb
LOSS_CLASS_NAMES_TB[cls.__name__] = tb
return cls
return register_loss_cls |
Builds a :class:`ClassyMeter` from a config.
This assumes a 'name' key in the config which is used to determine what
meter class to instantiate. For instance, a config `{"name": "my_meter",
"foo": "bar"}` will find a class that was registered as "my_meter" (see
:func:`register_meter`) and call .from_config on it. | def build_meter(config):
"""Builds a :class:`ClassyMeter` from a config.
This assumes a 'name' key in the config which is used to determine what
meter class to instantiate. For instance, a config `{"name": "my_meter",
"foo": "bar"}` will find a class that was registered as "my_meter" (see
:func:`register_meter`) and call .from_config on it."""
return METER_REGISTRY[config["name"]].from_config(config) |
Registers a :class:`ClassyMeter` subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyMeter from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyMeter subclass, like this:
.. code-block:: python
@register_meter('accuracy')
class AccuracyMeter(ClassyMeter):
...
To instantiate a meter from a configuration file, see
:func:`build_meter`. | def register_meter(name, bypass_checks=False):
"""Registers a :class:`ClassyMeter` subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyMeter from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyMeter subclass, like this:
.. code-block:: python
@register_meter('accuracy')
class AccuracyMeter(ClassyMeter):
...
To instantiate a meter from a configuration file, see
:func:`build_meter`."""
def register_meter_cls(cls):
if not bypass_checks:
if name in METER_REGISTRY:
msg = (
"Cannot register duplicate meter ({}). Already registered at \n{}\n"
)
raise ValueError(msg.format(name, METER_REGISTRY_TB[name]))
if not issubclass(cls, ClassyMeter):
raise ValueError(
"Meter ({}: {}) must extend \
ClassyMeter".format(
name, cls.__name__
)
)
tb = "".join(traceback.format_stack())
METER_REGISTRY[name] = cls
METER_REGISTRY_TB[name] = tb
return cls
return register_meter_cls |
Swish activation function. | def swish(x):
"""
Swish activation function.
"""
return x * torch.sigmoid(x) |
Apply drop connect to random inputs in a batch. | def drop_connect(inputs, is_training, drop_connect_rate):
"""
Apply drop connect to random inputs in a batch.
"""
if not is_training:
return inputs
keep_prob = 1 - drop_connect_rate
# compute drop connect tensor
batch_size = inputs.shape[0]
random_tensor = keep_prob
random_tensor += torch.rand(
[batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device
)
binary_tensor = torch.floor(random_tensor)
outputs = (inputs / keep_prob) * binary_tensor
return outputs |
Calculates the scaled number of filters based on the width coefficient and
rounds the result by the width divisor. | def scale_width(num_filters, width_coefficient, width_divisor, min_width):
"""
Calculates the scaled number of filters based on the width coefficient and
rounds the result by the width divisor.
"""
if not width_coefficient:
return num_filters
num_filters *= width_coefficient
min_width = min_width or width_divisor
new_filters = max(
min_width,
(int(num_filters + width_divisor / 2) // width_divisor) * width_divisor,
)
# Do not round down by more than 10%
if new_filters < 0.9 * num_filters:
new_filters += width_divisor
return int(new_filters) |
Calculates the scaled number of repeats based on the depth coefficient. | def scale_depth(num_repeats, depth_coefficient):
"""
Calculates the scaled number of repeats based on the depth coefficient.
"""
if not depth_coefficient:
return num_repeats
return int(math.ceil(depth_coefficient * num_repeats)) |
Returns the required padding for "same" style convolutions | def get_same_padding_for_kernel_size(kernel_size):
"""
Returns the required padding for "same" style convolutions
"""
if kernel_size % 2 == 0:
raise ValueError(f"Only odd sized kernels are supported, got {kernel_size}")
return (kernel_size - 1) // 2 |
Implementation of `R(2+1)D unit <https://arxiv.org/abs/1711.11248>`_.
Decompose one 3D conv into one 2D spatial conv and one 1D temporal conv.
Choose the middle dimensionality so that the total No. of parameters
in 2D spatial conv and 1D temporal conv is unchanged.
Args:
dim_in (int): the channel dimensions of the input.
dim_out (int): the channel dimension of the output.
temporal_stride (int): the temporal stride of the bottleneck.
spatial_stride (int): the spatial_stride of the bottleneck.
groups (int): number of groups for the convolution.
inplace_relu (bool): calculate the relu on the original input
without allocating new memory.
bn_eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
dim_mid (Optional[int]): If not None, use the provided channel dimension
for the output of the 2D spatial conv. If None, compute the output
channel dimension of the 2D spatial conv so that the total No. of
model parameters remains unchanged. | def r2plus1_unit(
dim_in,
dim_out,
temporal_stride,
spatial_stride,
groups,
inplace_relu,
bn_eps,
bn_mmt,
dim_mid=None,
):
"""
Implementation of `R(2+1)D unit <https://arxiv.org/abs/1711.11248>`_.
Decompose one 3D conv into one 2D spatial conv and one 1D temporal conv.
Choose the middle dimensionality so that the total No. of parameters
in 2D spatial conv and 1D temporal conv is unchanged.
Args:
dim_in (int): the channel dimensions of the input.
dim_out (int): the channel dimension of the output.
temporal_stride (int): the temporal stride of the bottleneck.
spatial_stride (int): the spatial_stride of the bottleneck.
groups (int): number of groups for the convolution.
inplace_relu (bool): calculate the relu on the original input
without allocating new memory.
bn_eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
dim_mid (Optional[int]): If not None, use the provided channel dimension
for the output of the 2D spatial conv. If None, compute the output
channel dimension of the 2D spatial conv so that the total No. of
model parameters remains unchanged.
"""
if dim_mid is None:
dim_mid = int(dim_out * dim_in * 3 * 3 * 3 / (dim_in * 3 * 3 + dim_out * 3))
logging.info(
"dim_in: %d, dim_out: %d. Set dim_mid to %d" % (dim_in, dim_out, dim_mid)
)
# 1x3x3 group conv, BN, ReLU
conv_middle = nn.Conv3d(
dim_in,
dim_mid,
[1, 3, 3], # kernel
stride=[1, spatial_stride, spatial_stride],
padding=[0, 1, 1],
groups=groups,
bias=False,
)
conv_middle_bn = nn.BatchNorm3d(dim_mid, eps=bn_eps, momentum=bn_mmt)
conv_middle_relu = nn.ReLU(inplace=inplace_relu)
# 3x1x1 group conv
conv = nn.Conv3d(
dim_mid,
dim_out,
[3, 1, 1], # kernel
stride=[temporal_stride, 1, 1],
padding=[1, 0, 0],
groups=groups,
bias=False,
)
return nn.Sequential(conv_middle, conv_middle_bn, conv_middle_relu, conv) |
Converts a float to closest non-zero int divisible by q. | def _quantize_float(f, q):
"""Converts a float to closest non-zero int divisible by q."""
return int(round(f / q) * q) |
Adjusts the compatibility of widths and groups,
depending on the bottleneck ratio. | def _adjust_widths_groups_compatibilty(stage_widths, bottleneck_ratios, group_widths):
"""Adjusts the compatibility of widths and groups,
depending on the bottleneck ratio."""
# Compute all widths for the current settings
widths = [int(w * b) for w, b in zip(stage_widths, bottleneck_ratios)]
groud_widths_min = [min(g, w_bot) for g, w_bot in zip(group_widths, widths)]
# Compute the adjusted widths so that stage and group widths fit
ws_bot = [_quantize_float(w_bot, g) for w_bot, g in zip(widths, groud_widths_min)]
stage_widths = [int(w_bot / b) for w_bot, b in zip(ws_bot, bottleneck_ratios)]
return stage_widths, groud_widths_min |
helper function for constructing 3x3 grouped convolution | def conv3x3(in_planes, out_planes, stride=1, groups=1):
"""helper function for constructing 3x3 grouped convolution"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
groups=groups,
bias=False,
) |
helper function for constructing 1x1 convolution | def conv1x1(in_planes, out_planes, stride=1):
"""helper function for constructing 1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
Returns the required padding for "same" style convolutions | def get_same_padding_for_kernel_size(kernel_size):
"""
Returns the required padding for "same" style convolutions
"""
if kernel_size % 2 == 0:
raise ValueError(f"Only odd sized kernels are supported, got {kernel_size}")
return (kernel_size - 1) // 2 |
Registers a :class:`ClassyModel` subclass.
This decorator allows Classy Vision to instantiate a subclass of
:class:`ClassyModel` from a configuration file, even if the class itself is
not part of the Classy Vision framework. To use it, apply this decorator to
a ClassyModel subclass, like this:
.. code-block:: python
@register_model('resnet')
class ResidualNet(ClassyModel):
...
To instantiate a model from a configuration file, see
:func:`build_model`. | def register_model(name, bypass_checks=False):
"""Registers a :class:`ClassyModel` subclass.
This decorator allows Classy Vision to instantiate a subclass of
:class:`ClassyModel` from a configuration file, even if the class itself is
not part of the Classy Vision framework. To use it, apply this decorator to
a ClassyModel subclass, like this:
.. code-block:: python
@register_model('resnet')
class ResidualNet(ClassyModel):
...
To instantiate a model from a configuration file, see
:func:`build_model`."""
def register_model_cls(cls):
if not bypass_checks:
if name in MODEL_REGISTRY:
msg = (
"Cannot register duplicate model ({}). Already registered at \n{}\n"
)
raise ValueError(msg.format(name, MODEL_REGISTRY_TB[name]))
if not issubclass(cls, ClassyModel):
raise ValueError(
"Model ({}: {}) must extend ClassyModel".format(name, cls.__name__)
)
if cls.__name__ in MODEL_CLASS_NAMES:
msg = (
"Cannot register model with duplicate class name({})."
+ "Previously registered at \n{}\n"
)
raise ValueError(
msg.format(cls.__name__, MODEL_CLASS_NAMES_TB[cls.__name__])
)
tb = "".join(traceback.format_stack())
MODEL_REGISTRY[name] = cls
MODEL_CLASS_NAMES.add(cls.__name__)
MODEL_REGISTRY_TB[name] = tb
MODEL_CLASS_NAMES_TB[cls.__name__] = tb
return cls
return register_model_cls |
Builds a ClassyModel from a config.
This assumes a 'name' key in the config which is used to determine what
model class to instantiate. For instance, a config `{"name": "my_model",
"foo": "bar"}` will find a class that was registered as "my_model"
(see :func:`register_model`) and call .from_config on it. | def build_model(config):
"""Builds a ClassyModel from a config.
This assumes a 'name' key in the config which is used to determine what
model class to instantiate. For instance, a config `{"name": "my_model",
"foo": "bar"}` will find a class that was registered as "my_model"
(see :func:`register_model`) and call .from_config on it."""
assert config["name"] in MODEL_REGISTRY, f"unknown model: {config['name']}"
model = MODEL_REGISTRY[config["name"]].from_config(config)
if "heads" in config:
heads = defaultdict(list)
for head_config in config["heads"]:
assert "fork_block" in head_config, "Expect fork_block in config"
fork_block = head_config["fork_block"]
updated_config = copy.deepcopy(head_config)
del updated_config["fork_block"]
head = build_head(updated_config)
heads[fork_block].append(head)
model.set_heads(heads)
return model |
Builds a ClassyOptimizer from a config.
This assumes a 'name' key in the config which is used to determine what
optimizer class to instantiate. For instance, a config `{"name": "my_optimizer",
"foo": "bar"}` will find a class that was registered as "my_optimizer"
(see :func:`register_optimizer`) and call .from_config on it.
Also builds the param schedulers passed in the config and associates them with the
optimizer. The config should contain an optional "param_schedulers" key containing a
dictionary of param scheduler configs, keyed by the parameter they control. Adds
"num_epochs" to each of the scheduler configs and then calls
:func:`build_param_scheduler` on each config in the dictionary. | def build_optimizer(config):
"""Builds a ClassyOptimizer from a config.
This assumes a 'name' key in the config which is used to determine what
optimizer class to instantiate. For instance, a config `{"name": "my_optimizer",
"foo": "bar"}` will find a class that was registered as "my_optimizer"
(see :func:`register_optimizer`) and call .from_config on it.
Also builds the param schedulers passed in the config and associates them with the
optimizer. The config should contain an optional "param_schedulers" key containing a
dictionary of param scheduler configs, keyed by the parameter they control. Adds
"num_epochs" to each of the scheduler configs and then calls
:func:`build_param_scheduler` on each config in the dictionary.
"""
return OPTIMIZER_REGISTRY[config["name"]].from_config(config) |
Registers a ClassyOptimizer subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyOptimizer from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyOptimizer subclass, like this:
.. code-block:: python
@register_optimizer('my_optimizer')
class MyOptimizer(ClassyOptimizer):
...
To instantiate an optimizer from a configuration file, see
:func:`build_optimizer`. | def register_optimizer(name, bypass_checks=False):
"""Registers a ClassyOptimizer subclass.
This decorator allows Classy Vision to instantiate a subclass of
ClassyOptimizer from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ClassyOptimizer subclass, like this:
.. code-block:: python
@register_optimizer('my_optimizer')
class MyOptimizer(ClassyOptimizer):
...
To instantiate an optimizer from a configuration file, see
:func:`build_optimizer`."""
def register_optimizer_cls(cls):
if not bypass_checks:
if name in OPTIMIZER_REGISTRY:
msg = "Cannot register duplicate optimizer ({}). Already registered at \n{}\n"
raise ValueError(msg.format(name, OPTIMIZER_REGISTRY_TB[name]))
if not issubclass(cls, ClassyOptimizer):
raise ValueError(
"Optimizer ({}: {}) must extend ClassyVisionOptimizer".format(
name, cls.__name__
)
)
if cls.__name__ in OPTIMIZER_CLASS_NAMES:
msg = (
"Cannot register optimizer with duplicate class name({})."
+ "Previously registered at \n{}\n"
)
raise ValueError(
msg.format(cls.__name__, OPTIMIZER_CLASS_NAMES_TB[cls.__name__])
)
tb = "".join(traceback.format_stack())
OPTIMIZER_REGISTRY[name] = cls
OPTIMIZER_CLASS_NAMES.add(cls.__name__)
OPTIMIZER_REGISTRY_TB[name] = tb
OPTIMIZER_CLASS_NAMES_TB[cls.__name__] = tb
return cls
return register_optimizer_cls |
Add back the following functionalities to the fvcore schedulers:
1. Add `from_config` classmethod that constructs the scheduler from a dict
2. Add `update_interval` attribute
3. Add the class to the scheduler registry | def _create_classy_scheduler_class(base_class, register_name, default_update_interval):
"""
Add back the following functionalities to the fvcore schedulers:
1. Add `from_config` classmethod that constructs the scheduler from a dict
2. Add `update_interval` attribute
3. Add the class to the scheduler registry
"""
def from_config(cls, config: Dict[str, Any]) -> param_scheduler.ParamScheduler:
config = copy.copy(config)
assert register_name == config.pop("name")
update_interval = UpdateInterval.from_config(config, default_update_interval)
param_names = inspect.signature(base_class).parameters.keys()
# config might contain values that are not used by constructor
kwargs = {p: config[p] for p in param_names if p in config}
# This argument was renamed when moving to fvcore
if "num_updates" in param_names and "num_epochs" in config:
kwargs["num_updates"] = config["num_epochs"]
scheduler = cls(**kwargs)
scheduler.update_interval = update_interval
return scheduler
cls = type(
base_class.__name__,
(base_class, ClassyParamScheduler),
{
"from_config": classmethod(from_config),
"update_interval": default_update_interval,
},
)
if hasattr(base_class, "__doc__"):
cls.__doc__ = base_class.__doc__.replace("num_updates", "num_epochs")
register_param_scheduler(register_name)(cls)
return cls |
Builds a :class:`ParamScheduler` from a config.
This assumes a 'name' key in the config which is used to determine what
param scheduler class to instantiate. For instance, a config `{"name":
"my_scheduler", "foo": "bar"}` will find a class that was registered as
"my_scheduler" (see :func:`register_param_scheduler`) and call .from_config
on it. | def build_param_scheduler(config: Dict[str, Any]) -> ParamScheduler:
"""Builds a :class:`ParamScheduler` from a config.
This assumes a 'name' key in the config which is used to determine what
param scheduler class to instantiate. For instance, a config `{"name":
"my_scheduler", "foo": "bar"}` will find a class that was registered as
"my_scheduler" (see :func:`register_param_scheduler`) and call .from_config
on it."""
return PARAM_SCHEDULER_REGISTRY[config["name"]].from_config(config) |
Registers a :class:`ParamScheduler` subclass.
This decorator allows Classy Vision to instantiate a subclass of
ParamScheduler from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ParamScheduler subclass that implements a `from_config` classmethod, like
this:
.. code-block:: python
@register_param_scheduler('my_scheduler')
class MyParamScheduler(ParamScheduler):
...
To instantiate a param scheduler from a configuration file, see
:func:`build_param_scheduler`. | def register_param_scheduler(name, bypass_checks=False):
"""Registers a :class:`ParamScheduler` subclass.
This decorator allows Classy Vision to instantiate a subclass of
ParamScheduler from a configuration file, even if the class itself is not
part of the Classy Vision framework. To use it, apply this decorator to a
ParamScheduler subclass that implements a `from_config` classmethod, like
this:
.. code-block:: python
@register_param_scheduler('my_scheduler')
class MyParamScheduler(ParamScheduler):
...
To instantiate a param scheduler from a configuration file, see
:func:`build_param_scheduler`."""
def register_param_scheduler_cls(cls):
if not bypass_checks:
if name in PARAM_SCHEDULER_REGISTRY:
msg = "Cannot register duplicate param scheduler ({}). Already registered at \n{}\n"
raise ValueError(msg.format(name, PARAM_SCHEDULER_REGISTRY_TB[name]))
if not issubclass(cls, ParamScheduler):
raise ValueError(
"Param Scheduler ({}: {}) must extend ParamScheduler".format(
name, cls.__name__
)
)
tb = "".join(traceback.format_stack())
PARAM_SCHEDULER_REGISTRY[name] = cls
PARAM_SCHEDULER_REGISTRY_TB[name] = tb
return cls
return register_param_scheduler_cls |
Builds a ClassyTask from a config.
This assumes a 'name' key in the config which is used to determine what
task class to instantiate. For instance, a config `{"name": "my_task",
"foo": "bar"}` will find a class that was registered as "my_task"
(see :func:`register_task`) and call .from_config on it. | def build_task(config):
"""Builds a ClassyTask from a config.
This assumes a 'name' key in the config which is used to determine what
task class to instantiate. For instance, a config `{"name": "my_task",
"foo": "bar"}` will find a class that was registered as "my_task"
(see :func:`register_task`) and call .from_config on it."""
task = TASK_REGISTRY[config["name"]].from_config(config)
return task |
Registers a ClassyTask subclass.
This decorator allows Classy Vision to instantiate a subclass of ClassyTask
from a configuration file, even if the class itself is not part of the
Classy Vision framework. To use it, apply this decorator to a ClassyTask
subclass, like this:
.. code-block:: python
@register_task('my_task')
class MyTask(ClassyTask):
...
To instantiate a task from a configuration file, see :func:`build_task`. | def register_task(name):
"""Registers a ClassyTask subclass.
This decorator allows Classy Vision to instantiate a subclass of ClassyTask
from a configuration file, even if the class itself is not part of the
Classy Vision framework. To use it, apply this decorator to a ClassyTask
subclass, like this:
.. code-block:: python
@register_task('my_task')
class MyTask(ClassyTask):
...
To instantiate a task from a configuration file, see :func:`build_task`."""
def register_task_cls(cls):
if name in TASK_REGISTRY:
msg = "Cannot register duplicate task ({}). Already registered at \n{}\n"
raise ValueError(msg.format(name, TASK_REGISTRY_TB[name]))
if not issubclass(cls, ClassyTask):
raise ValueError(
"Task ({}: {}) must extend ClassyTask".format(name, cls.__name__)
)
if cls.__name__ in TASK_CLASS_NAMES:
msg = (
"Cannot register task with duplicate class name({})."
+ "Previously registered at \n{}\n"
)
raise ValueError(
msg.format(cls.__name__, TASK_CLASS_NAMES_TB[cls.__name__])
)
tb = "".join(traceback.format_stack())
TASK_REGISTRY[name] = cls
TASK_CLASS_NAMES.add(cls.__name__)
TASK_REGISTRY_TB[name] = tb
TASK_CLASS_NAMES_TB[cls.__name__] = tb
return cls
return register_task_cls |
Function sets up default environment variables for distributed training.
Args:
use_gpu: If true, set NCCL environment for GPUs | def _init_env_vars(use_gpu: bool):
"""Function sets up default environment variables for distributed training.
Args:
use_gpu: If true, set NCCL environment for GPUs
"""
if "WORLD_SIZE" not in os.environ or "RANK" not in os.environ:
os.environ["WORLD_SIZE"] = "1"
os.environ["RANK"] = "0"
os.environ["LOCAL_RANK"] = "0"
if "MASTER_ADDR" not in os.environ or "MASTER_PORT" not in os.environ:
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"
if use_gpu:
# From https://github.com/pytorch/elastic/blob/4175e9ec3ac346b89dab13eeca00e8f00b6daa8f/examples/imagenet/main.py#L156 # noqa B950
# when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
# because NCCL uses a spin-lock on the device. Set this env var to enable a
# watchdog thread that will destroy stale NCCL communicators, and
# asynchronously handle NCCL errors and timed out collectives.
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "1" |
Function perform distributed setup for DDP.
Requires the script to be started with torch.distributed.launch
script and uses environment variables for node finding.
Args:
use_gpu: If true, use distributed GPU training, else use CPU | def _init_distributed(use_gpu: bool):
"""Function perform distributed setup for DDP.
Requires the script to be started with torch.distributed.launch
script and uses environment variables for node finding.
Args:
use_gpu: If true, use distributed GPU training, else use CPU
"""
distributed_world_size = int(os.environ["WORLD_SIZE"])
distributed_rank = int(os.environ["RANK"])
backend = "nccl" if use_gpu else "gloo"
torch.distributed.init_process_group(
backend=backend,
init_method="env://",
world_size=distributed_world_size,
rank=distributed_rank,
) |
Generate HTML tutorials for captum Docusaurus site from Jupyter notebooks.
Also create ipynb and py versions of tutorial in Docusaurus site for
download. | def gen_tutorials(repo_dir: str) -> None:
"""Generate HTML tutorials for captum Docusaurus site from Jupyter notebooks.
Also create ipynb and py versions of tutorial in Docusaurus site for
download.
"""
with open(os.path.join(repo_dir, "website", "tutorials.json"), "r") as infile:
tutorial_config = json.loads(infile.read())
tutorial_ids = {x["id"] for v in tutorial_config.values() for x in v}
for tid in tutorial_ids:
print("Generating {} tutorial".format(tid))
# convert notebook to HTML
ipynb_in_path = os.path.join(repo_dir, "tutorials", "{}.ipynb".format(tid))
with open(ipynb_in_path, "r") as infile:
nb_str = infile.read()
nb = nbformat.reads(nb_str, nbformat.NO_CONVERT)
# displayname is absent from notebook metadata
nb["metadata"]["kernelspec"]["display_name"] = "python3"
exporter = HTMLExporter()
html, meta = exporter.from_notebook_node(nb)
# pull out html div for notebook
soup = BeautifulSoup(html, "html.parser")
nb_meat = soup.find("body", {"class": "jp-Notebook"})
nb_meat.attrs["class"] = ["notebook"]
html_out = JS_SCRIPTS + str(nb_meat)
# generate html file
html_out_path = os.path.join(
repo_dir, "website", "_tutorials", "{}.html".format(tid)
)
with open(html_out_path, "w") as html_outfile:
html_outfile.write(html_out)
# generate JS file
script = TEMPLATE.format(tid)
js_out_path = os.path.join(
repo_dir, "website", "pages", "tutorials", "{}.js".format(tid)
)
with open(js_out_path, "w") as js_outfile:
js_outfile.write(script)
# output tutorial in both ipynb & py form
ipynb_out_path = os.path.join(
repo_dir, "website", "static", "files", "{}.ipynb".format(tid)
)
with open(ipynb_out_path, "w") as ipynb_outfile:
ipynb_outfile.write(nb_str)
exporter = ScriptExporter()
script, meta = exporter.from_notebook_node(nb)
py_out_path = os.path.join(
repo_dir, "website", "static", "files", "{}.py".format(tid)
)
with open(py_out_path, "w") as py_outfile:
py_outfile.write(script) |
This helper function takes a sample, makes a copy, applies the
provided transform to the appropriate key in the copied sample and
returns the copy. It's solely to help make sure the copying /
random seed happens correctly throughout the file.
It is useful for constructing the expected sample field in the
transform checks. | def _apply_transform_to_key_and_copy(sample, transform, key, seed=0):
"""
This helper function takes a sample, makes a copy, applies the
provided transform to the appropriate key in the copied sample and
returns the copy. It's solely to help make sure the copying /
random seed happens correctly throughout the file.
It is useful for constructing the expected sample field in the
transform checks.
"""
expected_sample = copy.deepcopy(sample)
torch.manual_seed(seed)
numpy.random.seed(seed)
random.seed(seed)
is_tuple = False
if isinstance(expected_sample, tuple):
expected_sample = list(expected_sample)
is_tuple = True
expected_sample[key] = transform(expected_sample[key])
return tuple(expected_sample) if is_tuple else expected_sample |
Parses the csv file and returns number of rows | def parse_csv(file_path):
"""Parses the csv file and returns number of rows"""
num_rows = 0
with open(file_path, "r", newline="") as csvfile:
reader = csv.DictReader(csvfile, delimiter="\t")
for _ in reader:
num_rows += 1
return num_rows |
Find the full path for a given block name
e.g. block3-1 --> 3.block3-1 | def _find_block_full_path(model, block_name):
"""Find the full path for a given block name
e.g. block3-1 --> 3.block3-1
"""
for name, _ in model.named_modules():
if name.endswith(block_name):
return name
return None |
Find the full path for a given block name
e.g. block3-1 --> 3.block3-1 | def _find_block_full_path(model, block_name):
"""Find the full path for a given block name
e.g. block3-1 --> 3.block3-1
"""
for name, _ in model.named_modules():
if name.endswith(block_name):
return name
return None |
Allow for parallelism in CircleCI for speedier tests.. | def _circleci_parallelism(suite):
"""Allow for parallelism in CircleCI for speedier tests.."""
if int(os.environ.get("CIRCLE_NODE_TOTAL", 0)) <= 1:
# either not running on circleci, or we're not using parallelism.
return suite
# tests are automatically sorted by discover, so we will get the same ordering
# on all hosts.
total = int(os.environ["CIRCLE_NODE_TOTAL"])
index = int(os.environ["CIRCLE_NODE_INDEX"])
# right now each test is corresponds to a /file/. Certain files are slower than
# others, so we want to flatten it
tests = [testfile._tests for testfile in suite._tests]
tests = list(chain.from_iterable(tests))
random.Random(42).shuffle(tests)
tests = [t for i, t in enumerate(tests) if i % total == index]
return unittest.TestSuite(tests) |
Short tests.
Runs on CircleCI on every commit. Returns everything in the tests root directory. | def unittests():
"""
Short tests.
Runs on CircleCI on every commit. Returns everything in the tests root directory.
"""
test_loader = unittest.TestLoader()
test_suite = test_loader.discover("test", pattern="*_test.py")
test_suite = _circleci_parallelism(test_suite)
return test_suite |
Decorator that can be used to skip GPU tests on non-GPU machines. | def skip_if_no_gpu(func):
"""Decorator that can be used to skip GPU tests on non-GPU machines."""
func.skip_if_no_gpu = True
@wraps(func)
def wrapper(*args, **kwargs):
if not torch.cuda.is_available():
return
if torch.cuda.device_count() <= 0:
return
return func(*args, **kwargs)
return wrapper |
Decorator that can be used to repeat test multiple times. | def repeat_test(original_function=None, *, num_times=3):
"""Decorator that can be used to repeat test multiple times."""
def repeat_test_decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for _ in range(num_times):
func(*args, **kwargs)
return wrapper
# this handles default arguments to decorator:
if original_function:
return repeat_test_decorator(original_function)
return repeat_test_decorator |
Makes Torch code run deterministically. | def make_torch_deterministic(seed=0):
"""Makes Torch code run deterministically."""
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["OMP_NUM_THREADS"] = "1" |
Compare two batches. Does not do recursive comparison | def compare_batches(test_fixture, batch1, batch2):
"""Compare two batches. Does not do recursive comparison"""
test_fixture.assertEqual(type(batch1), type(batch2))
if isinstance(batch1, (tuple, list)):
test_fixture.assertEqual(len(batch1), len(batch2))
for n in range(len(batch1)):
value1 = batch1[n]
value2 = batch2[n]
test_fixture.assertEqual(type(value1), type(value2))
if torch.is_tensor(value1):
test_fixture.assertTrue(torch.allclose(value1, value2))
else:
test_fixture.assertEqual(value1, value2)
elif isinstance(batch1, dict):
test_fixture.assertEqual(batch1.keys(), batch2.keys())
for key, value1 in batch1.items():
value2 = batch2[key]
test_fixture.assertEqual(type(value1), type(value2))
if torch.is_tensor(value1):
test_fixture.assertTrue(torch.allclose(value1, value2))
else:
test_fixture.assertEqual(value1, value2) |
Compares a list of batches and the dataset. If some samples were
skipped in the iterator (i.e. if we simulated an error on that
sample), that should be indicated in the skip_indices list | def compare_batchlist_and_dataset_with_skips(
test_fixture, batch_list, dataset, skip_indices=None
):
"""
Compares a list of batches and the dataset. If some samples were
skipped in the iterator (i.e. if we simulated an error on that
sample), that should be indicated in the skip_indices list
"""
if skip_indices is None:
skip_indices = []
if isinstance(skip_indices, int):
skip_indices = [skip_indices]
skips = 0
for idx, batch in enumerate(batch_list):
while (idx + skips) in skip_indices:
skips += 1
dataset_batch = dataset[idx + skips]
compare_batches(test_fixture, batch, dataset_batch) |
Takes a batch of samples, e.g.
batch = {'input': tensor([256, 3, 224, 224]), 'target': tensor([256])}
and unpacks them into a list of single samples, e.g.
[{'input': tensor([1, 3, 224, 224]), 'target': tensor([1])} ... ] | def recursive_unpack(batch):
"""
Takes a batch of samples, e.g.
batch = {'input': tensor([256, 3, 224, 224]), 'target': tensor([256])}
and unpacks them into a list of single samples, e.g.
[{'input': tensor([1, 3, 224, 224]), 'target': tensor([1])} ... ]
"""
new_list = []
if isinstance(batch, dict):
unpacked_dict = {}
batchsize_per_replica = -1
for key, val in batch.items():
unpacked_dict[key] = recursive_unpack(val)
batchsize_per_replica = (
len(unpacked_dict[key])
if not torch.is_tensor(unpacked_dict[key])
else 1
)
for idx in range(batchsize_per_replica):
sample = {}
for key, val in unpacked_dict.items():
sample[key] = val[idx]
new_list.append(sample)
return new_list
elif isinstance(batch, (list, tuple)):
unpacked_list = []
if isinstance(batch, tuple):
batch = list(batch)
for val in batch:
unpacked_list.append(recursive_unpack(val))
batchsize_per_replica = (
len(unpacked_list[0]) if not torch.is_tensor(unpacked_list[0]) else 1
)
for idx in range(batchsize_per_replica):
sample = []
for val in unpacked_list:
sample.append(val[idx])
if isinstance(batch, tuple):
sample = tuple(sample)
new_list.append(sample)
return new_list
elif torch.is_tensor(batch):
for i in range(batch.size()[0]):
new_list.append(batch[i])
return new_list
raise TypeError("Unexpected type %s passed to unpack" % type(batch)) |
Tests the classy state dicts for equality, but skips the member objects
which implement their own {get, set}_classy_state functions. | def compare_states(test_fixture, state_1, state_2, check_heads=True):
"""
Tests the classy state dicts for equality, but skips the member objects
which implement their own {get, set}_classy_state functions.
"""
# check base_model
compare_model_state(
test_fixture, state_1["base_model"], state_2["base_model"], check_heads
)
# check losses
test_fixture.assertEqual(len(state_1["losses"]), len(state_2["losses"]))
for loss_1, loss_2 in zip(state_1["losses"], state_2["losses"]):
test_fixture.assertAlmostEqual(loss_1, loss_2)
for key in ["base_model", "meters", "optimizer", "losses"]:
# we trust that these have been tested using their unit tests or
# by the code above
test_fixture.assertIn(key, state_1)
test_fixture.assertIn(key, state_2)
del state_1[key]
del state_2[key]
test_fixture.assertDictEqual(state_1, state_2) |
>>> contributors = {'Alice': new_person(github='alice', twitter='alice')}
>>> merge_all_the_people('2.6.0', contributors, {}, {})
>>> contributors
{'Alice': {'committed': [], 'reported': [], 'github': 'alice', 'twitter': 'alice'}}
>>> contributors = {'Bob': new_person(github='bob', twitter='bob')}
>>> merge_all_the_people('2.6.0', contributors, {'Bob'}, {'bob'})
>>> contributors
{'Bob': {'committed': ['2.6.0'], 'reported': ['2.6.0'], 'github': 'bob', 'twitter': 'bob'}}
>>> contributors = {'Charlotte': new_person(github='charlotte', twitter='charlotte', committed=['2.5.0'], reported=['2.5.0'])}
>>> merge_all_the_people('2.6.0', contributors, {'Charlotte'}, {'charlotte'})
>>> contributors
{'Charlotte': {'committed': ['2.5.0', '2.6.0'], 'reported': ['2.5.0', '2.6.0'], 'github': 'charlotte', 'twitter': 'charlotte'}} | def merge_all_the_people(release: str, contributors: People, committers: FullNames, reporters: GitHubLogins) -> None:
"""
>>> contributors = {'Alice': new_person(github='alice', twitter='alice')}
>>> merge_all_the_people('2.6.0', contributors, {}, {})
>>> contributors
{'Alice': {'committed': [], 'reported': [], 'github': 'alice', 'twitter': 'alice'}}
>>> contributors = {'Bob': new_person(github='bob', twitter='bob')}
>>> merge_all_the_people('2.6.0', contributors, {'Bob'}, {'bob'})
>>> contributors
{'Bob': {'committed': ['2.6.0'], 'reported': ['2.6.0'], 'github': 'bob', 'twitter': 'bob'}}
>>> contributors = {'Charlotte': new_person(github='charlotte', twitter='charlotte', committed=['2.5.0'], reported=['2.5.0'])}
>>> merge_all_the_people('2.6.0', contributors, {'Charlotte'}, {'charlotte'})
>>> contributors
{'Charlotte': {'committed': ['2.5.0', '2.6.0'], 'reported': ['2.5.0', '2.6.0'], 'github': 'charlotte', 'twitter': 'charlotte'}}
"""
# Update known contributors.
for name, details in contributors.items():
if name in committers:
if release not in details['committed']:
details['committed'].append(release)
committers.remove(name)
if details['github'] in reporters:
if release not in details['reported']:
details['reported'].append(release)
reporters.remove(details['github'])
# Add new committers.
for name in committers:
user_info = user(fullname=name)
contributors[name] = new_person(
github=user_info['login'],
twitter=user_info['twitter_username'],
committed=[release],
)
if user_info['login'] in reporters:
contributors[name]['reported'].append(release)
reporters.remove(user_info['login'])
# Add new reporters.
for github_username in reporters:
user_info = user(github_username=github_username)
contributors[user_info['name'] or user_info['login']] = new_person(
github=github_username,
twitter=user_info['twitter_username'],
reported=[release],
) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.