title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Reversible and non-reversible Markov Chain Monte Carlo algorithms for reservoir simulation problems
We compare numerically the performance of reversible and non-reversible Markov Chain Monte Carlo algorithms for high dimensional oil reservoir problems; because of the nature of the problem at hand, the target measures from which we sample are supported on bounded domains. We compare two strategies to deal with bounded domains, namely reflecting proposals off the boundary and rejecting them when they fall outside of the domain. We observe that for complex high dimensional problems reflection mechanisms outperform rejection approaches and that the advantage of introducing non-reversibility in the Markov Chain employed for sampling is more and more visible as the dimension of the parameter space increases.
stat
The semi-hierarchical Dirichlet Process and its application to clustering homogeneous distributions
Assessing homogeneity of distributions is an old problem that has received considerable attention, especially in the nonparametric Bayesian literature. To this effect, we propose the semi-hierarchical Dirichlet process, a novel hierarchical prior that extends the hierarchical Dirichlet process of Teh et al. (2006) and that avoids the degeneracy issues of nested processes recently described by Camerlenghi et al. (2019a). We go beyond the simple yes/no answer to the homogeneity question and embed the proposed prior in a random partition model; this procedure allows us to give a more comprehensive response to the above question and in fact find groups of populations that are internally homogeneous when I greater or equal than 2 such populations are considered. We study theoretical properties of the semi-hierarchical Dirichlet process and of the Bayes factor for the homogeneity test when I = 2. Extensive simulation studies and applications to educational data are also discussed.
stat
Identification Methods With Arbitrary Interventional Distributions as Inputs
Causal inference quantifies cause-effect relationships by estimating counterfactual parameters from data. This entails using \emph{identification theory} to establish a link between counterfactual parameters of interest and distributions from which data is available. A line of work characterized non-parametric identification for a wide variety of causal parameters in terms of the \emph{observed data distribution}. More recently, identification results have been extended to settings where experimental data from interventional distributions is also available. In this paper, we use Single World Intervention Graphs and a nested factorization of models associated with mixed graphs to give a very simple view of existing identification theory for experimental data. We use this view to yield general identification algorithms for settings where the input distributions consist of an arbitrary set of observational and experimental distributions, including marginal and conditional distributions. We show that for problems where inputs are interventional marginal distributions of a certain type (ancestral marginals), our algorithm is complete.
stat
On the Universality of Noiseless Linear Estimation with Respect to the Measurement Matrix
In a noiseless linear estimation problem, one aims to reconstruct a vector x* from the knowledge of its linear projections y=Phi x*. There have been many theoretical works concentrating on the case where the matrix Phi is a random i.i.d. one, but a number of heuristic evidence suggests that many of these results are universal and extend well beyond this restricted case. Here we revisit this problematic through the prism of development of message passing methods, and consider not only the universality of the l1 transition, as previously addressed, but also the one of the optimal Bayesian reconstruction. We observed that the universality extends to the Bayes-optimal minimum mean-squared (MMSE) error, and to a range of structured matrices.
stat
Statistical downscaling with spatial misalignment: Application to wildland fire PM$_{2.5}$ concentration forecasting
Fine particulate matter, PM$_{2.5}$, has been documented to have adverse health effects and wildland fires are a major contributor to PM$_{2.5}$ air pollution in the US. Forecasters use numerical models to predict PM$_{2.5}$ concentrations to warn the public of impending health risk. Statistical methods are needed to calibrate the numerical model forecast using monitor data to reduce bias and quantify uncertainty. Typical model calibration techniques do not allow for errors due to misalignment of geographic locations. We propose a spatiotemporal downscaling methodology that uses image registration techniques to identify the spatial misalignment and accounts for and corrects the bias produced by such warping. Our model is fitted in a Bayesian framework to provide uncertainty quantification of the misalignment and other sources of error. We apply this method to different simulated data sets and show enhanced performance of the method in the presence of spatial misalignment. Finally, we apply the method to a large fire in Washington state and show that the proposed method provides more realistic uncertainty quantification than standard methods.
stat
Improved Calibration of Numerical Integration Error in Sigma-Point Filters
The sigma-point filters, such as the UKF, which exploit numerical quadrature to obtain an additional order of accuracy in the moment transformation step, are popular alternatives to the ubiquitous EKF. The classical quadrature rules used in the sigma-point filters are motivated via polynomial approximation of the integrand, however in the applied context these assumptions cannot always be justified. As a result, quadrature error can introduce bias into estimated moments, for which there is no compensatory mechanism in the classical sigma-point filters. This can lead in turn to estimates and predictions that are poorly calibrated. In this article, we investigate the Bayes-Sard quadrature method in the context of sigma-point filters, which enables uncertainty due to quadrature error to be formalised within a probabilistic model. Our first contribution is to derive the well-known classical quadratures as special cases of the Bayes-Sard quadrature method. Then a general-purpose moment transform is developed and utilised in the design of novel sigma-point filters, so that uncertainty due to quadrature error is explicitly quantified. Numerical experiments on a challenging tracking example with misspecified initial conditions show that the additional uncertainty quantification built into our method leads to better-calibrated state estimates with improved RMSE.
stat
Space-Time Smoothing of Demographic and Health Indicators using the R Package SUMMER
The increasing availability of complex survey data, and the continued need for estimates of demographic and health indicators at a fine spatial and temporal scale, which leads to issues of data sparsity, has led to the need for spatio-temporal smoothing methods that acknowledge the manner in which the data were collected. The open source R package SUMMER implements a variety of methods for spatial or spatio-temporal smoothing of survey data. The emphasis is on small-area estimation. We focus primarily on indicators in a low and middle-income countries context. Our methods are particularly useful for data from Demographic Health Surveys and Multiple Indicator Cluster Surveys. We build upon functions within the survey package, and use INLA for fast Bayesian computation. This paper includes a brief overview of these methods and illustrates the workflow of accessing and processing surveys, estimating subnational child mortality rates, and visualizing results with both simulated data and DHS surveys.
stat
Parallel Tempering on Optimized Paths
Parallel tempering (PT) is a class of Markov chain Monte Carlo algorithms that constructs a path of distributions annealing between a tractable reference and an intractable target, and then interchanges states along the path to improve mixing in the target. The performance of PT depends on how quickly a sample from the reference distribution makes its way to the target, which in turn depends on the particular path of annealing distributions. However, past work on PT has used only simple paths constructed from convex combinations of the reference and target log-densities. This paper begins by demonstrating that this path performs poorly in the setting where the reference and target are nearly mutually singular. To address this issue, we expand the framework of PT to general families of paths, formulate the choice of path as an optimization problem that admits tractable gradient estimates, and propose a flexible new family of spline interpolation paths for use in practice. Theoretical and empirical results both demonstrate that our proposed methodology breaks previously-established upper performance limits for traditional paths.
stat
A Dimension-free Algorithm for Contextual Continuum-armed Bandits
In contextual continuum-armed bandits, the contexts $x$ and the arms $y$ are both continuous and drawn from high-dimensional spaces. The payoff function to learn $f(x,y)$ does not have a particular parametric form. The literature has shown that for Lipschitz-continuous functions, the optimal regret is $\tilde{O}(T^{\frac{d_x+d_y+1}{d_x+d_y+2}})$, where $d_x$ and $d_y$ are the dimensions of contexts and arms, and thus suffers from the curse of dimensionality. We develop an algorithm that achieves regret $\tilde{O}(T^{\frac{d_x+1}{d_x+2}})$ when $f$ is globally concave in $y$. The global concavity is a common assumption in many applications. The algorithm is based on stochastic approximation and estimates the gradient information in an online fashion. Our results generate a valuable insight that the curse of dimensionality of the arms can be overcome with some mild structures of the payoff function.
stat
Sample Size Calculation for Active-Arm Trial with Counterfactual Incidence Based on Recency Assay
The past decade has seen tremendous progress in the development of biomedical agents that are effective as pre-exposure prophylaxis (PrEP) for HIV prevention. To expand the choice of products and delivery methods, new medications and delivery methods are under development. Future trials of non-inferiority, given the high efficacy of ARV-based PrEP products as they become current or future standard of care, would require a large number of participants and long follow-up time that may not be feasible. This motivates the construction of a counterfactual estimate that approximates incidence for a randomized concurrent control group receiving no PrEP. We propose an approach that is to enroll a cohort of prospective PrEP users and augment screening for HIV with laboratory markers of duration of HIV infection to indicate recent infections. We discuss the assumptions under which these data would yield an estimate of the counterfactual HIV incidence and develop sample size and power calculations for comparisons to incidence observed on an investigational PrEP agent.
stat
ABC-Di: Approximate Bayesian Computation for Discrete Data
Many real-life problems are represented as a black-box, i.e., the internal workings are inaccessible or a closed-form mathematical expression of the likelihood function cannot be defined. For continuous random variables likelihood-free inference problems can be solved by a group of methods under the name of Approximate Bayesian Computation (ABC). However, a similar approach for discrete random variables is yet to be formulated. Here, we aim to fill this research gap. We propose to use a population-based MCMC ABC framework. Further, we present a valid Markov kernel, and propose a new kernel that is inspired by Differential Evolution. We assess the proposed approach on a problem with the known likelihood function, namely, discovering the underlying diseases based on a QMR-DT Network, and three likelihood-free inference problems: (i) the QMR-DT Network with the unknown likelihood function, (ii) learning binary neural network, and (iii) Neural Architecture Search. The obtained results indicate the high potential of the proposed framework and the superiority of the new Markov kernel.
stat
Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: application to urban drainage simulation
This paper presents an efficient surrogate modeling strategy for the uncertainty quantification and Bayesian calibration of a hydrological model. In particular, a process-based dynamical urban drainage simulator that predicts the discharge from a catchment area during a precipitation event is considered. The goal of the case study is to perform a global sensitivity analysis and to identify the unknown model parameters as well as the measurement and prediction errors. These objectives can only be achieved by cheapening the incurred computational costs, that is, lowering the number of necessary model runs. With this in mind, a regularity-exploiting metamodeling technique is proposed that enables fast uncertainty quantification. Principal component analysis is used for output dimensionality reduction and sparse polynomial chaos expansions are used for the emulation of the reduced outputs. Sobol' sensitivity indices are obtained directly from the expansion coefficients by a mere post-processing. Bayesian inference via Markov chain Monte Carlo posterior sampling is drastically accelerated.
stat
Statistical Inference for Data-adaptive Doubly Robust Estimators with Survival Outcomes
The consistency of doubly robust estimators relies on consistent estimation of at least one of two nuisance regression parameters. In moderate to large dimensions, the use of flexible data-adaptive regression estimators may aid in achieving this consistency. However, $n^{1/2}$-consistency of doubly robust estimators is not guaranteed if one of the nuisance estimators is inconsistent. In this paper we present a doubly robust estimator for survival analysis with the novel property that it converges to a Gaussian variable at $n^{1/2}$-rate for a large class of data-adaptive estimators of the nuisance parameters, under the only assumption that at least one of them is consistently estimated at a $n^{1/4}$-rate. This result is achieved through adaptation of recent ideas in semiparametric inference, which amount to: (i) Gaussianizing (i.e., making asymptotically linear) a drift term that arises in the asymptotic analysis of the doubly robust estimator, and (ii) using cross-fitting to avoid entropy conditions on the nuisance estimators. We present the formula of the asymptotic variance of the estimator, which allows computation of doubly robust confidence intervals and p-values. We illustrate the finite-sample properties of the estimator in simulation studies, and demonstrate its use in a phase III clinical trial for estimating the effect of a novel therapy for the treatment of HER2 positive breast cancer.
stat
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarchy of gamma distributions, while the inference network of WHAI is a Weibull upward-downward variational autoencoder, which integrates a deterministic-upward deep neural network, and a stochastic-downward deep generative model based on a hierarchy of Weibull distributions. The Weibull distribution can be used to well approximate a gamma distribution with an analytic Kullback-Leibler divergence, and has a simple reparameterization via the uniform noise, which help efficiently compute the gradients of the evidence lower bound with respect to the parameters of the inference network. The effectiveness and efficiency of WHAI are illustrated with experiments on big corpora.
stat
Unmanned Aerial Vehicle Path Planning for Traffic Estimation and Detection of Non-Recurrent Congestion
Unmanned aerial vehicles (UAVs) provide a novel means of extracting road and traffic information via video data. Specifically, by analyzing objects in a video frame, UAVs can be used to detect traffic characteristics and road incidents. Under congested conditions, the UAVs can supply accurate incident information where it is otherwise difficult to infer the road state from traditional speed-density measurements. Leveraging the mobility and detection capabilities of UAVs, we investigate navigation algorithms that seek to maximize information on the road/traffic state under non-recurrent congestion. We propose an active exploration framework that (1) assimilates UAV observations with speed-density sensor data, (2) quantifies uncertainty on the road/traffic state, and (3) adaptively navigates the UAV to minimize this uncertainty. The navigation algorithm uses the A-optimal information measure (mean uncertainty) and it depends on covariance matrices generated by an ensemble Kalman filter (EnKF). In the EnKF procedure, we incorporate nonlinear traffic observations through model diagnostic variables, and we present a parameter update procedure that maintains a monotonic relationship between states and measurements. We compare the traffic and incident state estimates resulting from the coupled UAV navigation-estimation procedure against corresponding estimates that do not use targeted UAV observations. Our results indicate that UAVs aid in detection of incidents under congested conditions where speed-density data are not informative.
stat
Building a large synthetic population from Australian census data
We present work on creating a synthetic population from census data for Australia, applied to the greater Melbourne region. We use a sample-free approach to population synthesis that does not rely on a disaggregate sample from the original population. The inputs for our algorithm are joint marginal distributions from census of desired person-level and household-level attributes, and outputs are a set of comma-separated-value (.csv) files containing the full synthetic population of unique individuals in households; with age, gender, relationship status, household type, and size, matched to census data. Our algorithm is efficient in that it can create the synthetic population for Melbourne comprising 4.5 million persons in 1.8 million households within three minutes on a modern computer. Code for the algorithm is hosted on GitHub.
stat
Robust Maximization of Non-Submodular Objectives
We study the problem of maximizing a monotone set function subject to a cardinality constraint $k$ in the setting where some number of elements $\tau$ is deleted from the returned set. The focus of this work is on the worst-case adversarial setting. While there exist constant-factor guarantees when the function is submodular, there are no guarantees for non-submodular objectives. In this work, we present a new algorithm Oblivious-Greedy and prove the first constant-factor approximation guarantees for a wider class of non-submodular objectives. The obtained theoretical bounds are the first constant-factor bounds that also hold in the linear regime, i.e. when the number of deletions $\tau$ is linear in $k$. Our bounds depend on established parameters such as the submodularity ratio and some novel ones such as the inverse curvature. We bound these parameters for two important objectives including support selection and variance reduction. Finally, we numerically demonstrate the robust performance of Oblivious-Greedy for these two objectives on various datasets.
stat
Fast MCMC sampling algorithms on polytopes
We propose and analyze two new MCMC sampling algorithms, the Vaidya walk and the John walk, for generating samples from the uniform distribution over a polytope. Both random walks are sampling algorithms derived from interior point methods. The former is based on volumetric-logarithmic barrier introduced by Vaidya whereas the latter uses John's ellipsoids. We show that the Vaidya walk mixes in significantly fewer steps than the logarithmic-barrier based Dikin walk studied in past work. For a polytope in $\mathbb{R}^d$ defined by $n >d$ linear constraints, we show that the mixing time from a warm start is bounded as $\mathcal{O}(n^{0.5}d^{1.5})$, compared to the $\mathcal{O}(nd)$ mixing time bound for the Dikin walk. The cost of each step of the Vaidya walk is of the same order as the Dikin walk, and at most twice as large in terms of constant pre-factors. For the John walk, we prove an $\mathcal{O}(d^{2.5}\cdot\log^4(n/d))$ bound on its mixing time and conjecture that an improved variant of it could achieve a mixing time of $\mathcal{O}(d^2\cdot\text{polylog}(n/d))$. Additionally, we propose variants of the Vaidya and John walks that mix in polynomial time from a deterministic starting point. The speed-up of the Vaidya walk over the Dikin walk are illustrated in numerical examples.
stat
Stochastic Approximation Hamiltonian Monte Carlo
Recently, the Hamilton Monte Carlo (HMC) has become widespread as one of the more reliable approaches to efficient sample generation processes. However, HMC is difficult to sample in a multimodal posterior distribution because the HMC chain cannot cross energy barrier between modes due to the energy conservation property. In this paper, we propose a Stochastic Approximate Hamilton Monte Carlo (SAHMC) algorithm for generating samples from multimodal density under the Hamiltonian Monte Carlo (HMC) framework. SAHMC can adaptively lower the energy barrier to move the Hamiltonian trajectory more frequently and more easily between modes. Our simulation studies show that the potential for SAHMC to explore a multimodal target distribution more efficiently than HMC based implementations.
stat
Clustering with Fast, Automated and Reproducible assessment applied to longitudinal neural tracking
Across many areas, from neural tracking to database entity resolution, manual assessment of clusters by human experts presents a bottleneck in rapid development of scalable and specialized clustering methods. To solve this problem we develop C-FAR, a novel method for Fast, Automated and Reproducible assessment of multiple hierarchical clustering algorithms simultaneously. Our algorithm takes any number of hierarchical clustering trees as input, then strategically queries pairs for human feedback, and outputs an optimal clustering among those nominated by these trees. While it is applicable to large dataset in any domain that utilizes pairwise comparisons for assessment, our flagship application is the cluster aggregation step in spike-sorting, the task of assigning waveforms (spikes) in recordings to neurons. On simulated data of 96 neurons under adverse conditions, including drifting and 25\% blackout, our algorithm produces near-perfect tracking relative to the ground truth. Our runtime scales linearly in the number of input trees, making it a competitive computational tool. These results indicate that C-FAR is highly suitable as a model selection and assessment tool in clustering tasks.
stat
Identifying Invariant Factors Across Multiple Environments with KL Regression
Many datasets are collected from multiple environments (e.g. different labs, perturbations, etc.), and it is often advantageous to learn models and relations that are invariant across environments. Invariance can improve robustness to unknown confounders and improve generalization to new domains. We develop a novel framework --KL regression-- to reliably estimate regression coefficients in a challenging multi-environment setting, where latent confounders affect the data from each environment. KL regression is based on a new objective of simultaneously minimizing the KL- divergence between a parametric model and the observed data from each environment. We prove that KL regression recovers the true invariant factors under a flexible confounding setup. Moreover, it is computationally efficient as we derive an analytic solution for its global optimum. In systematic experiments, we validate the improved performance of KL regression compared to commonly used approaches.
stat
Scalable optimization-based sampling on function space
Optimization-based samplers such as randomize-then-optimize (RTO) [2] provide an efficient and parallellizable approach to solving large-scale Bayesian inverse problems. These methods solve randomly perturbed optimization problems to draw samples from an approximate posterior distribution. "Correcting" these samples, either by Metropolization or importance sampling, enables characterization of the original posterior distribution. This paper focuses on the scalability of RTO to problems with high- or infinite-dimensional parameters. We introduce a new subspace acceleration strategy that makes the computational complexity of RTO scale linearly with the parameter dimension. This subspace perspective suggests a natural extension of RTO to a function space setting. We thus formalize a function space version of RTO and establish sufficient conditions for it to produce a valid Metropolis-Hastings proposal, yielding dimension-independent sampling performance. Numerical examples corroborate the dimension-independence of RTO and demonstrate sampling performance that is also robust to small observational noise.
stat
Estimation of distributional effects of treatment and control under selection on observables: consistency, weak convergence, and applications
In this paper the estimation of the distribution function for potential outcomes to receiving or not receiving a treatment is studied. The approach is based on weighting observed data on the basis on estimated propensity score. A weighted version of empirical process is constructed and its weak convergence to bivariate Gaussian process is established. Results for the estimation of the Average Treatment Effect (ATE) and Quantile Treatment Effect (QTE) are obtained as by-products. Applications to the construction of nonparametric tests for the treatment effect and for the stochastic dominance of the treatment over control are considered, and their finite sample properties and merits are studied via simulation.
stat
Complexity of Linear Regions in Deep Networks
It is well-known that the expressivity of a neural network depends on its architecture, with deeper networks expressing more complex functions. In the case of networks that compute piecewise linear functions, such as those with ReLU activation, the number of distinct linear regions is a natural measure of expressivity. It is possible to construct networks with merely a single region, or for which the number of linear regions grows exponentially with depth; it is not clear where within this range most networks fall in practice, either before or after training. In this paper, we provide a mathematical framework to count the number of linear regions of a piecewise linear network and measure the volume of the boundaries between these regions. In particular, we prove that for networks at initialization, the average number of regions along any one-dimensional subspace grows linearly in the total number of neurons, far below the exponential upper bound. We also find that the average distance to the nearest region boundary at initialization scales like the inverse of the number of neurons. Our theory suggests that, even after training, the number of linear regions is far below exponential, an intuition that matches our empirical observations. We conclude that the practical expressivity of neural networks is likely far below that of the theoretical maximum, and that this gap can be quantified.
stat
Asymptotic based bootstrap approach for matched pairs with missingness in a single-arm
The issue of missing values is an arising difficulty when dealing with paired data. Several test procedures are developed in the literature to tackle this problem. Some of them are even robust under deviations and control type-I error quite accurately. However, most these methods are not applicable when missing values are present only in a single arm. For this case, we provide asymptotic correct resampling tests that are robust under heteroscedasticity and skewed distributions. The tests are based on a clever restructuring of all observed information in a quadratic form-type test statistic. An extensive simulation study is conducted exemplifying the tests for finite sample sizes under different missingness mechanisms. In addition, an illustrative data example based on a breast cancer gene study is analyzed.
stat
Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration
The hypothesis that sub-network initializations (lottery) exist within the initializations of over-parameterized networks, which when trained in isolation produce highly generalizable models, has led to crucial insights into network initialization and has enabled efficient inferencing. Supervised models with uncalibrated confidences tend to be overconfident even when making wrong prediction. In this paper, for the first time, we study how explicit confidence calibration in the over-parameterized network impacts the quality of the resulting lottery tickets. More specifically, we incorporate a suite of calibration strategies, ranging from mixup regularization, variance-weighted confidence calibration to the newly proposed likelihood-based calibration and normalized bin assignment strategies. Furthermore, we explore different combinations of architectures and datasets, and make a number of key findings about the role of confidence calibration. Our empirical studies reveal that including calibration mechanisms consistently lead to more effective lottery tickets, in terms of accuracy as well as empirical calibration metrics, even when retrained using data with challenging distribution shifts with respect to the source dataset.
stat
Imbalanced Sparse Canonical Correlation Analysis
Classical canonical correlation analysis (CCA) requires matrices to be low dimensional, i.e. the number of features cannot exceed the sample size. Recent developments in CCA have mainly focused on the high-dimensional setting, where the number of features in both matrices under analysis greatly exceeds the sample size. However, these approaches make considerable sparsity assumptions and impose penalties that may be unnecessary for some datasets. We consider an imbalanced setting that is commonly encountered, where one matrix is high dimensional and the other is low dimensional. We provide an explicit link between sparse multiple regression with sparse canonical correlation analysis, and an efficient algorithm that exploits the imbalanced data structure and estimates multiple canonical pairs rather than sequentially. We provide theoretical results on the consistency of canonical pairs. Simulation results and the analysis of several real datasets support the improved performance of the proposed approach.
stat
Optimal and Maximin Procedures for Multiple Testing Problems
Multiple testing problems are a staple of modern statistical analysis. The fundamental objective of multiple testing procedures is to reject as many false null hypotheses as possible (that is, maximize some notion of power), subject to controlling an overall measure of false discovery, like family-wise error rate (FWER) or false discovery rate (FDR). In this paper we formulate multiple testing of simple hypotheses as an infinite-dimensional optimization problem, seeking the most powerful rejection policy which guarantees strong control of the selected measure. In that sense, our approach is a generalization of the optimal Neyman-Pearson test for a single hypothesis. We show that for exchangeable hypotheses, for both FWER and FDR and relevant notions of power, these problems can be formulated as infinite linear programs and can in principle be solved for any number of hypotheses. We also characterize maximin rules for complex alternatives, and demonstrate that such rules can be found in practice, leading to improved practical procedures compared to existing alternatives. We derive explicit optimal tests for FWER or FDR control for three independent normal means. We find that the power gain over natural competitors is substantial in all settings examined. Finally, we apply our optimal maximin rule to subgroup analyses in systematic reviews from the Cochrane library, leading to an increase in the number of findings while guaranteeing strong FWER control against the one sided alternative.
stat
Reinforcement Learning under Model Risk for Biomanufacturing Fermentation Control
In the biopharmaceutical manufacturing, fermentation process plays a critical role impacting on productivity and profit. Since biotherapeutics are manufactured in living cells whose biological mechanisms are complex and have highly variable outputs, in this paper, we introduce a model-based reinforcement learning framework accounting for model risk to support bioprocess online learning and guide the optimal and robust customized stopping policy for fermentation process. Specifically, built on the dynamic mechanisms of protein and impurity generation, we first construct a probabilistic model characterizing the impact of underlying bioprocess stochastic uncertainty on impurity and protein growth rates. Since biopharmaceutical manufacturing often has very limited data during the development and early stage of production, we derive the posterior distribution quantifying the process model risk, and further develop the Bayesian rule based knowledge update to support the online learning on underlying stochastic process. With the prediction risk accounting for both bioprocess stochastic uncertainty and model risk, the proposed reinforcement learning framework can proactively hedge all sources of uncertainties and support the optimal and robust customized decision making. We conduct the structural analysis of optimal policy and study the impact of model risk on the policy selection. We can show that it asymptotically converges to the optimal policy obtained under perfect information of underlying stochastic process. Our case studies demonstrate that the proposed framework can greatly improve the biomanufacturing industrial practice.
stat
Subset Multivariate Collective And Point Anomaly Detection
In recent years, there has been a growing interest in identifying anomalous structure within multivariate data streams. We consider the problem of detecting collective anomalies, corresponding to intervals where one or more of the data streams behaves anomalously. We first develop a test for a single collective anomaly that has power to simultaneously detect anomalies that are either rare, that is affecting few data streams, or common. We then show how to detect multiple anomalies in a way that is computationally efficient but avoids the approximations inherent in binary segmentation-like approaches. This approach, which we call MVCAPA, is shown to consistently estimate the number and location of the collective anomalies, a property that has not previously been shown for competing methods. MVCAPA can be made robust to point anomalies and can allow for the anomalies to be imperfectly aligned. We show the practical usefulness of allowing for imperfect alignments through a resulting increase in power to detect regions of copy number variation.
stat
Pair-Matching: Links Prediction with Adaptive Queries
The pair-matching problem appears in many applications where one wants to discover good matches between pairs of entities or individuals. Formally, the set of individuals is represented by the nodes of a graph where the edges, unobserved at first, represent the good matches. The algorithm queries pairs of nodes and observes the presence/absence of edges. Its goal is to discover as many edges as possible with a fixed budget of queries. Pair-matching is a particular instance of multi-armed bandit problem in which the arms are pairs of individuals and the rewards are edges linking these pairs. This bandit problem is non-standard though, as each arm can only be played once. Given this last constraint, sublinear regret can be expected only if the graph presents some underlying structure. This paper shows that sublinear regret is achievable in the case where the graph is generated according to a Stochastic Block Model (SBM) with two communities. Optimal regret bounds are computed for this pair-matching problem. They exhibit a phase transition related to the Kesten-Stigum threshold for community detection in SBM. The pair-matching problem is considered in the case where each node is constrained to be sampled less than a given amount of times. We show how optimal regret rates depend on this constraint. The paper is concluded by a conjecture regarding the optimal regret when the number of communities is larger than 2. Contrary to the two communities case, we argue that a statistical-computational gap would appear in this problem.
stat
Mean-field Behaviour of Neural Tangent Kernel for Deep Neural Networks
Recent work by Jacot et al. (2018) has shown that training a neural network of any kind with gradient descent in parameter space is strongly related to kernel gradient descent in function space with respect to the Neural Tangent Kernel (NTK). Lee et al. (2019) built on this result by establishing that the output of a neural network trained using gradient descent can be approximated by a linear model for wide networks. In parallel, a recent line of studies (Schoenholz et al. 2017; Hayou et al. 2019) has suggested that a special initialization, known as the Edge of Chaos, improves training. In this paper, we bridge the gap between these two concepts by quantifying the impact of the initialization and the activation function on the NTK when the network depth becomes large. In particular, we show that the performance of wide deep neural networks cannot be explained by the NTK regime and we provide experiments illustrating our theoretical results.
stat
Provable Compressed Sensing with Generative Priors via Langevin Dynamics
Deep generative models have emerged as a powerful class of priors for signals in various inverse problems such as compressed sensing, phase retrieval and super-resolution. Here, we assume an unknown signal to lie in the range of some pre-trained generative model. A popular approach for signal recovery is via gradient descent in the low-dimensional latent space. While gradient descent has achieved good empirical performance, its theoretical behavior is not well understood. In this paper, we introduce the use of stochastic gradient Langevin dynamics (SGLD) for compressed sensing with a generative prior. Under mild assumptions on the generative model, we prove the convergence of SGLD to the true signal. We also demonstrate competitive empirical performance to standard gradient descent.
stat
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm
Learning rates for least-squares regression are typically expressed in terms of $L_2$-norms. In this paper we extend these rates to norms stronger than the $L_2$-norm without requiring the regression function to be contained in the hypothesis space. In the special case of Sobolev reproducing kernel Hilbert spaces used as hypotheses spaces, these stronger norms coincide with fractional Sobolev norms between the used Sobolev space and $L_2$. As a consequence, not only the target function but also some of its derivatives can be estimated without changing the algorithm. From a technical point of view, we combine the well-known integral operator techniques with an embedding property, which so far has only been used in combination with empirical process arguments. This combination results in new finite sample bounds with respect to the stronger norms. From these finite sample bounds our rates easily follow. Finally, we prove the asymptotic optimality of our results in many cases.
stat
Semiparametric Mixed-Scale Models Using Shared Bayesian Forests
This paper demonstrates the advantages of sharing information about unknown features of covariates across multiple model components in various nonparametric regression problems including multivariate, heteroscedastic, and semi-continuous responses. In this paper, we present methodology which allows for information to be shared nonparametrically across various model components using Bayesian sum-of-tree models. Our simulation results demonstrate that sharing of information across related model components is often very beneficial, particularly in sparse high-dimensional problems in which variable selection must be conducted. We illustrate our methodology by analyzing medical expenditure data from the Medical Expenditure Panel Survey (MEPS). To facilitate the Bayesian nonparametric regression analysis, we develop two novel models for analyzing the MEPS data using Bayesian additive regression trees - a heteroskedastic log-normal hurdle model with a "shrink-towards-homoskedasticity" prior, and a gamma hurdle model.
stat
Policy Evaluation with Latent Confounders via Optimal Balance
Evaluating novel contextual bandit policies using logged data is crucial in applications where exploration is costly, such as medicine. But it usually relies on the assumption of no unobserved confounders, which is bound to fail in practice. We study the question of policy evaluation when we instead have proxies for the latent confounders and develop an importance weighting method that avoids fitting a latent outcome regression model. We show that unlike the unconfounded case no single set of weights can give unbiased evaluation for all outcome models, yet we propose a new algorithm that can still provably guarantee consistency by instead minimizing an adversarial balance objective. We further develop tractable algorithms for optimizing this objective and demonstrate empirically the power of our method when confounders are latent.
stat
Poisson-Tweedie mixed-effects model: a flexible approach for the analysis of longitudinal RNA-seq data
We present a new modelling approach for longitudinal count data that is motivated by the increasing availability of longitudinal RNA-sequencing experiments. The distribution of RNA-seq counts typically exhibits overdispersion, zero-inflation and heavy tails; moreover, in longitudinal designs repeated measurements from the same subject are typically (positively) correlated. We propose a generalized linear mixed model based on the Poisson-Tweedie distribution that can flexibly handle each of the aforementioned features of longitudinal overdispersed counts. We develop a computational approach to accurately evaluate the likelihood of the proposed model and to perform maximum likelihood estimation. Our approach is implemented in the R package ptmixed, which can be freely downloaded from CRAN. We assess the performance of ptmixed on simulated data and we present an application to a dataset with longitudinal RNA-sequencing measurements from healthy and dystrophic mice. The applicability of the Poisson-Tweedie mixed-effects model is not restricted to longitudinal RNA-seq data, but it extends to any scenario where non-independent measurements of a discrete overdispersed response variable are available.
stat
Implications for HIV elimination by 2030 of recent trends in undiagnosed infection in England: an evidence synthesis
A target to eliminate Human Immuno-deficiency Virus (HIV) transmission in England by 2030 was set in early 2019. Estimates of recent trends in HIV prevalence, particularly the number of people living with undiagnosed HIV, by exposure group, ethnicity, gender, age group and region, are essential to monitor progress towards elimination. A Bayesian synthesis of evidence from multiple surveillance, demographic and survey datasets relevant to HIV in England is employed to estimate trends in: the number of people living with HIV (PLWH); the proportion of these people unaware of their HIV infection; and the corresponding prevalence of undiagnosed HIV. All estimates are stratified by exposure group, ethnicity, gender, age group (15-34, 35-44, 45-59, 60-74), region (London, outside London) and year (2012-2017). The total number of PLWH aged 15-74 in England increased from 82,400 (95% credible interval, CrI, 78,700 to 89,100) in 2012 to 89,500 (95% CrI 87,400 to 93,300) in 2017. The proportion diagnosed steadily increased from 84% (95% CrI 77 to 88%) to 92% (95% CrI 89 to 94%) over the same time period, corresponding to a halving in the number of undiagnosed infections from 13,500 (95% CrI 9,800 to 20,200) to 6,900 (95% CrI 4,900 to 10,700). This decrease is equivalent to a halving in prevalence of undiagnosed infection and is reflected in all sub-groups of gay, bisexual and other men who have sex with men and most sub-groups of black African heterosexuals. However, decreases were not detected for some sub-groups of other ethnicity heterosexuals, particularly outside London. In 2016, the Joint United Nations Programme on HIV/ AIDS target of diagnosing 90% of people living with HIV was reached in England. To achieve HIV elimination by 2030, current testing efforts should be enhanced to address the numbers of heterosexuals living with undiagnosed HIV, especially outside London.
stat
Causal Rule Ensemble: Interpretable Inference of Heterogeneous Treatment Effects
In environmental epidemiology, it is critically important to identify subpopulations that are most vulnerable to the adverse effects of air pollution so we can develop targeted interventions. In recent years, there have been many methodological developments for addressing heterogeneity of treatment effects in causal inference. A common approach is to estimate the conditional average treatment effect (CATE) for a pre-specified covariate set. However, this approach does not provide an easy-to-interpret tool for identifying susceptible subpopulations or discover new subpopulations that are not defined a priori by the researchers. In this paper, we propose a new causal rule ensemble (CRE) method with two features simultaneously: 1) ensuring interpretability by revealing heterogeneous treatment effect structures in terms of decision rules and 2) providing CATE estimates with high statistical precision similar to causal machine learning algorithms. We provide theoretical results that guarantee consistency of the estimated causal effects for the newly discovered causal rules. Furthermore, via simulations, we show that the CRE method has competitive performance on its ability to discover subpopulations and then accurately estimate the causal effects. We also develop a new sensitivity analysis method that examine robustness to unmeasured confounding bias. Lastly, we apply the CRE method to the study of the effects of long-term exposure to air pollution on the 5-year mortality rate of the New England Medicare-enrolled population in United States. Code is available at https://github.com/kwonsang/causal_rule_ensemble.
stat
Multivariate Gaussian Variational Inference by Natural Gradient Descent
This short note reviews so-called Natural Gradient Descent (NGD) for multivariate Gaussians. The Fisher Information Matrix (FIM) is derived for several different parameterizations of Gaussians. Careful attention is paid to the symmetric nature of the covariance matrix when calculating derivatives. We show that there are some advantages to choosing a parameterization comprising the mean and inverse covariance matrix and provide a simple NGD update that accounts for the symmetric (and sparse) nature of the inverse covariance matrix.
stat
Online Orthogonal Matching Pursuit
Greedy algorithms for feature selection are widely used for recovering sparse high-dimensional vectors in linear models. In classical procedures, the main emphasis was put on the sample complexity, with little or no consideration of the computation resources required. We present a novel online algorithm: Online Orthogonal Matching Pursuit (OOMP) for online support recovery in the random design setting of sparse linear regression. Our procedure selects features sequentially, alternating between allocation of samples only as needed to candidate features, and optimization over the selected set of variables to estimate the regression coefficients. Theoretical guarantees about the output of this algorithm are proven and its computational complexity is analysed.
stat
Characterizing Inter-Layer Functional Mappings of Deep Learning Models
Deep learning architectures have demonstrated state-of-the-art performance for object classification and have become ubiquitous in commercial products. These methods are often applied without understanding (a) the difficulty of a classification task given the input data, and (b) how a specific deep learning architecture transforms that data. To answer (a) and (b), we illustrate the utility of a multivariate nonparametric estimator of class separation, the Henze-Penrose (HP) statistic, in the original as well as layer-induced representations. Given an $N$-class problem, our contribution defines the $C(N,2)$ combinations of HP statistics as a sample from a distribution of class-pair separations. This allows us to characterize the distributional change to class separation induced at each layer of the model. Fisher permutation tests are used to detect statistically significant changes within a model. By comparing the HP statistic distributions between layers, one can statistically characterize: layer adaptation during training, the contribution of each layer to the classification task, and the presence or absence of consistency between training and validation data. This is demonstrated for a simple deep neural network using CIFAR10 with random-labels, CIFAR10, and MNIST datasets.
stat
Tensor Completion via Tensor Networks with a Tucker Wrapper
In recent years, low-rank tensor completion (LRTC) has received considerable attention due to its applications in image/video inpainting, hyperspectral data recovery, etc. With different notions of tensor rank (e.g., CP, Tucker, tensor train/ring, etc.), various optimization based numerical methods are proposed to LRTC. However, tensor network based methods have not been proposed yet. In this paper, we propose to solve LRTC via tensor networks with a Tucker wrapper. Here by "Tucker wrapper" we mean that the outermost factor matrices of the tensor network are all orthonormal. We formulate LRTC as a problem of solving a system of nonlinear equations, rather than a constrained optimization problem. A two-level alternative least square method is then employed to update the unknown factors. The computation of the method is dominated by tensor matrix multiplications and can be efficiently performed. Also, under proper assumptions, it is shown that with high probability, the method converges to the exact solution at a linear rate. Numerical simulations show that the proposed algorithm is comparable with state-of-the-art methods.
stat
Individual Calibration with Randomized Forecasting
Machine learning applications often require calibrated predictions, e.g. a 90\% credible interval should contain the true outcome 90\% of the times. However, typical definitions of calibration only require this to hold on average, and offer no guarantees on predictions made on individual samples. Thus, predictions can be systematically over or under confident on certain subgroups, leading to issues of fairness and potential vulnerabilities. We show that calibration for individual samples is possible in the regression setup if the predictions are randomized, i.e. outputting randomized credible intervals. Randomization removes systematic bias by trading off bias with variance. We design a training objective to enforce individual calibration and use it to train randomized regression functions. The resulting models are more calibrated for arbitrarily chosen subgroups of the data, and can achieve higher utility in decision making against adversaries that exploit miscalibrated predictions.
stat
False Discovery Rate Control Under General Dependence By Symmetrized Data Aggregation
We develop a new class of distribution--free multiple testing rules for false discovery rate (FDR) control under general dependence. A key element in our proposal is a symmetrized data aggregation (SDA) approach to incorporating the dependence structure via sample splitting, data screening and information pooling. The proposed SDA filter first constructs a sequence of ranking statistics that fulfill global symmetry properties, and then chooses a data--driven threshold along the ranking to control the FDR. The SDA filter substantially outperforms the knockoff method in power under moderate to strong dependence, and is more robust than existing methods based on asymptotic $p$-values. We first develop finite--sample theory to provide an upper bound for the actual FDR under general dependence, and then establish the asymptotic validity of SDA for both the FDR and false discovery proportion (FDP) control under mild regularity conditions. The procedure is implemented in the R package \texttt{SDA}. Numerical results confirm the effectiveness and robustness of SDA in FDR control and show that it achieves substantial power gain over existing methods in many settings.
stat
Empirical Likelihood Inference for Area under the ROC Curve using Ranked Set Samples
The area under a receiver operating characteristic curve (AUC) is a useful tool to assess the performance of continuous-scale diagnostic tests on binary classification. In this article, we propose an empirical likelihood (EL) method to construct confidence intervals for the AUC from data collected by ranked set sampling (RSS). The proposed EL-based method enables inferences without assumptions required in existing nonparametric methods and takes advantage of the sampling efficiency of RSS. We show that for both balanced and unbalanced RSS, the EL-based point estimate is the Mann-Whitney statistic, and confidence intervals can be obtained from a scaled chi-square distribution. Simulation studies and real data analysis show that the proposed method outperforms the existing methods.
stat
Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms
Neural network based models for collaborative filtering have started to gain attention recently. One branch of research is based on using deep generative models to model user preferences where variational autoencoders were shown to produce state-of-the-art results. However, there are some potentially problematic characteristics of the current variational autoencoder for CF. The first is the too simplistic prior that VAEs incorporate for learning the latent representations of user preference. The other is the model's inability to learn deeper representations with more than one hidden layer for each network. Our goal is to incorporate appropriate techniques to mitigate the aforementioned problems of variational autoencoder CF and further improve the recommendation performance. Our work is the first to apply flexible priors to collaborative filtering and show that simple priors (in original VAEs) may be too restrictive to fully model user preferences and setting a more flexible prior gives significant gains. We experiment with the VampPrior, originally proposed for image generation, to examine the effect of flexible priors in CF. We also show that VampPriors coupled with gating mechanisms outperform SOTA results including the Variational Autoencoder for Collaborative Filtering by meaningful margins on 2 popular benchmark datasets (MovieLens & Netflix).
stat
Regression discontinuity design: estimating the treatment effect with standard parametric rate
Regression discontinuity design models are widely used for the assessment of treatment effects in psychology, econometrics and biomedicine, specifically in situations where treatment is assigned to an individual based on their characteristics (e.g. scholarship is allocated based on merit) instead of being allocated randomly, as is the case, for example, in randomized clinical trials. Popular methods that have been largely employed till date for estimation of such treatment effects suffer from slow rates of convergence (i.e. slower than $\sqrt{n}$). In this paper, we present a new model and method that allows estimation of the treatment effect at $\sqrt{n}$ rate in the presence of fairly general forms of confoundedness. Moreover, we show that our estimator is also semi-parametrically efficient in certain situations. We analyze two real datasets via our method and compare our results with those obtained by using previous approaches. We conclude this paper with a discussion on some possible extensions of our method.
stat
Detecting Early Onset of Depression from Social Media Text using Learned Confidence Scores
Computational research on mental health disorders from written texts covers an interdisciplinary area between natural language processing and psychology. A crucial aspect of this problem is prevention and early diagnosis, as suicide resulted from depression being the second leading cause of death for young adults. In this work, we focus on methods for detecting the early onset of depression from social media texts, in particular from Reddit. To that end, we explore the eRisk 2018 dataset and achieve good results with regard to the state of the art by leveraging topic analysis and learned confidence scores to guide the decision process.
stat
On the potential of BFAST for monitoring burned areas using multi-temporal Landsat-7 images
In this paper, we propose a semi-automatic approach to map burned areas and assess burn severity that does not require prior knowledge of the fire date. First, we apply BFAST to NDVI time series and estimate statistically abrupt changes in NDVI trends. These estimated changes are then used as plausible fire dates to calculate dNBR following a typical pre-post fire assessment. In addition to its statistical guarantees, this method depends only on a tuning parameter (the bandwidth of the test statistic for changes). This method was applied to Landsat-7 images taken over La Primavera Flora and Fauna Protection Area, in Jalisco, Mexico, from 2003 to 2016. We evaluated BFAST's ability to estimate vegetation changes based on time series with significant observation gaps. We discussed burn severity maps associated with massive wildfires (2005 and 2012) and another with smaller dimensions (2008) that might have been excluded from official records. We validated our 2012 burned area map against a high resolution burned area map obtained from RapidEye images; in zones with moderate data quality, the overall accuracy of our map is 92%.
stat
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
Recurrent neural networks have gained widespread use in modeling sequential data. Learning long-term dependencies using these models remains difficult though, due to exploding or vanishing gradients. In this paper, we draw connections between recurrent networks and ordinary differential equations. A special form of recurrent networks called the AntisymmetricRNN is proposed under this theoretical framework, which is able to capture long-term dependencies thanks to the stability property of its underlying differential equation. Existing approaches to improving RNN trainability often incur significant computation overhead. In comparison, AntisymmetricRNN achieves the same goal by design. We showcase the advantage of this new architecture through extensive simulations and experiments. AntisymmetricRNN exhibits much more predictable dynamics. It outperforms regular LSTM models on tasks requiring long-term memory and matches the performance on tasks where short-term dependencies dominate despite being much simpler.
stat
Simultaneous Grouping and Denoising via Sparse Convex Wavelet Clustering
Clustering is a ubiquitous problem in data science and signal processing. In many applications where we observe noisy signals, it is common practice to first denoise the data, perhaps using wavelet denoising, and then to apply a clustering algorithm. In this paper, we develop a sparse convex wavelet clustering approach that simultaneously denoises and discovers groups. Our approach utilizes convex fusion penalties to achieve agglomeration and group-sparse penalties to denoise through sparsity in the wavelet domain. In contrast to common practice which denoises then clusters, our method is a unified, convex approach that performs both simultaneously. Our method yields denoised (wavelet-sparse) cluster centroids that both improve interpretability and data compression. We demonstrate our method on synthetic examples and in an application to NMR spectroscopy.
stat
On the two-dataset problem
This paper considers the two-dataset problem, where data are collected from two potentially different populations sharing common aspects. This problem arises when data are collected by two different types of researchers or from two different sources. We may reach invalid conclusions without using knowledge about the data collection process. To address this problem, this paper develops statistical models focusing on the difference in measurement and proposes two prediction errors that help to evaluate the underlying data collection process. As a consequence, it is possible to discuss the heterogeneity/similarity of data in terms of prediction. Two real datasets are selected to illustrate our method.
stat
Classification of Imbalanced Credit scoring data sets Based on Ensemble Method with the Weighted-Hybrid-Sampling
In the era of big data, the utilization of credit-scoring models to determine the credit risk of applicants accurately becomes a trend in the future. The conventional machine learning on credit scoring data sets tends to have poor classification for the minority class, which may bring huge commercial harm to banks. In order to classify imbalanced data sets, we propose a new ensemble algorithm, namely, Weighted-Hybrid-Sampling-Boost (WHSBoost). In data sampling, we process the imbalanced data sets with weights by the Weighted-SMOTE method and the Weighted-Under-Sampling method, and thus obtain a balanced training sample data set with equal weight. In ensemble algorithm, each time we train the base classifier, the balanced data set is given by the method above. In order to verify the applicability and robustness of the WHSBoost algorithm, we performed experiments on the simulation data sets, real benchmark data sets and real credit scoring data sets, comparing WHSBoost with SMOTE, SMOTEBoost and HSBoost based on SVM, BPNN, DT and KNN.
stat
Instrumental Variable Methods using Dynamic Interventions
Recent work on dynamic interventions has greatly expanded the range of causal questions researchers can study while weakening identifying assumptions and yielding effects that are more practically relevant. However, most work in dynamic interventions to date has focused on settings where we directly alter some unconfounded treatment of interest. In policy analysis, decision makers rarely have this level of control over behaviors or access to experimental data. Instead, they are often faced with treatments they can affect only indirectly and whose effects must be learned from observational data. In this paper, we propose new estimands and estimators of causal effects based on dynamic interventions with instrumental variables. This method does not rely on parametric models and does not require an experiment. Instead, we estimate the effect of a dynamic intervention on the instrument. This robustness should reassure policy makers that these estimates can be used to effectively inform policy. We demonstrate the usefulness of this estimation strategy in a case study examining the effect of visitation on recidivism.
stat
Metric on random dynamical systems with vector-valued reproducing kernel Hilbert spaces
Development of metrics for structural data-generating mechanisms is fundamental in machine learning and the related fields. In this paper, we give a general framework to construct metrics on random nonlinear dynamical systems, defined with the Perron-Frobenius operators in vector-valued reproducing kernel Hilbert spaces (vvRKHSs). We employ vvRKHSs to design mathematically manageable metrics and also to introduce operator-valued kernels, which enables us to handle randomness in systems. Our metric provides an extension of the existing metrics for deterministic systems, and gives a specification of the kernel maximal mean discrepancy of random processes. Moreover, by considering the time-wise independence of random processes, we clarify a connection between our metric and the independence criteria with kernels such as Hilbert-Schmidt independence criteria. We empirically illustrate our metric with synthetic data, and evaluate it in the context of the independence test for random processes. We also evaluate the performance with real time seris datas via clusering tasks.
stat
\texttt{code::proof}: Prepare for \emph{most} weather conditions
Computational tools for data analysis are being released daily on repositories such as the Comprehensive R Archive Network. How we integrate these tools to solve a problem in research is increasingly complex and requiring frequent updates. To mitigate these \emph{Kafkaesque} computational challenges in research, this manuscript proposes \emph{toolchain walkthrough}, an opinionated documentation of a scientific workflow. As a practical complement to our proof-based argument~(Gray and Marwick, arXiv, 2019) for reproducible data analysis, here we focus on the practicality of setting up a reproducible research compendia, with unit tests, as a measure of \texttt{code::proof}, confidence in computational algorithms.
stat
Two-sample Testing Using Deep Learning
We propose a two-sample testing procedure based on learned deep neural network representations. To this end, we define two test statistics that perform an asymptotic location test on data samples mapped onto a hidden layer. The tests are consistent and asymptotically control the type-1 error rate. Their test statistics can be evaluated in linear time (in the sample size). Suitable data representations are obtained in a data-driven way, by solving a supervised or unsupervised transfer-learning task on an auxiliary (potentially distinct) data set. If no auxiliary data is available, we split the data into two chunks: one for learning representations and one for computing the test statistic. In experiments on audio samples, natural images and three-dimensional neuroimaging data our tests yield significant decreases in type-2 error rate (up to 35 percentage points) compared to state-of-the-art two-sample tests such as kernel-methods and classifier two-sample tests.
stat
Rao-Blackwellization to give Improved Estimates in Multi-List Studies
Sufficient statistics are derived for the population size and parameters of commonly used closed population mark-recapture models. Rao-Blackwellization details for improving estimators that are not functions of the statistics are presented. As Rao-Blackwellization entails enumerating all sample reorderings consistent with the sufficient statistic, Markov chain Monte Carlo resampling procedures are provided to approximate the computationally intensive estimators. Simulation studies demonstrate that significant improvements can be made with the strategy. Supplementary materials for this article are available online.
stat
Practical Valid Inferences for the Two-Sample Binomial Problem
Our interest is whether two binomial parameters differ, which parameter is larger, and by how much. This apparently simple problem was addressed by Fisher in the 1930's, and has been the subject of many review papers since then. Yet there continues to be new work on this issue and no consensus solution. Previous reviews have focused primarily on testing and the properties of validity and power, or primarily on confidence intervals, their coverage, and expected length. Here we evaluate both. For example, we consider whether a p-value and its matching confidence interval are compatible, meaning that the p-value rejects at level $\alpha$ if and only if the $1-\alpha$ confidence interval excludes all null parameter values. For focus, we only examine non-asymptotic inferences, so that most of the p-values and confidence intervals are valid (i.e., exact) by construction. Within this focus, we review different methods emphasizing many of the properties and interpretational aspects we desire from applied frequentist inference: validity, accuracy, good power, equivariance, compatibility, coherence, and parameterization and direction of effect. We show that no one method can meet all the desirable properties and give recommendations based on which properties are given more importance.
stat
Regression Discontinuity Design under Self-selection
In Regression Discontinuity (RD) design, self-selection leads to different distributions of covariates on two sides of the policy intervention, which essentially violates the continuity of potential outcome assumption. The standard RD estimand becomes difficult to interpret due to the existence of some indirect effect, i.e. the effect due to self selection. We show that the direct causal effect of interest can still be recovered under a class of estimands. Specifically, we consider a class of weighted average treatment effects tailored for potentially different target populations. We show that a special case of our estimands can recover the average treatment effect under the conditional independence assumption per Angrist and Rokkanen (2015), and another example is the estimand recently proposed in Fr\"olich and Huber (2018). We propose a set of estimators through a weighted local linear regression framework and prove the consistency and asymptotic normality of the estimators. Our approach can be further extended to the fuzzy RD case. In simulation exercises, we compare the performance of our estimator with the standard RD estimator. Finally, we apply our method to two empirical data sets: the U.S. House elections data in Lee (2008) and a novel data set from Microsoft Bing on Generalized Second Price (GSP) auction.
stat
How to Host a Data Competition: Statistical Advice for Design and Analysis of a Data Competition
Data competitions rely on real-time leaderboards to rank competitor entries and stimulate algorithm improvement. While such competitions have become quite popular and prevalent, particularly in supervised learning formats, their implementations by the host are highly variable. Without careful planning, a supervised learning competition is vulnerable to overfitting, where the winning solutions are so closely tuned to the particular set of provided data that they cannot generalize to the underlying problem of interest to the host. This paper outlines some important considerations for strategically designing relevant and informative data sets to maximize the learning outcome from hosting a competition based on our experience. It also describes a post-competition analysis that enables robust and efficient assessment of the strengths and weaknesses of solutions from different competitors, as well as greater understanding of the regions of the input space that are well-solved. The post-competition analysis, which complements the leaderboard, uses exploratory data analysis and generalized linear models (GLMs). The GLMs not only expand the range of results we can explore, they also provide more detailed analysis of individual sub-questions including similarities and differences between algorithms across different types of scenarios, universally easy or hard regions of the input space, and different learning objectives. When coupled with a strategically planned data generation approach, the methods provide richer and more informative summaries to enhance the interpretation of results beyond just the rankings on the leaderboard. The methods are illustrated with a recently completed competition to evaluate algorithms capable of detecting, identifying, and locating radioactive materials in an urban environment.
stat
Spatial risk estimation in Tweedie compound Poisson double generalized linear models
Tweedie exponential dispersion family constitutes a fairly rich sub-class of the celebrated exponential family. In particular, a member, compound Poisson gamma (CP-g) model has seen extensive use over the past decade for modeling mixed response featuring exact zeros with a continuous response from a gamma distribution. This paper proposes a framework to perform residual analysis on CP-g double generalized linear models for spatial uncertainty quantification. Approximations are introduced to proposed framework making the procedure scalable, without compromise in accuracy of estimation and model complexity; accompanied by sensitivity analysis to model mis-specification. Proposed framework is applied to modeling spatial uncertainty in insurance loss costs arising from automobile collision coverage. Scalability is demonstrated by choosing sizable spatial reference domains comprised of groups of states within the United States of America.
stat
Computationally efficient inference for latent position network models
Latent position models are widely used for the analysis of networks in a variety of research fields. In fact, these models possess a number of desirable theoretical properties, and are particularly easy to interpret. However, statistical methodologies to fit these models generally incur a computational cost which grows with the square of the number of nodes in the graph. This makes the analysis of large social networks impractical. In this paper, we propose a new method characterised by a linear computational complexity, which can be used to fit latent position models on networks of several tens of thousands nodes. Our approach relies on an approximation of the likelihood function, where the amount of noise introduced by the approximation can be arbitrarily reduced at the expense of computational efficiency. We establish several theoretical results that show how the likelihood error propagates to the invariant distribution of the Markov chain Monte Carlo sampler. In particular, we demonstrate that one can achieve a substantial reduction in computing time and still obtain a good estimate of the latent structure. Finally, we propose applications of our method to simulated networks and to a large coauthorships network, highlighting the usefulness of our approach.
stat
Stronger Convergence Results for Deep Residual Networks: Network Width Scales Linearly with Training Data Size
Deep neural networks are highly expressive machine learning models with the ability to interpolate arbitrary datasets. Deep nets are typically optimized via first-order methods and the optimization process crucially depends on the characteristics of the network as well as the dataset. This work sheds light on the relation between the network size and the properties of the dataset with an emphasis on deep residual networks (ResNets). Our contribution is that if the network Jacobian is full rank, gradient descent for the quadratic loss and smooth activation converges to the global minima even if the network width $m$ of the ResNet scales linearly with the sample size $n$, and independently from the network depth. To the best of our knowledge, this is the first work which provides a theoretical guarantee for the convergence of neural networks in the $m=\Omega(n)$ regime.
stat
The additive hazard estimator is consistent for continuous-time marginal structural models
Marginal structural models (MSMs) allow for causal analysis of longitudinal data. The MSMs were originally developed as discrete time models. Recently, continuous-time MSMs were presented as a conceptually appealing alternative for survival analysis. In applied analyses, it is often assumed that the theoretical treatment weights are known, but these weights are usually unknown and must be estimated from the data. Here we provide a sufficient condition for a class of continuous-time MSMs to be consistent even when the weights are estimated, and we show how additive hazard models can be used to estimate such weights. Our results suggest that the continuous-time weights perform better than IPTW when the underlying treatment process is continuous. Furthermore, we may wish to transform effect estimates of hazards to other scales that are easier to interpret causally. We show that a general transformation strategy can be used on weighted cumulative hazard estimates to obtain a range of other parameters in survival analysis, and demonstrate how this strategy can be applied on data using our R packages ahw and transform.hazards.
stat
salmon: A Symbolic Linear Regression Package for Python
One of the most attractive features of R is its linear modeling capabilities. We describe a Python package, salmon, that brings the best of R's linear modeling functionality to Python in a Pythonic way---by providing composable objects for specifying and fitting linear models. This object-oriented design also enables other features that enhance ease-of-use, such as automatic visualizations and intelligent model building.
stat
Optimizing effective numbers of tests by vine copula modeling
In the multiple testing context, we utilize vine copulae for optimizing the effective number of tests. It is well known that for the calibration of multiple tests (for control of the family-wise error rate) the dependencies between the marginal tests are of utmost importance. It has been shown in previous work, that positive dependencies between the marginal tests can be exploited in order to derive a relaxed Sidak-type multiplicity correction. This correction can conveniently be expressed by calculating the corresponding "effective number of tests" for a given (global) significance level. This methodology can also be applied to blocks of test statistics so that the effective number of tests can be calculated by the sum of the effective numbers of tests for each block. In the present work, we demonstrate how the power of the multiple test can be optimized by taking blocks with high inner-block dependencies. The determination of those blocks will be performed by means of an estimated vine copula model. An algorithm is presented which uses the information of the estimated vine copula to make a data-driven choice of appropriate blocks in terms of (estimated) dependencies. Numerical experiments demonstrate the usefulness of the proposed approach.
stat
A Bayesian Hierarchical Network for Combining Heterogeneous Data Sources in Medical Diagnoses
Computer-Aided Diagnosis has shown stellar performance in providing accurate medical diagnoses across multiple testing modalities (medical images, electrophysiological signals, etc.). While this field has typically focused on fully harvesting the signal provided by a single (and generally extremely reliable) modality, fewer efforts have utilized imprecise data lacking reliable ground truth labels. In this unsupervised, noisy setting, the robustification and quantification of the diagnosis uncertainty become paramount, thus posing a new challenge: how can we combine multiple sources of information -- often themselves with vastly varying levels of precision and uncertainty -- to provide a diagnosis estimate with confidence bounds? Motivated by a concrete application in antibody testing, we devise a Stochastic Expectation-Maximization algorithm that allows the principled integration of heterogeneous, and potentially unreliable, data types. Our Bayesian formalism is essential in (a) flexibly combining these heterogeneous data sources and their corresponding levels of uncertainty, (b) quantifying the degree of confidence associated with a given diagnostic, and (c) dealing with the missing values that typically plague medical data. We quantify the potential of this approach on simulated data, and showcase its practicality by deploying it on a real COVID-19 immunity study.
stat
Semi-Supervised Empirical Risk Minimization: When can unlabeled data improve prediction?
We present a general methodology for using unlabeled data to design semi supervised learning (SSL) variants of the Empirical Risk Minimization (ERM) learning process. Focusing on generalized linear regression, we provide a careful treatment of the effectiveness of the SSL to improve prediction performance. The key ideas are carefully considering the null model as a competitor, and utilizing the unlabeled data to determine signal-noise combinations where the SSL outperforms both the ERM learning and the null model. In the special case of linear regression with Gaussian covariates, we show that the previously suggested semi-supervised estimator is in fact not capable of improving on both the supervised estimator and the null model simultaneously. However, the new estimator presented in this work, can achieve an improvement of $O(1/n)$ term over both competitors simultaneously. On the other hand, we show that in other scenarios, such as non-Gaussian covariates, misspecified linear regression, or generalized linear regression with non-linear link functions, having unlabeled data can derive substantial improvement in prediction by applying our suggested SSL approach. Moreover, it is possible to identify the usefulness of the SSL, by using the dedicated formulas we establish throughout this work. This is shown empirically through extensive simulations.
stat
Kernels of Mallows Models under the Hamming Distance for solving the Quadratic Assignment Problem
The Quadratic Assignment Problem (QAP) is a well-known permutation-based combinatorial optimization problem with real applications in industrial and logistics environments. Motivated by the challenge that this NP-hard problem represents, it has captured the attention of the optimization community for decades. As a result, a large number of algorithms have been proposed to tackle this problem. Among these, exact methods are only able to solve instances of size $n<40$. To overcome this limitation, many metaheuristic methods have been applied to the QAP. In this work, we follow this direction by approaching the QAP through Estimation of Distribution Algorithms (EDAs). Particularly, a non-parametric distance-based exponential probabilistic model is used. Based on the analysis of the characteristics of the QAP, and previous work in the area, we introduce Kernels of Mallows Model under the Hamming distance to the context of EDAs. Conducted experiments point out that the performance of the proposed algorithm in the QAP is superior to (i) the classical EDAs adapted to deal with the QAP, and also (ii) to the specific EDAs proposed in the literature to deal with permutation problems.
stat
Causal Inference for Nonlinear Outcome Models with Possibly Invalid Instrumental Variables
Instrumental variable methods are widely used for inferring the causal effect of an exposure on an outcome when the observed relationship is potentially affected by unmeasured confounders. Existing instrumental variable methods for nonlinear outcome models require stringent identifiability conditions. We develop a robust causal inference framework for nonlinear outcome models, which relaxes the conventional identifiability conditions. We adopt a flexible semi-parametric potential outcome model and propose new identifiability conditions for identifying the model parameters and causal effects. We devise a novel three-step inference procedure for the conditional average treatment effect and establish the asymptotic normality of the proposed point estimator. We construct confidence intervals for the causal effect by the bootstrap method. The proposed method is demonstrated in a large set of simulation studies and is applied to study the causal effects of lipid levels on whether the glucose level is normal or high over a mice dataset.
stat
Canonical Correlation Analysis in high dimensions with structured regularization
Canonical Correlation Analysis (CCA) is a technique for measuring the association between two multivariate sets of variables. The Regularized modification of Canonical Correlation Analysis (RCCA) imposing $\ell_2$ penalty on the CCA coefficients is widely used in applications while conducting the analysis of high dimensional data. One limitation of such a regularization type is that it ignores the data structure treating all the features equally, which can be ill-suited for some applications. In this paper we introduce several approaches to regularizing CCA that take the underlying data structure into account. In particular, the proposed Group Regularized Canonical Correlation Analysis (GRCCA) is useful when the variables are grouped. We also suggest some tricks that allow to avoid excessive computations while conducting CCA with regularization in high dimensions. We demonstrate the applications of these methods to a small simulation example as well as to a real data example from neuroscience.
stat
Real time analysis of epidemic data
Infectious diseases have severe health and economic consequences for society. It is important in controlling the spread of an emerging infectious disease to be able to both estimate the parameters of the underlying model and identify those individuals most at risk of infection in a timely manner. This requires having a mechanism to update inference on the model parameters and the progression of the disease as new data becomes available. However, Markov chain Monte Carlo (MCMC), the gold standard for statistical inference for infectious disease models, is not equipped to deal with this important problem. Motivated by the need to develop effective statistical tools for emerging diseases and using the 2001 UK Foot-and-Mouth disease outbreak as an exemplar, we introduce a Sequential Monte Carlo (SMC) algorithm to enable real-time analysis of epidemic outbreaks. Naive application of SMC methods leads to significant particle degeneracy which are successfully overcome by particle perturbation and incorporating MCMC-within-SMC updates.
stat
A Bayesian Time-Varying Effect Model for Behavioral mHealth Data
The integration of mobile health (mHealth) devices into behavioral health research has fundamentally changed the way researchers and interventionalists are able to collect data as well as deploy and evaluate intervention strategies. In these studies, researchers often collect intensive longitudinal data (ILD) using ecological momentary assessment methods, which aim to capture psychological, emotional, and environmental factors that may relate to a behavioral outcome in near real-time. In order to investigate ILD collected in a novel, smartphone-based smoking cessation study, we propose a Bayesian variable selection approach for time-varying effect models, designed to identify dynamic relations between potential risk factors and smoking behaviors in the critical moments around a quit attempt. We use parameter-expansion and data-augmentation techniques to efficiently explore how the underlying structure of these relations varies over time and across subjects. We achieve deeper insights into these relations by introducing nonparametric priors for regression coefficients that cluster similar effects for risk factors while simultaneously determining their inclusion. Results indicate that our approach is well-positioned to help researchers effectively evaluate, design, and deliver tailored intervention strategies in the critical moments surrounding a quit attempt.
stat
A Strategy for Adaptive Sampling of Multi-fidelity Gaussian Process to Reduce Predictive Uncertainty
Multi-fidelity Gaussian process is a common approach to address the extensive computationally demanding algorithms such as optimization, calibration and uncertainty quantification. Adaptive sampling for multi-fidelity Gaussian process is a changing task due to the fact that not only we seek to estimate the next sampling location of the design variable, but also the level of the simulator fidelity. This issue is often addressed by including the cost of the simulator as an another factor in the searching criterion in conjunction with the uncertainty reduction metric. In this work, we extent the traditional design of experiment framework for the multi-fidelity Gaussian process by partitioning the prediction uncertainty based on the fidelity level and the associated cost of execution. In addition, we utilize the concept of Believer which quantifies the effect of adding an exploratory design point on the Gaussian process uncertainty prediction. We demonstrated our framework using academic examples as well as a industrial application of steady-state thermodynamic operation point of a fluidized bed process
stat
Out-of-Distribution Detection using Multiple Semantic Label Representations
Deep Neural Networks are powerful models that attained remarkable results on a variety of tasks. These models are shown to be extremely efficient when training and test data are drawn from the same distribution. However, it is not clear how a network will act when it is fed with an out-of-distribution example. In this work, we consider the problem of out-of-distribution detection in neural networks. We propose to use multiple semantic dense representations instead of sparse representation as the target label. Specifically, we propose to use several word representations obtained from different corpora or architectures as target labels. We evaluated the proposed model on computer vision, and speech commands detection tasks and compared it to previous methods. Results suggest that our method compares favorably with previous work. Besides, we present the efficiency of our approach for detecting wrongly classified and adversarial examples.
stat
Computationally Efficient Bayesian Unit-Level Models for Non-Gaussian Data Under Informative Sampling
Statistical estimates from survey samples have traditionally been obtained via design-based estimators. In many cases, these estimators tend to work well for quantities such as population totals or means, but can fall short as sample sizes become small. In today's "information age," there is a strong demand for more granular estimates. To meet this demand, using a Bayesian pseudo-likelihood, we propose a computationally efficient unit-level modeling approach for non-Gaussian data collected under informative sampling designs. Specifically, we focus on binary and multinomial data. Our approach is both multivariate and multiscale, incorporating spatial dependence at the area-level. We illustrate our approach through an empirical simulation study and through a motivating application to health insurance estimates using the American Community Survey.
stat
Regret Minimization for Causal Inference on Large Treatment Space
Predicting which action (treatment) will lead to a better outcome is a central task in decision support systems. To build a prediction model in real situations, learning from biased observational data is a critical issue due to the lack of randomized controlled trial (RCT) data. To handle such biased observational data, recent efforts in causal inference and counterfactual machine learning have focused on debiased estimation of the potential outcomes on a binary action space and the difference between them, namely, the individual treatment effect. When it comes to a large action space (e.g., selecting an appropriate combination of medicines for a patient), however, the regression accuracy of the potential outcomes is no longer sufficient in practical terms to achieve a good decision-making performance. This is because the mean accuracy on the large action space does not guarantee the nonexistence of a single potential outcome misestimation that might mislead the whole decision. Our proposed loss minimizes a classification error of whether or not the action is relatively good for the individual target among all feasible actions, which further improves the decision-making performance, as we prove. We also propose a network architecture and a regularizer that extracts a debiased representation not only from the individual feature but also from the biased action for better generalization in large action spaces. Extensive experiments on synthetic and semi-synthetic datasets demonstrate the superiority of our method for large combinatorial action spaces.
stat
Controlling the False Discovery Rate in Structural Sparsity: Split Knockoffs
Controlling the False Discovery Rate (FDR) in a variable selection procedure is critical for reproducible discoveries, which receives an extensive study in sparse linear models. However, in many scenarios, the sparsity constraint is not directly imposed on the parameters, but on a linear transformation of the parameters to be estimated. Examples can be found in total variations, wavelet transforms, fused LASSO, and trend filtering, etc. In this paper, we proposed a data adaptive FDR control in this structural sparsity setting, the Split Knockoff method. The proposed scheme relaxes the linear subspace constraint to its neighborhood, often known as variable splitting in optimization, that enjoys new statistical benefits. It yields orthogonal design and split knockoff matrices, that exhibit desired FDR control empirically in structural sparsity discovery, and improve the power of strong feature selection by enhancing the incoherence condition for model selection consistency. Yet, the split knockoff statistics fail to satisfy the exchangeability, a crucial property in the classical knockoff method for provable FDR control. To address this challenge, we introduce an almost supermartingale construction under a perturbation of exchangeability, that enables us to establish FDR control up to an arbitrarily small inflation that vanishes as the relaxed neighborhood enlarges. Simulation experiments show the effectiveness of split knockoffs with possible improvements over knockoffs in both FDR control and Power. An application to Alzheimer's Disease study with MRI data demonstrates that the split knockoff method can disclose important lesion regions in brains associated with the disease and connections between neighboring regions of high contrast variations during disease progression.
stat
Regression-Enhanced Random Forests
Random forest (RF) methodology is one of the most popular machine learning techniques for prediction problems. In this article, we discuss some cases where random forests may suffer and propose a novel generalized RF method, namely regression-enhanced random forests (RERFs), that can improve on RFs by borrowing the strength of penalized parametric regression. The algorithm for constructing RERFs and selecting its tuning parameters is described. Both simulation study and real data examples show that RERFs have better predictive performance than RFs in important situations often encountered in practice. Moreover, RERFs may incorporate known relationships between the response and the predictors, and may give reliable predictions in extrapolation problems where predictions are required at points out of the domain of the training dataset. Strategies analogous to those described here can be used to improve other machine learning methods via combination with penalized parametric regression techniques.
stat
Improved Generalized Raking Estimators to Address Dependent Covariate and Failure-Time Outcome Error
Biomedical studies that use electronic health records (EHR) data for inference are often subject to bias due to measurement error. The measurement error present in EHR data is typically complex, consisting of errors of unknown functional form in covariates and the outcome, which can be dependent. To address the bias resulting from such errors, generalized raking has recently been proposed as a robust method that yields consistent estimates without the need to model the error structure. We provide rationale for why these previously proposed raking estimators can be expected to be inefficient in failure-time outcome settings involving misclassification of the event indicator. We propose raking estimators that utilize multiple imputation, to impute either the target variables or auxiliary variables, to improve the efficiency. We also consider outcome-dependent sampling designs and investigate their impact on the efficiency of the raking estimators, either with or without multiple imputation. We present an extensive numerical study to examine the performance of the proposed estimators across various measurement error settings. We then apply the proposed methods to our motivating setting, in which we seek to analyze HIV outcomes in an observational cohort with electronic health records data from the Vanderbilt Comprehensive Care Clinic.
stat
A Scalable Empirical Bayes Approach to Variable Selection in Generalized Linear Models
A new empirical Bayes approach to variable selection in the context of generalized linear models is developed. The proposed algorithm scales to situations in which the number of putative explanatory variables is very large, possibly much larger than the number of responses. The coefficients in the linear predictor are modeled as a three-component mixture allowing the explanatory variables to have a random positive effect on the response, a random negative effect, or no effect. A key assumption is that only a small (but unknown) fraction of the candidate variables have a non-zero effect. This assumption, in addition to treating the coefficients as random effects facilitates an approach that is computationally efficient. In particular, the number of parameters that have to be estimated is small, and remains constant regardless of the number of explanatory variables. The model parameters are estimated using a Generalized Alternating Maximization algorithm which is scalable, and leads to significantly faster convergence compared with simulation-based fully Bayesian methods.
stat
On $O( \max \{n_1, n_2 \}\log ( \max \{ n_1, n_2 \} n_3) )$ Sample Entries for $n_1 \times n_2 \times n_3$ Tensor Completion via Unitary Transformation
One of the key problems in tensor completion is the number of uniformly random sample entries required for recovery guarantee. The main aim of this paper is to study $n_1 \times n_2 \times n_3$ third-order tensor completion and investigate into incoherence conditions of $n_3$ low-rank $n_1$-by-$n_2$ matrix slices under the transformed tensor singular value decomposition where the unitary transformation is applied along $n_3$-dimension. We show that such low-rank tensors can be recovered exactly with high probability when the number of randomly observed entries is of order $O( r\max \{n_1, n_2 \} \log ( \max \{ n_1, n_2 \} n_3))$, where $r$ is the sum of the ranks of these $n_3$ matrix slices in the transformed tensor. By utilizing synthetic data and imaging data sets, we demonstrate that the theoretical result can be obtained under valid incoherence conditions, and the tensor completion performance of the proposed method is also better than that of existing methods in terms of sample sizes requirement.
stat
Inference for the Case Probability in High-dimensional Logistic Regression
Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and unstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
stat
Joint association and classification analysis of multi-view data
Multi-view data, that is matched sets of measurements on the same subjects, have become increasingly common with advances in multi-omics technology. Often, it is of interest to find associations between the views that are related to the intrinsic class memberships. Existing association methods cannot directly incorporate class information, while existing classification methods do not take into account between-views associations. In this work, we propose a framework for Joint Association and Classification Analysis of multi-view data (JACA). Our goal is not to merely improve the misclassification rates, but to provide a latent representation of high-dimensional data that is both relevant for the subtype discrimination and coherent across the views. We motivate the methodology by establishing a connection between canonical correlation analysis and discriminant analysis. We also establish the estimation consistency of JACA in high-dimensional settings. A distinct advantage of JACA is that it can be applied to the multi-view data with block-missing structure, that is to cases where a subset of views or class labels is missing for some subjects. The application of JACA to quantify the associations between RNAseq and miRNA views with respect to consensus molecular subtypes in colorectal cancer data from The Cancer Genome Atlas project leads to improved misclassification rates and stronger found associations compared to existing methods.
stat
Maximum Approximate Bernstein Likelihood Estimation in Proportional Hazard Model for Interval-Censored Data
Maximum approximate Bernstein likelihood estimates of the baseline density function and the regression coefficients in the proportional hazard regression models based on interval-censored event time data are proposed. This results in not only a smooth estimate of the survival function which enjoys faster convergence rate but also improved estimates of the regression coefficients. Simulation shows that the finite sample performance of the proposed method is better than the existing ones. The proposed method is illustrated by real data applications.
stat
Variational approximations using Fisher divergence
Modern applications of Bayesian inference involve models that are sufficiently complex that the corresponding posterior distributions are intractable and must be approximated. The most common approximation is based on Markov chain Monte Carlo, but these can be expensive when the data set is large and/or the model is complex, so more efficient variational approximations have recently received considerable attention. The traditional variational methods, that seek to minimize the Kullback--Leibler divergence between the posterior and a relatively simple parametric family, provide accurate and efficient estimation of the posterior mean, but often does not capture other moments, and have limitations in terms of the models to which they can be applied. Here we propose the construction of variational approximations based on minimizing the Fisher divergence, and develop an efficient computational algorithm that can be applied to a wide range of models without conjugacy or potentially unrealistic mean-field assumptions. We demonstrate the superior performance of the proposed method for the benchmark case of logistic regression.
stat
Measurement Error in Nutritional Epidemiology: A Survey
This article reviews bias-correction models for measurement error of exposure variables in the field of nutritional epidemiology. Measurement error usually attenuates estimated slope towards zero. Due to the influence of measurement error, inference of parameter estimate is conservative and confidence interval of the slope parameter is too narrow. Bias-correction in estimators and confidence intervals are of primary interest. We review the following bias-correction models: regression calibration methods, likelihood based models, missing data models, simulation based methods, nonparametric models and sampling based procedures.
stat
A Causally Formulated Hazard Ratio Estimation through Backdoor Adjustment on Structural Causal Model
Identifying causal relationships for a treatment intervention is a fundamental problem in health sciences. Randomized controlled trials (RCTs) are considered the gold standard for identifying causal relationships. However, recent advancements in the theory of causal inference based on the foundations of structural causal models (SCMs) have allowed the identification of causal relationships from observational data, under certain assumptions. Survival analysis provides standard measures, such as the hazard ratio, to quantify the effects of an intervention. While hazard ratios are widely used in clinical and epidemiological studies for RCTs, a principled approach does not exist to compute hazard ratios for observational studies with SCMs. In this work, we review existing approaches to compute hazard ratios as well as their causal interpretation, if it exists. We also propose a novel approach to compute hazard ratios from observational studies using backdoor adjustment through SCMs and do-calculus. Finally, we evaluate the approach using experimental data for Ewing's sarcoma.
stat
Three-quarter Sibling Regression for Denoising Observational Data
Many ecological studies and conservation policies are based on field observations of species, which can be affected by systematic variability introduced by the observation process. A recently introduced causal modeling technique called 'half-sibling regression' can detect and correct for systematic errors in measurements of multiple independent random variables. However, it will remove intrinsic variability if the variables are dependent, and therefore does not apply to many situations, including modeling of species counts that are controlled by common causes. We present a technique called 'three-quarter sibling regression' to partially overcome this limitation. It can filter the effect of systematic noise when the latent variables have observed common causes. We provide theoretical justification of this approach, demonstrate its effectiveness on synthetic data, and show that it reduces systematic detection variability due to moon brightness in moth surveys.
stat
Band-Limited Gaussian Processes: The Sinc Kernel
We propose a novel class of Gaussian processes (GPs) whose spectra have compact support, meaning that their sample trajectories are almost-surely band limited. As a complement to the growing literature on spectral design of covariance kernels, the core of our proposal is to model power spectral densities through a rectangular function, which results in a kernel based on the sinc function with straightforward extensions to non-centred (around zero frequency) and frequency-varying cases. In addition to its use in regression, the relationship between the sinc kernel and the classic theory is illuminated, in particular, the Shannon-Nyquist theorem is interpreted as posterior reconstruction under the proposed kernel. Additionally, we show that the sinc kernel is instrumental in two fundamental signal processing applications: first, in stereo amplitude modulation, where the non-centred sinc kernel arises naturally. Second, for band-pass filtering, where the proposed kernel allows for a Bayesian treatment that is robust to observation noise and missing data. The developed theory is complemented with illustrative graphic examples and validated experimentally using real-world data.
stat
Survival Function Matching for Calibrated Time-to-Event Predictions
Models for predicting the time of a future event are crucial for risk assessment, across a diverse range of applications. Existing time-to-event (survival) models have focused primarily on preserving pairwise ordering of estimated event times, or relative risk. Model calibration is relatively under explored, despite its critical importance in time-to-event applications. We present a survival function estimator for probabilistic predictions in time-to-event models, based on a neural network model for draws from the distribution of event times, without explicit assumptions on the form of the distribution. This is done like in adversarial learning, but we achieve learning without a discriminator or adversarial objective. The proposed estimator can be used in practice as a means of estimating and comparing conditional survival distributions, while accounting for the predictive uncertainty of probabilistic models. Extensive experiments show that the proposed model outperforms existing approaches, trained both with and without adversarial learning, in terms of both calibration and concentration of time-to-event distributions.
stat
Symbolic Formulae for Linear Mixed Models
A statistical model is a mathematical representation of an often simplified or idealised data-generating process. In this paper, we focus on a particular type of statistical model, called linear mixed models (LMMs), that is widely used in many disciplines e.g.~agriculture, ecology, econometrics, psychology. Mixed models, also commonly known as multi-level, nested, hierarchical or panel data models, incorporate a combination of fixed and random effects, with LMMs being a special case. The inclusion of random effects in particular gives LMMs considerable flexibility in accounting for many types of complex correlated structures often found in data. This flexibility, however, has given rise to a number of ways by which an end-user can specify the precise form of the LMM that they wish to fit in statistical software. In this paper, we review the software design for specification of the LMM (and its special case, the linear model), focusing in particular on the use of high-level symbolic model formulae and two popular but contrasting R-packages in lme4 and asreml.
stat
Assessing the causal effects of a stochastic intervention in time series data: Are heat alerts effective in preventing deaths and hospitalizations?
We introduce a new causal inference framework for time series data aimed at assessing the effectiveness of heat alerts in reducing mortality and hospitalization risks. We are interested in addressing the following question: how many deaths and hospitalizations could be averted if we were to increase the frequency of issuing heat alerts in a given location? In the context of time series data, the overlap assumption - each unit must have a positive probability of receiving the treatment - is often violated. This is because, in a given location, issuing a heat alert is a rare event on an average temperature day as heat alerts are almost always issued on extremely hot days. To overcome this challenge, first we introduce a new class of causal estimands under a stochastic intervention (i.e., increasing the odds of issuing a heat alert) for a single time series corresponding to a given location. We develop the theory to show that these causal estimands can be identified and estimated under a weaker version of the overlap assumption. Second, we propose nonparametric estimators based on time-varying propensity scores, and derive point-wise confidence bands for these estimators. Third, we extend this framework to multiple time series corresponding to multiple locations. Via simulations, we show that the proposed estimator has good performance with respect to bias and root mean squared error. We apply our proposed method to estimate the causal effects of increasing the odds of issuing heat alerts in reducing deaths and hospitalizations among Medicare enrollees in 2817 U.S. counties. We found weak evidence of a causal link between increasing the odds of issuing heat alerts during the warm seasons of 2006-2016 and a reduction in deaths and cause-specific hospitalizations across the 2817 counties.
stat
Genomics models in radiotherapy: from mechanistic to machine learning
Machine learning provides a broad framework for addressing high-dimensional prediction problems in classification and regression. While machine learning is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data towards questions of radiation biology. Here, we provide a review of radiogenomics modeling frameworks and efforts towards genomically-guided radiotherapy. We first discuss medical oncology efforts to develop precision biomarkers. We next discuss similar efforts to create clinical assays for normal tissue or tumor radiosensitivity. We then discuss modeling frameworks for radiosensitivity and the evolution of machine learning to create predictive models for radiogenomics.
stat
Objective frequentist uncertainty quantification for atmospheric CO$_2$ retrievals
The steadily increasing amount of atmospheric carbon dioxide (CO$_2$) is affecting the global climate system and threatening the long-term sustainability of Earth's ecosystem. In order to better understand the sources and sinks of CO$_2$, NASA operates the Orbiting Carbon Observatory-2 & 3 satellites to monitor CO$_2$ from space. These satellites make passive radiance measurements of the sunlight reflected off the Earth's surface in different spectral bands, which are then inverted to obtain estimates of the atmospheric CO$_2$ concentration. In this work, we first analyze the current operational retrieval procedure, which uses prior knowledge in the form of probability distributions on the relevant atmospheric state variables to regularize the underlying ill-posed inverse problem, and demonstrate that the resulting uncertainties might be poorly calibrated both at individual locations and over a spatial region. To alleviate these issues, we propose a new method that uses known physical constraints on the state variables and direct inversion of the target functionals of the CO$_2$ profile to construct well-calibrated frequentist confidence intervals based on convex programming. Furthermore, we study the influence of individual nuisance state variables on the length of the confidence intervals and identify certain key variables that can greatly reduce the final uncertainty given additional deterministic or probabilistic constraints, and develop a principled framework to incorporate such information into our method.
stat
Precision Aggregated Local Models
Large scale Gaussian process (GP) regression is infeasible for larger data sets due to cubic scaling of flops and quadratic storage involved in working with covariance matrices. Remedies in recent literature focus on divide-and-conquer, e.g., partitioning into sub-problems and inducing functional (and thus computational) independence. Such approximations can be speedy, accurate, and sometimes even more flexible than an ordinary GPs. However, a big downside is loss of continuity at partition boundaries. Modern methods like local approximate GPs (LAGPs) imply effectively infinite partitioning and are thus pathologically good and bad in this regard. Model averaging, an alternative to divide-and-conquer, can maintain absolute continuity but often over-smooths, diminishing accuracy. Here we propose putting LAGP-like methods into a local experts-like framework, blending partition-based speed with model-averaging continuity, as a flagship example of what we call precision aggregated local models (PALM). Using $K$ LAGPs, each selecting $n$ from $N$ total data pairs, we illustrate a scheme that is at most cubic in $n$, quadratic in $K$, and linear in $N$, drastically reducing computational and storage demands. Extensive empirical illustration shows how PALM is at least as accurate as LAGP, can be much faster in terms of speed, and furnishes continuous predictive surfaces. Finally, we propose sequential updating scheme which greedily refines a PALM predictor up to a computational budget.
stat
Structured regularization based local earthquake tomography for the adaptation to velocity discontinuities
Here we propose a local earthquake tomography method that applies a structured regularization technique to determine sharp changes in the Earth's seismic velocity structure with travel time data of direct waves. Our approach focuses on the ability to better image two common features that are observed the Earth's seismic velocity structure: velocity jumps that correspond to material boundaries, such as the Conrad and Moho discontinuities, and gradual velocity changes that are associated with the pressure and temperature distributions in the crust and mantle. We employ different penalty terms in the vertical and horizontal directions to refine the imaging process. We utilize a vertical-direction (depth) penalty term that takes the form of the l1-sum of the l2-norm of the second-order differences of the horizontal units in the vertical direction. This penalty is intended to represent sharp velocity jumps due to discontinuities by creating a piecewise linear depth profile of the average velocity structure. We set a horizontal-direction penalty term on the basis of the l2-norm to express gradual velocity tendencies in the horizontal direction. We use a synthetic dataset to demonstrate that our method provides significant improvements over the estimated velocity structures from conventional methods by obtaining stable estimates of both the velocity jumps and gradual velocity changes. We also demonstrate that our proposed method is relatively robust against variations in the amplitude of the velocity jump, initial velocity model, and the number of observed travel times. Furthermore, we present a considerable potential for detecting a velocity discontinuity using the observed travel times from only a small number of direct-wave observations.
stat
Weight-Preserving Simulated Tempering
Simulated tempering is popular method of allowing MCMC algorithms to move between modes of a multimodal target density {\pi}. One problem with simulated tempering for multimodal targets is that the weights of the various modes change for different inverse-temperature values, sometimes dramatically so. In this paper, we provide a fix to overcome this problem, by adjusting the mode weights to be preserved (i.e., constant) over different inverse-temperature settings. We then apply simulated tempering algorithms to multimodal targets using our mode weight correction. We present simulations in which our weight-preserving algorithm mixes between modes much more successfully than traditional tempering algorithms. We also prove a diffusion limit for an version of our algorithm, which shows that under appropriate assumptions, our algorithm mixes in time O(d [log d]^2).
stat