title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Debiased Bayesian inference for average treatment effects
Bayesian approaches have become increasingly popular in causal inference problems due to their conceptual simplicity, excellent performance and in-built uncertainty quantification ('posterior credible sets'). We investigate Bayesian inference for average treatment effects from observational data, which is a challenging problem due to the missing counterfactuals and selection bias. Working in the standard potential outcomes framework, we propose a data-driven modification to an arbitrary (nonparametric) prior based on the propensity score that corrects for the first-order posterior bias, thereby improving performance. We illustrate our method for Gaussian process (GP) priors using (semi-)synthetic data. Our experiments demonstrate significant improvement in both estimation accuracy and uncertainty quantification compared to the unmodified GP, rendering our approach highly competitive with the state-of-the-art.
stat
Nonlinear Time Series Classification Using Bispectrum-based Deep Convolutional Neural Networks
Time series classification using novel techniques has experienced a recent resurgence and growing interest from statisticians, subject-domain scientists, and decision makers in business and industry. This is primarily due to the ever increasing amount of big and complex data produced as a result of technological advances. A motivating example is that of Google trends data, which exhibit highly nonlinear behavior. Although a rich literature exists for addressing this problem, existing approaches mostly rely on first and second order properties of the time series, since they typically assume linearity of the underlying process. Often, these are inadequate for effective classification of nonlinear time series data such as Google Trends data. Given these methodological deficiencies and the abundance of nonlinear time series that persist among real-world phenomena, we introduce an approach that merges higher order spectral analysis (HOSA) with deep convolutional neural networks (CNNs) for classifying time series. The effectiveness of our approach is illustrated using simulated data and two motivating industry examples that involve Google trends data and electronic device energy consumption data.
stat
Forecasting Intra-Hour Imbalances in Electric Power Systems
Keeping the electricity production in balance with the actual demand is becoming a difficult and expensive task in spite of an involvement of experienced human operators. This is due to the increasing complexity of the electric power grid system with the intermittent renewable production as one of the contributors. A beforehand information about an occurring imbalance can help the transmission system operator to adjust the production plans, and thus ensure a high security of supply by reducing the use of costly balancing reserves, and consequently reduce undesirable fluctuations of the 50 Hz power system frequency. In this paper, we introduce the relatively new problem of an intra-hour imbalance forecasting for the transmission system operator (TSO). We focus on the use case of the Norwegian TSO, Statnett. We present a complementary imbalance forecasting tool that is able to support the TSO in determining the trend of future imbalances, and show the potential to proactively alleviate imbalances with a higher accuracy compared to the contemporary solution.
stat
Understanding partition comparison indices based on counting object pairs
In unsupervised machine learning, agreement between partitions is commonly assessed with so-called external validity indices. Researchers tend to use and report indices that quantify agreement between two partitions for all clusters simultaneously. Commonly used examples are the Rand index and the adjusted Rand index. Since these overall measures give a general notion of what is going on, their values are usually hard to interpret. Three families of indices based on counting object pairs are analyzed. It is shown that the overall indices can be decomposed into indices that reflect the degree of agreement on the level of individual clusters. The overall indices based on the pair-counting approach are sensitive to cluster size imbalance: they tend to reflect the degree of agreement on the large clusters and provide little to no information on smaller clusters. Furthermore, the value of Rand-like indices is determined to a large extent by the number of pairs of objects that are not joined in either of the partitions.
stat
Tree-Wasserstein Barycenter for Large-Scale Multilevel Clustering and Scalable Bayes
We study in this paper a variant of Wasserstein barycenter problem, which we refer to as tree-Wasserstein barycenter, by leveraging a specific class of ground metrics, namely tree metrics, for Wasserstein distance. Drawing on the tree structure, we propose an efficient algorithmic approach to solve the tree-Wasserstein barycenter and its variants. The proposed approach is not only fast for computation but also efficient for memory usage. Exploiting the tree-Wasserstein barycenter and its variants, we scale up multi-level clustering and scalable Bayes, especially for large-scale applications where the number of supports in probability measures is large. Empirically, we test our proposed approach against other baselines on large-scale synthetic and real datasets.
stat
Jump balls, rating falls, and elite status: A sensitivity analysis of three quarterback rating statistics
Quarterback performance can be difficult to rank, and much effort has been spent in creating new rating systems. However, the input statistics for such ratings are subject to randomness and factors outside the quarterback's control. To investigate this variance, we perform a sensitivity analysis of three quarterback rating statistics: the Traditional 1971 rating by Smith, the Burke, and the Wages of Wins ratings. The comparisons are made at the team level for the 32 NFL teams from 2002-2015, thus giving each case an even 16 games. We compute quarterback ratings for each offense with 1-5 additional touchdowns, 1-5 fewer interceptions, 1-5 additional sacks, and a 1-5 percent increase in the passing completion rate. Our sensitivity analysis provides insight into whether an elite passing team could seem mediocre or vice versa based on random outcomes. The results indicate that the Traditional rating is the most sensitive statistic with respect to touchdowns, interceptions, and completions, whereas the Burke rating is most sensitive to sacks. The analysis suggests that team passing offense rankings are highly sensitive to aspects of football that are out of the quarterback's hands (e.g., deflected passes that lead to interceptions). Thus, on the margins, we show arguments about whether a specific quarterback has entered the elite or remains mediocre are irrelevant.
stat
Rediscovering a little known fact about the t-test: algebraic, geometric, distributional and graphical considerations
We discuss the role that the null hypothesis should play in the construction of a test statistic used to make a decision about that hypothesis. To construct the test statistic for a point null hypothesis about a binomial proportion, a common recommendation is to act as if the null hypothesis is true. We argue that, on the surface, the one-sample t-test of a point null hypothesis about a Gaussian population mean does not appear to follow the recommendation. We show how simple algebraic manipulations of the usual t-statistic lead to an equivalent test procedure consistent with the recommendation, we provide geometric intuition regarding this equivalence, and we consider extensions to testing nested hypotheses in Gaussian linear models. We discuss an application to graphical residual diagnostics where the form of the test statistic makes a practical difference. We argue that these issues should be discussed in advanced undergraduate and graduate courses.
stat
A Simple Algorithm for Exact Multinomial Tests
This work proposes a new method for computing acceptance regions of exact multinomial tests. From this an algorithm is derived, which finds exact p-values for tests of simple multinomial hypotheses. Using concepts from discrete convex analysis, the method is proven to be exact for various popular test statistics, including Pearson's chi-square and the log-likelihood ratio. The proposed algorithm improves greatly on the naive approach using full enumeration of the sample space. However, its use is limited to multinomial distributions with a small number of categories, as the runtime grows exponentially in the number of possible outcomes. The method is applied in a simulation study and uses of multinomial tests in forecast evaluation are outlined. Additionally, properties of a test statistic using probability ordering, referred to as the "exact multinomial test" by some authors, are investigated and discussed. The algorithm is implemented in the accompanying R package ExactMultinom.
stat
Asymptotically Exact and Fast Gaussian Copula Models for Imputation of Mixed Data Types
Missing values with mixed data types is a common problem in a large number of machine learning applications such as processing of surveys and in different medical applications. Recently, Gaussian copula models have been suggested as a means of performing imputation of missing values using a probabilistic framework. While the present Gaussian copula models have shown to yield state of the art performance, they have two limitations: they are based on an approximation that is fast but may be imprecise and they do not support unordered multinomial variables. We address the first limitation using direct and arbitrarily precise approximations both for model estimation and imputation by using randomized quasi-Monte Carlo procedures. The method we provide has lower errors for the estimated model parameters and the imputed values, compared to previously proposed methods. We also extend the previous Gaussian copula models to include unordered multinomial variables in addition to the present support of ordinal, binary, and continuous variables.
stat
Estimation of large block structured covariance matrices: Application to "multi-omic" approaches to study seed quality
Motivated by an application in high-throughput genomics and metabolomics, we propose a novel, efficient and fully data-driven approach for estimating large block structured sparse covariance matrices in the case where the number of variables is much larger than the number of samples without limiting ourselves to block diagonal matrices. Our approach consists in approximating such a covariance matrix by the sum of a low-rank sparse matrix and a diagonal matrix. Our methodology also can deal with matrices for which the block structure appears only if the columns and rows are permuted according to an unknown permutation. Our technique is implemented in the R package \texttt{BlockCov} which is available from the Comprehensive R Archive Network (CRAN) and from GitHub. In order to illustrate the statistical and numerical performance of our package some numerical experiments are provided as well as a thorough comparison with alternative methods. Finally, our approach is applied to the use of "multi-omic" approaches for studying seed quality.
stat
A Descriptive Study of Variable Discretization and Cost-Sensitive Logistic Regression on Imbalanced Credit Data
Training classification models on imbalanced data tends to result in bias towards the majority class. In this paper, we demonstrate how variable discretization and cost-sensitive logistic regression help mitigate this bias on an imbalanced credit scoring dataset, and further show the application of the variable discretization technique on the data from other domains, demonstrating its potential as a generic technique for classifying imbalanced data beyond credit socring. The performance measurements include ROC curves, Area under ROC Curve (AUC), Type I Error, Type II Error, accuracy, and F1 score. The results show that proper variable discretization and cost-sensitive logistic regression with the best class weights can reduce the model bias and/or variance. From the perspective of the algorithm, cost-sensitive logistic regression is beneficial for increasing the value of predictors even if they are not in their optimized forms while maintaining monotonicity. From the perspective of predictors, the variable discretization performs better than cost-sensitive logistic regression, provides more reasonable coefficient estimates for predictors which have nonlinear relationships against their empirical logit, and is robust to penalty weights on misclassifications of events and non-events determined by their apriori proportions.
stat
Two-directional simultaneous inference for high-dimensional models
This paper proposes a general two directional simultaneous inference (TOSI) framework for high-dimensional models with a manifest variable or latent variable structure, for example, high-dimensional mean models, high-dimensional sparse regression models, and high-dimensional latent factors models. TOSI performs simultaneous inference on a set of parameters from two directions, one to test whether the assumed zero parameters indeed are zeros and one to test whether exist zeros in the parameter set of nonzeros. As a result, we can exactly identify whether the parameters are zeros, thereby keeping the data structure fully and parsimoniously expressed. We theoretically prove that the proposed TOSI method asymptotically controls the Type I error at the prespecified significance level and that the testing power converges to one. Simulations are conducted to examine the performance of the proposed method in finite sample situations and two real datasets are analyzed. The results show that the TOSI method is more predictive and has more interpretable estimators than existing methods.
stat
What Does the "Mean" Really Mean?
The arithmetic average of a collection of observed values of a homogeneous collection of quantities is often taken to be the most representative observation. There are several arguments supporting this choice the moment of inertia being the most familiar. But what does this mean? In this note, we bring forth the Kolmogorov-Nagumo point of view that the arithmetic average is a special case of a sequence of functions of a special kind, the quadratic and the geometric means being some of the other cases. The median fails to belong to this class of functions. The Kolmogorov-Nagumo interpretation is the most defensible and the most definitive one for the arithmetic average, but its essence boils down to the fact that this average is merely an abstraction which has meaning only within its mathematical set-up.
stat
Analysis of air pollution time series using complexity-invariant distance and information measures
Air pollution is known to be a major threat for human and ecosystem health. A proper understanding of the factors generating pollution and of the behavior of air pollution in time is crucial to support the development of effective policies aiming at the reduction of pollutant concentration. This paper considers the hourly time series of three pollutants, namely NO$_2$, O$_3$ and PM$_{2.5}$, collected on sixteen measurement stations in Switzerland. The air pollution patterns due to the location of measurement stations and their relationship with anthropogenic activities, and specifically land use, are studied using two approaches: Fisher-Shannon information plane and complexity-invariant distance between time series. A clustering analysis is used to recognize within the measurements of a same pollutant group of stations behaving in a similar way. The results clearly demonstrate the relationship between the air pollution probability densities and land use activities.
stat
Exploiting locality in high-dimensional factorial hidden Markov models
We propose algorithms for approximate filtering and smoothing in high-dimensional factorial hidden Markov models. The approximation involves discarding, in a principled way, likelihood factors according a notion of locality in a factor graph associated with the emission distribution. This allows the exponential-in-dimension cost of exact filtering and smoothing to be avoided. We prove that the approximation accuracy, measured in a local total variation norm, is `dimension-free' in the sense that as the overall dimension of the model increases the error bounds we derive do not necessarily degrade. A key step in the analysis is to quantify the error introduced by localizing the likelihood function in a Bayes' rule update. The factorial structure of the likelihood function which we exploit arises naturally when data have known spatial or network structure. We demonstrate the new algorithms on synthetic examples and a London Underground passenger flow problem, where the factor graph is effectively given by the train network.
stat
Correcting Predictions for Approximate Bayesian Inference
Bayesian models quantify uncertainty and facilitate optimal decision-making in downstream applications. For most models, however, practitioners are forced to use approximate inference techniques that lead to sub-optimal decisions due to incorrect posterior predictive distributions. We present a novel approach that corrects for inaccuracies in posterior inference by altering the decision-making process. We train a separate model to make optimal decisions under the approximate posterior, combining interpretable Bayesian modeling with optimization of direct predictive accuracy in a principled fashion. The solution is generally applicable as a plug-in module for predictive decision-making for arbitrary probabilistic programs, irrespective of the posterior inference strategy. We demonstrate the approach empirically in several problems, confirming its potential.
stat
Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models
Despite the increasing importance of forecasts of renewable energy, current planning studies only address a general estimate of the forecast quality to be expected and selected forecast horizons. However, these estimates allow only a limited and highly uncertain use in the planning of electric power distribution. More reliable planning processes require considerably more information about future forecast quality. In this article, we present an in-depth analysis and comparison of influencing factors regarding uncertainty in wind and photovoltaic power forecasts, based on four different machine learning (ML) models. In our analysis, we found substantial differences in uncertainty depending on ML models, data coverage, and seasonal patterns that have to be considered in future planning studies.
stat
Nishimori meets Bethe: a spectral method for node classification in sparse weighted graphs
This article unveils a new relation between the Nishimori temperature parametrizing a distribution P and the Bethe free energy on random Erdos-Renyi graphs with edge weights distributed according to P. Estimating the Nishimori temperature being a task of major importance in Bayesian inference problems, as a practical corollary of this new relation, a numerical method is proposed to accurately estimate the Nishimori temperature from the eigenvalues of the Bethe Hessian matrix of the weighted graph. The algorithm, in turn, is used to propose a new spectral method for node classification in weighted (possibly sparse) graphs. The superiority of the method over competing state-of-the-art approaches is demonstrated both through theoretical arguments and real-world data experiments.
stat
Good distribution modelling with the R package good
Although models for count data with over-dispersion have been widely considered in the literature, models for under-dispersion -- the opposite phenomenon -- have received less attention as it is only relatively common in particular research fields such as biodosimetry and ecology. The Good distribution is a flexible alternative for modelling count data showing either over-dispersion or under-dispersion, although no R packages are still available to the best of our knowledge. We aim to present in the following the R package good that computes the standard probabilistic functions (i.e., probability density function, cumulative distribution function, and quantile function) and generates random samples from a population following a Good distribution. The package also considers a function for Good regression, including covariates in a similar way to that of the standard glm function. We finally show the use of such a package with some real-world data examples addressing both over-dispersion and especially under-dispersion.
stat
PLSO: A generative framework for decomposing nonstationary timeseries into piecewise stationary oscillatory components
To capture the slowly time-varying spectral content of real-world time-series, a common paradigm is to partition the data into approximately stationary intervals and perform inference in the time-frequency domain. However, this approach lacks a corresponding nonstationary time-domain generative model for the entire data and thus, time-domain inference occurs in each interval separately. This results in distortion/discontinuity around interval boundaries and, consequently, can lead to erroneous inferences based on any quantities derived from the posterior, such as the phase. To address these shortcomings, we propose the Piecewise Locally Stationary Oscillation (PLSO) generative model for decomposing time-series data with slowly time-varying spectra into several oscillatory, piecewise-stationary processes. PLSO, being a nonstationary time-domain generative model, enables inference on the entire time-series, without boundary effects, and, at the same time, provides a characterization of its time-varying spectral properties. For inference, we propose a novel two-stage algorithm that combines Kalman theory and an accelerated proximal gradient algorithm for the nonconvex objective. We demonstrate these points through experiments on simulated data and real neural data from the rat and the human brain.
stat
Training-image based geostatistical inversion using a spatial generative adversarial neural network
Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2D and 3D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2D and 3D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2D steady-state flow and 3D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2D case, the inversion rapidly explores the posterior model distribution. For the 3D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.
stat
Statistical significance in high-dimensional linear mixed models
This paper concerns the development of an inferential framework for high-dimensional linear mixed effect models. These are suitable models, for instance, when we have $n$ repeated measurements for $M$ subjects. We consider a scenario where the number of fixed effects $p$ is large (and may be larger than $M$), but the number of random effects $q$ is small. Our framework is inspired by a recent line of work that proposes de-biasing penalized estimators to perform inference for high-dimensional linear models with fixed effects only. In particular, we demonstrate how to correct a `naive' ridge estimator in extension of work by B\"uhlmann (2013) to build asymptotically valid confidence intervals for mixed effect models. We validate our theoretical results with numerical experiments, in which we show our method outperforms those that fail to account for correlation induced by the random effects. For a practical demonstration we consider a riboflavin production dataset that exhibits group structure, and show that conclusions drawn using our method are consistent with those obtained on a similar dataset without group structure.
stat
A Bayesian nonparametric approach to the approximation of the global stable manifold
We propose a Bayesian nonparametric model based on Markov Chain Monte Carlo (MCMC) methods for unveiling the structure of the invariant global stable manifold from observed time-series data. The underlying unknown dynamical process is possibly contaminated by additive noise. We introduce the Stable Manifold Geometric Stick Breaking Reconstruction (SM-GSBR) model with which we reconstruct the unknown dynamic equations and in parallel we estimate the global structure of the perturbed stable manifold. Our method works for noninvertible maps without modifications. The stable manifold estimation procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.
stat
Efficient Estimation in Single Index Models through Smoothing splines
We consider estimation and inference in a single index regression model with an unknown but smooth link function. In contrast to the standard approach of using kernels or regression splines, we use smoothing splines to estimate the smooth link function. We develop a method to compute the penalized least squares estimators (PLSEs) of the parametric and the nonparametric components given independent and identically distributed (i.i.d.)~data. We prove the consistency and find the rates of convergence of the estimators. We establish asymptotic normality under under mild assumption and prove asymptotic efficiency of the parametric component under homoscedastic errors. A finite sample simulation corroborates our asymptotic theory. We also analyze a car mileage data set and a Ozone concentration data set. The identifiability and existence of the PLSEs are also investigated.
stat
Discovering a Regularity: the Case of An 800-year Law of Advances in Small-Arms Technologies
Considering a broad family of technologies where a measure of performance (MoP) is difficult or impossible to formulate, we seek an alternative measure that exhibits a regular pattern of evolution over time, similar to how a MoP may follow a Moore's law. In an empirical case study, we explore an approach to identifying such a composite measure called a Figure of Regularity (FoR). We use the proposed approach to identify a novel FoR for diverse classes of small arms - bows, crossbows, harquebuses, muskets, rifles, repeaters, and assault rifles - and show that this FoR agrees well with the empirical data. We identify a previously unreported regular trend in the FoR of an exceptionally long duration - from approximately 1200 CE to the present - and discuss how research managers can analyze long-term trends in conjunction with a portfolio of research directions.
stat
Design-Based Inference for Spatial Experiments with Interference
We consider design-based causal inference in settings where randomized treatments have effects that bleed out into space in complex ways that overlap and in violation of the standard "no interference" assumption for many causal inference methods. We define a spatial "average marginalized response," which characterizes how, in expectation, units of observation that are a specified distance from an intervention point are affected by treatments at that point, averaging over effects emanating from other intervention points. We establish conditions for non-parametric identification, asymptotic distributions of estimators, and recovery of structural effects. We propose methods for both sample-theoretic and permutation-based inference. We provide illustrations using randomized field experiments on forest conservation and health.
stat
Testing for a Change in Mean After Changepoint Detection
While many methods are available to detect structural changes in a time series, few procedures are available to quantify the uncertainty of these estimates post-detection. In this work, we fill this gap by proposing a new framework to test the null hypothesis that there is no change in mean around an estimated changepoint. We further show that it is possible to efficiently carry out this framework in the case of changepoints estimated by binary segmentation and its variants, $\ell_{0}$ segmentation, or the fused lasso. Our setup allows us to condition on much less information than existing approaches, which yields higher powered tests. We apply our proposals in a simulation study and on a dataset of chromosomal guanine-cytosine content. These approaches are freely available in the R package ChangepointInference at https://jewellsean.github.io/changepoint-inference/.
stat
Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization
Deep neural networks generalize well despite being exceedingly overparameterized and being trained without explicit regularization. This curious phenomenon, often termed benign overfitting, has inspired extensive research activity in establishing its statistical principles: Under what conditions is the phenomenon observed? How do these depend on the data and on the training algorithm? When does regularization benefit generalization? While these questions remain wide open for deep neural nets, recent works have attempted gaining insights by studying simpler, often linear, models. Our paper contributes to this growing line of work by examining binary linear classification under the popular generative Gaussian mixture model. Motivated by recent results on the implicit bias of gradient descent, we study both max-margin SVM classifiers (corresponding to logistic loss) and min-norm interpolating classifiers (corresponding to least-squares loss). First, we leverage an idea introduced in [V. Muthukumar et al., arXiv:2005.08054, (2020)] to relate the SVM solution to the least-squares (LS) interpolating solution. Second, we derive novel non-asymptotic bounds on the classification error of the LS solution. Combining the two, we present novel sufficient conditions on the overparameterization ratio and on the signal-to-noise ratio (SNR) for benign overfitting to occur. Contrary to previously studied discriminative data models, our results emphasize the crucial role of the SNR. Moreover, we investigate the role of regularization and identify precise conditions under which the interpolating estimator performs better than the regularized estimates. We corroborate our theoretical findings with numerical simulations.
stat
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo (HMC) samples efficiently from high-dimensional posterior distributions with proposed parameter draws obtained by iterating on a discretized version of the Hamiltonian dynamics. The iterations make HMC computationally costly, especially in problems with large datasets, since it is necessary to compute posterior densities and their derivatives with respect to the parameters. Naively computing the Hamiltonian dynamics on a subset of the data causes HMC to lose its key ability to generate distant parameter proposals with high acceptance probability. The key insight in our article is that efficient subsampling HMC for the parameters is possible if both the dynamics and the acceptance probability are computed from the same data subsample in each complete HMC iteration. We show that this is possible to do in a principled way in a HMC-within-Gibbs framework where the subsample is updated using a pseudo marginal MH step and the parameters are then updated using an HMC step, based on the current subsample. We show that our subsampling methods are fast and compare favorably to two popular sampling algorithms that utilize gradient estimates from data subsampling. We also explore the current limitations of subsampling HMC algorithms by varying the quality of the variance reducing control variates used in the estimators of the posterior density and its gradients.
stat
Phase transition in a power-law uniform hypergraph
We propose a power-law $m$-uniform random hypergraph on $n$ vertexes. In this hypergraph, each vertex is independently assigned a random weight from a power-law distribution with exponent $\alpha\in(0,\infty)$ and the hyperedge probabilities are defined as functions of the random weights. We characterize the number of hyperedge and the number of loose 2-cycle. There is a phase transition phenomenon for the number of hyperedge at $\alpha=1$. Interestingly, for the number of loose 2-cycle, phase transition occurs at both $\alpha=1$ and $\alpha=2$.
stat
On Weighted Multivariate Sign Functions
Multivariate sign functions are often used for robust estimation and inference. We propose using data dependent weights in association with such functions. The proposed weighted sign functions retain desirable robustness properties, while significantly improving efficiency in estimation and inference compared to unweighted multivariate sign-based methods. Using weighted signs, we demonstrate methods of robust location estimation and robust principal component analysis. We extend the scope of using robust multivariate methods to include robust sufficient dimension reduction and functional outlier detection. Several numerical studies and real data applications demonstrate the efficacy of the proposed methodology.
stat
A Semiparametric Approach to Model-based Sensitivity Analysis in Observational Studies
When drawing causal inference from observational data, there is always concern about unmeasured confounding. One way to tackle this is to conduct a sensitivity analysis. One widely-used sensitivity analysis framework hypothesizes the existence of a scalar unmeasured confounder U and asks how the causal conclusion would change were U measured and included in the primary analysis. Works along this line often make various parametric assumptions on U, for the sake of mathematical and computational simplicity. In this article, we substantively further this line of research by developing a valid sensitivity analysis that leaves the distribution of U unrestricted. Our semiparametric estimator has three desirable features compared to many existing methods in the literature. First, our method allows for a larger and more flexible family of models, and mitigates observable implications (Franks et al., 2019). Second, our methods work seamlessly with any primary analysis that models the outcome regression parametrically. Third, our method is easy to use and interpret. We construct both pointwise confidence intervals and confidence bands that are uniformly valid over a given sensitivity parameter space, thus formally accounting for unknown sensitivity parameters. We apply our proposed method on an influential yet controversial study of the causal relationship between war experiences and political activeness using observational data from Uganda.
stat
k-hop Graph Neural Networks
Graph neural networks (GNNs) have emerged recently as a powerful architecture for learning node and graph representations. Standard GNNs have the same expressive power as the Weisfeiler-Leman test of graph isomorphism in terms of distinguishing non-isomorphic graphs. However, it was recently shown that this test cannot identify fundamental graph properties such as connectivity and triangle freeness. We show that GNNs also suffer from the same limitation. To address this limitation, we propose a more expressive architecture, k-hop GNNs, which updates a node's representation by aggregating information not only from its direct neighbors, but from its k-hop neighborhood. We show that the proposed architecture can identify fundamental graph properties. We evaluate the proposed architecture on standard node classification and graph classification datasets. Our experimental evaluation confirms our theoretical findings since the proposed model achieves performance better or comparable to standard GNNs and to state-of-the-art algorithms.
stat
Estimation of treatment effects following a sequential trial of multiple treatments
When a clinical trial is subject to a series of interim analyses as a result of which the study may be terminated or modified, final frequentist analyses need to take account of the design used. Failure to do so may result in overstated levels of significance, biased effect estimates and confidence intervals with inadequate coverage probabilities. A wide variety of valid methods of frequentist analysis have been devised for sequential designs comparing a single experimental treatment with a single control treatment. It is less clear how to perform the final analysis of a sequential or adaptive design applied in a more complex setting, for example to determine which treatment or set of treatments amongst several candidates should be recommended. This paper has been motivated by consideration of a trial in which four treatments for sepsis are to be compared, with interim analyses allowing the dropping of treatments or termination of the trial to declare a single winner or to conclude that there is little difference between the treatments that remain. The approach taken is based on the method of Rao-Blackwellisation which enhances the accuracy of unbiased estimates available from the first interim analysis by taking their conditional expectations given final sufficient statistics. Analytic approaches to determine such expectations are difficult and specific to the details of the design, and instead "reverse simulations" are conducted to construct replicate realisations of the first interim analysis from the final test statistics. The method also provides approximate confidence intervals for the differences between treatments.
stat
Parameter inference for a stochastic kinetic model of expanded polyglutamine proteins
The presence of protein aggregates in cells is a known feature of many human age-related diseases, such as Huntington's disease. Simulations using fixed parameter values in a model of the dynamic evolution of expanded polyglutamine (PolyQ) proteins in cells have been used to gain a better understanding of the biological system, how to focus drug development and how to construct more efficient designs of future laboratory-based in vitro experiments. However, there is considerable uncertainty about the values of some of the parameters governing the system. Currently, appropriate values are chosen by ad hoc attempts to tune the parameters so that the model output matches experimental data. The problem is further complicated by the fact that the data only offer a partial insight into the underlying biological process: the data consist only of the proportions of cell death and of cells with inclusion bodies at a few time points, corrupted by measurement error. Developing inference procedures to estimate the model parameters in this scenario is a significant task. The model probabilities corresponding to the observed proportions cannot be evaluated exactly and so they are estimated within the inference algorithm by repeatedly simulating realisations from the model. In general such an approach is computationally very expensive and we therefore construct Gaussian process emulators for the key quantities and reformulate our algorithm around these fast stochastic approximations. We conclude by examining the fit of our model and highlight appropriate values of the model parameters leading to new insights into the underlying biological processes such as the kinetics of aggregation.
stat
Soft Maximin Estimation for Heterogeneous Array Data
The extraction of a common signal across many recordings is difficult when each recording -- in addition to the signal -- contains large, unique variation components. Maximin estimation has previously been proposed as a robust estimation method in the presence of heterogeneous noise. We propose soft maximin estimation as a computationally attractive methodology for estimating a common signal from heterogeneous data. The soft maximin loss is introduced as an aggregation, controlled by a parameter $\zeta>0$, of explained variances and the estimator is obtained by minimizing the penalized soft maximin loss. By establishing statistical and computational properties we argue that the soft maximin method is a statistically sensibel and computationally attractive alternative to existing methods. In particular we demonstrate, on simulated and real data, that the soft maximin estimator can outperform existing methods both in terms of predictive performance and run time. We also provide a time and memory efficient implementation for data with array-tensor structure in the R package SMMA available on CRAN.
stat
Iterative Weak Learnability and Multi-Class AdaBoost
We construct an efficient recursive ensemble algorithm for the multi-class classification problem, inspired by SAMME (Zhu, Zou, Rosset, and Hastie (2009)). We strengthen the weak learnability condition in Zhu, Zou, Rosset, and Hastie (2009) by requiring that the weak learnability condition holds for any subset of labels with at least two elements. This condition is simpler to check than many proposed alternatives (e.g., Mukherjee and Schapire (2013)). As SAMME, our algorithm is reduced to the Adaptive Boosting algorithm (Schapire and Freund (2012)) if the number of labels is two, and can be motivated as a functional version of the steepest descending method to find an optimal solution. In contrast to SAMME, our algorithm's final hypothesis converges to the correct label with probability 1. For any number of labels, the probability of misclassification vanishes exponentially as the training period increases. The sum of the training error and an additional term, that depends only on the sample size, bounds the generalization error of our algorithm as the Adaptive Boosting algorithm.
stat
Power law dynamics in genealogical graphs
Several populational networks present complex topologies when implemented in evolutionary algorithms. A common feature of these topologies is the emergence of a power law. In genealogical networks, the power law can be observed by measuring the impact of individuals in the population, which can be calculated through the Event Takeover Value (ETV) algorithm. In this paper, we show evidence that the different power-law deviations, resulting from the ETV distributions of genealogical graphs, are static images of a dynamic evolution that can be well described by $q$-exponential distribution.
stat
Universal Hypothesis Testing with Kernels: Asymptotically Optimal Tests for Goodness of Fit
We characterize the asymptotic performance of nonparametric goodness of fit testing. The exponential decay rate of the type-II error probability is used as the asymptotic performance metric, and a test is optimal if it achieves the maximum rate subject to a constant level constraint on the type-I error probability. We show that two classes of Maximum Mean Discrepancy (MMD) based tests attain this optimality on $\mathbb R^d$, while the quadratic-time Kernel Stein Discrepancy (KSD) based tests achieve the maximum exponential decay rate under a relaxed level constraint. Under the same performance metric, we proceed to show that the quadratic-time MMD based two-sample tests are also optimal for general two-sample problems, provided that kernels are bounded continuous and characteristic. Key to our approach are Sanov's theorem from large deviation theory and the weak metrizable properties of the MMD and KSD.
stat
Elastic analysis of irregularly or sparsely sampled curves
We provide statistical analysis methods for samples of curves when the image but not the parametrisation of the curves is of interest. A parametrisation invariant analysis can be based on the elastic distance of the curves modulo warping, but existing methods have limitations in common realistic settings where curves are irregularly and potentially sparsely observed. We provide methods and algorithms to approximate the elastic distance for such curves via interpreting them as polygons. Moreover, we propose to use spline curves for modelling smooth or polygonal Fr\'echet means of open or closed curves with respect to the elastic distance and show identifiability of the spline model modulo warping. We illustrate the use of our methods for elastic mean and distance computation by application to two datasets. The first application clusters sparsely sampled GPS tracks based on the elastic distance and computes smooth means for each cluster to find new paths on Tempelhof field in Berlin. The second classifies irregularly sampled handwritten spirals of Parkinson's patients and controls based on the elastic distance to a mean spiral curve computed using our approach. All developed methods are implemented in the \texttt{R}-package \texttt{elasdics} and evaluated in simulations.
stat
Density estimation and modeling on symmetric spaces
In many applications, data and/or parameters are supported on non-Euclidean manifolds. It is important to take into account the geometric structure of manifolds in statistical analysis to avoid misleading results. Although there has been a considerable focus on simple and specific manifolds, there is a lack of general and easy-to-implement statistical methods for density estimation and modeling on manifolds. In this article, we consider a very broad class of manifolds: non-compact Riemannian symmetric spaces. For this class, we provide a very general mathematical result for easily calculating volume changes of the exponential and logarithm map between the tangent space and the manifold. This allows one to define statistical models on the tangent space, push these models forward onto the manifold, and easily calculate induced distributions by Jacobians. To illustrate the statistical utility of this theoretical result, we provide a general method to construct distributions on symmetric spaces. In particular, we define the log-Gaussian distribution as an analogue of the multivariate Gaussian distribution in Euclidean space. With these new kernels on symmetric spaces, we also consider the problem of density estimation. Our proposed approach can use any existing density estimation approach designed for Euclidean spaces and push it forward to the manifold with an easy-to-calculate adjustment. We provide theorems showing that the induced density estimators on the manifold inherit the statistical optimality properties of the parent Euclidean density estimator; this holds for both frequentist and Bayesian nonparametric methods. We illustrate the theory and practical utility of the proposed approach on the space of positive definite matrices.
stat
A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication
In recent years, randomized methods for numerical linear algebra have received growing interest as a general approach to large-scale problems. Typically, the essential ingredient of these methods is some form of randomized dimension reduction, which accelerates computations, but also creates random approximation error. In this way, the dimension reduction step encodes a tradeoff between cost and accuracy. However, the exact numerical relationship between cost and accuracy is typically unknown, and consequently, it may be difficult for the user to precisely know (1) how accurate a given solution is, or (2) how much computation is needed to achieve a given level of accuracy. In the current paper, we study randomized matrix multiplication (sketching) as a prototype setting for addressing these general problems. As a solution, we develop a bootstrap method for \emph{directly estimating} the accuracy as a function of the reduced dimension (as opposed to deriving worst-case bounds on the accuracy in terms of the reduced dimension). From a computational standpoint, the proposed method does not substantially increase the cost of standard sketching methods, and this is made possible by an "extrapolation" technique. In addition, we provide both theoretical and empirical results to demonstrate the effectiveness of the proposed method.
stat
Dropout as a Structured Shrinkage Prior
Dropout regularization of deep neural networks has been a mysterious yet effective tool to prevent overfitting. Explanations for its success range from the prevention of "co-adapted" weights to it being a form of cheap Bayesian inference. We propose a novel framework for understanding multiplicative noise in neural networks, considering continuous distributions as well as Bernoulli noise (i.e. dropout). We show that multiplicative noise induces structured shrinkage priors on a network's weights. We derive the equivalence through reparametrization properties of scale mixtures and without invoking any approximations. Given the equivalence, we then show that dropout's Monte Carlo training objective approximates marginal MAP estimation. We leverage these insights to propose a novel shrinkage framework for resnets, terming the prior 'automatic depth determination' as it is the natural analog of automatic relevance determination for network depth. Lastly, we investigate two inference strategies that improve upon the aforementioned MAP approximation in regression benchmarks.
stat
A User-Friendly Computational Framework for Robust Structured Regression Using the L$_2$ Criterion
We introduce a user-friendly computational framework for implementing robust versions of a wide variety of structured regression methods using the L$_{2}$ criterion. In addition to introducing a scalable algorithm for performing L$_{2}$E regression, our framework also enables robust regression using the L$_{2}$ criterion for additional structural constraints, works without requiring complex tuning procedures, can be used to automatically identify heterogeneous subpopulations, and can incorporate readily available non-robust structured regression solvers. We provide convergence guarantees for the framework and demonstrate its flexibility with some examples.
stat
Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination
The increasing impact of algorithmic decisions on people's lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly-color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policymaking, where in some cases legislative or regulatory frameworks for fairness exist and define specific protected classes. In this paper we study a fundamental challenge to assessing disparate impacts in practice: protected class membership is often not observed in the data. This is particularly a problem in lending and healthcare. We consider the use of an auxiliary dataset, such as the US census, to construct models that predict the protected class from proxy variables, such as surname and geolocation. We show that even with such data, a variety of common disparity measures are generally unidentifiable, providing a new perspective on the documented biases of popular proxy-based methods. We provide exact characterizations of the tightest-possible set of all possible true disparities that are consistent with the data (and possibly any assumptions). We further provide optimization-based algorithms for computing and visualizing these sets and statistical tools to assess sampling uncertainty. Together, these enable reliable and robust assessments of disparities -- an important tool when disparity assessment can have far-reaching policy implications. We demonstrate this in two case studies with real data: mortgage lending and personalized medicine dosing.
stat
Forecasting confirmed cases of the COVID-19 pandemic with a migration-based epidemiological model
The unprecedented coronavirus disease 2019 (COVID-19) pandemic is still a worldwide threat to human life since its invasion into the daily lives of the public in the first several months of 2020. Predicting the size of confirmed cases is important for countries and communities to make proper prevention and control policies so as to effectively curb the spread of COVID-19. Different from the 2003 SARS epidemic and the worldwide 2009 H1N1 influenza pandemic, COVID-19 has unique epidemiological characteristics in its infectious and recovered compartments. This drives us to formulate a new infectious dynamic model for forecasting the COVID-19 pandemic within the human mobility network, named the SaucIR-model in the sense that the new compartmental model extends the benchmark SIR model by dividing the flow of people in the infected state into asymptomatic, pathologically infected but unconfirmed, and confirmed. Furthermore, we employ dynamic modeling of population flow in the model in order that spatial effects can be incorporated effectively. We forecast the spread of accumulated confirmed cases in some provinces of mainland China and other countries that experienced severe infection during the time period from late February to early May 2020. The novelty of incorporating the geographic spread of the pandemic leads to a surprisingly good agreement with published confirmed case reports. The numerical analysis validates the high degree of predictability of our proposed SaucIR model compared to existing resemblance. The proposed forecasting SaucIR model is implemented in Python. A web-based application is also developed by Dash (under construction).
stat
MOGPTK: The Multi-Output Gaussian Process Toolkit
We present MOGPTK, a Python package for multi-channel data modelling using Gaussian processes (GP). The aim of this toolkit is to make multi-output GP (MOGP) models accessible to researchers, data scientists, and practitioners alike. MOGPTK uses a Python front-end, relies on the GPflow suite and is built on a TensorFlow back-end, thus enabling GPU-accelerated training. The toolkit facilitates implementing the entire pipeline of GP modelling, including data loading, parameter initialization, model learning, parameter interpretation, up to data imputation and extrapolation. MOGPTK implements the main multi-output covariance kernels from literature, as well as spectral-based parameter initialization strategies. The source code, tutorials and examples in the form of Jupyter notebooks, together with the API documentation, can be found at http://github.com/GAMES-UChile/mogptk
stat
Model detection and variable selection for mode varying coefficient model
Varying coefficient model is often used in statistical modeling since it is more flexible than the parametric model. However, model detection and variable selection of varying coefficient model are poorly understood in mode regression. Existing methods in the literature for these problems often based on mean regression and quantile regression. In this paper, we propose a novel method to solve these problems for mode varying coefficient model based on the B-spline approximation and SCAD penalty. Moreover, we present a new algorithm to estimate the parameters of interest, and discuss the parameters selection for the tuning parameters and bandwidth. We also establish the asymptotic properties of estimated coefficients under some regular conditions. Finally, we illustrate the proposed method by some simulation studies and an empirical example.
stat
On the Minimax Optimality of the EM Algorithm for Learning Two-Component Mixed Linear Regression
We study the convergence rates of the EM algorithm for learning two-component mixed linear regression under all regimes of signal-to-noise ratio (SNR). We resolve a long-standing question that many recent results have attempted to tackle: we completely characterize the convergence behavior of EM, and show that the EM algorithm achieves minimax optimal sample complexity under all SNR regimes. In particular, when the SNR is sufficiently large, the EM updates converge to the true parameter $\theta^{*}$ at the standard parametric convergence rate $\mathcal{O}((d/n)^{1/2})$ after $\mathcal{O}(\log(n/d))$ iterations. In the regime where the SNR is above $\mathcal{O}((d/n)^{1/4})$ and below some constant, the EM iterates converge to a $\mathcal{O}({\rm SNR}^{-1} (d/n)^{1/2})$ neighborhood of the true parameter, when the number of iterations is of the order $\mathcal{O}({\rm SNR}^{-2} \log(n/d))$. In the low SNR regime where the SNR is below $\mathcal{O}((d/n)^{1/4})$, we show that EM converges to a $\mathcal{O}((d/n)^{1/4})$ neighborhood of the true parameters, after $\mathcal{O}((n/d)^{1/2})$ iterations. Notably, these results are achieved under mild conditions of either random initialization or an efficiently computable local initialization. By providing tight convergence guarantees of the EM algorithm in middle-to-low SNR regimes, we fill the remaining gap in the literature, and significantly, reveal that in low SNR, EM changes rate, matching the $n^{-1/4}$ rate of the MLE, a behavior that previous work had been unable to show.
stat
Knowledge Distillation as Semiparametric Inference
A popular approach to model compression is to train an inexpensive student model to mimic the class probabilities of a highly accurate but cumbersome teacher model. Surprisingly, this two-step knowledge distillation process often leads to higher accuracy than training the student directly on labeled data. To explain and enhance this phenomenon, we cast knowledge distillation as a semiparametric inference problem with the optimal student model as the target, the unknown Bayes class probabilities as nuisance, and the teacher probabilities as a plug-in nuisance estimate. By adapting modern semiparametric tools, we derive new guarantees for the prediction error of standard distillation and develop two enhancements -- cross-fitting and loss correction -- to mitigate the impact of teacher overfitting and underfitting on student performance. We validate our findings empirically on both tabular and image data and observe consistent improvements from our knowledge distillation enhancements.
stat
Probabilistic Formulation of the Take The Best Heuristic
The framework of cognitively bounded rationality treats problem solving as fundamentally rational, but emphasises that it is constrained by cognitive architecture and the task environment. This paper investigates a simple decision making heuristic, Take The Best (TTB), within that framework. We formulate TTB as a likelihood-based probabilistic model, where the decision strategy arises by probabilistic inference based on the training data and the model constraints. The strengths of the probabilistic formulation, in addition to providing a bounded rational account of the learning of the heuristic, include natural extensibility with additional cognitively plausible constraints and prior information, and the possibility to embed the heuristic as a subpart of a larger probabilistic model. We extend the model to learn cue discrimination thresholds for continuous-valued cues and experiment with using the model to account for biased preference feedback from a boundedly rational agent in a simulated interactive machine learning task.
stat
A test for directional-linear independence, with applications to wildfire orientation and size
The relation between wildfire orientation and size is analyzed by means of a nonparametric test for directional-linear independence. The test statistic is designed for assessing the independence between two random variables of different nature, specifically directional (fire orientation, circular or spherical, as particular cases) and linear (fire size measured as burnt area, scalar), based on a directional-linear nonparametric kernel density estimator. In order to apply the proposed methodology in practice, a resampling procedure based on permutations and bootstrap is provided. The finite sample performance of the test is assessed by a simulation study, comparing its behavior with other classical tests for the circular-linear case. Finally, the test is applied to analyze wildfire data from Portugal.
stat
Survival Analysis via Ordinary Differential Equations
This paper introduces a general framework for survival analysis based on ordinary differential equations (ODE). Specifically, this framework unifies many existing survival models, including proportional hazards models, linear transformation models, accelerated failure time models, and time-varying coefficient models as special cases. Such a unified framework provides a novel perspective on modeling censored data and offers opportunities for designing new and more flexible survival model structures. Further, the aforementioned existing survival models are traditionally estimated by procedures that suffer from lack of scalability, statistical inefficiency, or implementation difficulty. Based on well-established numerical solvers and sensitivity analysis tools for ODEs, we propose a novel, scalable, and easy-to-implement general estimation procedure that is applicable to a wide range of models. In particular, we develop a sieve maximum likelihood estimator for a general semi-parametric class of ODE models as an illustrative example. We also establish a general sieve M-theorem for bundled parameters and show that the proposed sieve estimator is consistent and asymptotically normal, and achieves the semi-parametric efficiency bound. The finite sample performance of the proposed estimator is examined in simulation studies and a real-world data example.
stat
Clustering with the Average Silhouette Width
The Average Silhouette Width (ASW; Rousseeuw (1987)) is a popular cluster validation index to estimate the number of clusters. Here we address the question whether it also is suitable as a general objective function to be optimized for finding a clustering. We will propose two algorithms (the standard version OSil and a fast version FOSil) and compare them with existing clustering methods in an extensive simulation study covering the cases of a known and unknown number of clusters. Real data sets are also analysed, partly exploring the use of the new methods with non-Euclidean distances. We will also show that the ASW satisfies some axioms that have been proposed for cluster quality functions (Ackerman and Ben-David (2009)). The new methods prove useful and sensible in many cases, but some weaknesses are also highlighted. These also concern the use of the ASW for estimating the number of clusters together with other methods, which is of general interest due to the popularity of the ASW for this task.
stat
sensobol: an R package to compute variance-based sensitivity indices
The R package "sensobol" provides several functions to conduct variance-based uncertainty and sensitivity analysis, from the estimation of sensitivity indices to the visual representation of the results. It implements several state-of-the-art first and total-order estimators and allows the computation of up to third-order effects, as well as of the approximation error, in a swift and user-friendly way. Its flexibility makes it also appropriate for models with either a scalar or a multivariate output. We illustrate its functionality by conducting a variance-based sensitivity analysis of three classic models: the Sobol' (1998) G function, the logistic population growth model of Verhulst (1845), and the spruce budworm and forest model of Ludwig, Jones and Holling (1976).
stat
Likelihood Landscape and Local Minima Structures of Gaussian Mixture Models
In this paper, we study the landscape of the population negative log-likelihood function of Gaussian Mixture Models with a general number of components. Due to nonconvexity, there exist multiple local minima that are not globally optimal, even when the mixture is well-separated. We show that all local minima share the same form of structure that partially identifies the component centers of the true mixture, in the sense that each local minimum involves a non-overlapping combination of fitting multiple Gaussians to a single true component and fitting a single Gaussian to multiple true components. Our results apply to the setting where the true mixture components satisfy a certain separation condition, and are valid even when the number of components is over-or under-specified. For Gaussian mixtures with three components, we obtain sharper results in terms of the scaling with the separation between the components.
stat
Interpretable ICD Code Embeddings with Self- and Mutual-Attention Mechanisms
We propose a novel and interpretable embedding method to represent the international statistical classification codes of diseases and related health problems (i.e., ICD codes). This method considers a self-attention mechanism within the disease domain and a mutual-attention mechanism jointly between diseases and procedures. This framework captures the clinical relationships between the disease codes and procedures associated with hospital admissions, and it predicts procedures according to diagnosed diseases. A self-attention network is learned to fuse the embeddings of the diseases for each admission. The similarities between the fused disease embedding and the procedure embeddings indicate which procedure should potentially be recommended. Additionally, when learning the embeddings of the ICD codes, the optimal transport between the diseases and the procedures within each admission is calculated as a regularizer of the embeddings. The optimal transport provides a mutual-attention map between diseases and the procedures, which suppresses the ambiguity within their clinical relationships. The proposed method achieves clinically-interpretable embeddings of ICD codes, and outperforms state-of-the-art embedding methods in procedure recommendation.
stat
A Python Library For Empirical Calibration
Dealing with biased data samples is a common task across many statistical fields. In survey sampling, bias often occurs due to unrepresentative samples. In causal studies with observational data, the treated versus untreated group assignment is often correlated with covariates, i.e., not random. Empirical calibration is a generic weighting method that presents a unified view on correcting or reducing the data biases for the tasks mentioned above. We provide a Python library EC to compute the empirical calibration weights. The problem is formulated as convex optimization and solved efficiently in the dual form. Compared to existing software, EC is both more efficient and robust. EC also accommodates different optimization objectives, supports weight clipping, and allows inexact calibration, which improves usability. We demonstrate its usage across various experiments with both simulated and real-world data.
stat
The Expectation-Maximization Algorithm for Continuous-time Hidden Markov Models
We propose a unified framework that extends the inference methods for classical hidden Markov models to continuous settings, where both the hidden states and observations occur in continuous time. Two different settings are analyzed: (1) hidden jump process with a finite state space; (2) hidden diffusion process with a continuous state space. For each setting, we first estimate the hidden state given the observations and model parameters, showing that the posterior distribution of the hidden states can be described by differential equations in continuous time. Then we consider the estimation of unknown model parameters, deriving the formulas for the expectation-maximization algorithm in the continuous-time setting. We also propose a Monte Carlo method for sampling the posterior distribution of the hidden states and estimating the unknown parameters.
stat
Non-negative matrix and tensor factorisations with a smoothed Wasserstein loss
Non-negative matrix and tensor factorisations are a classical tool in machine learning and data science for finding low-dimensional representations of high-dimensional datasets. In applications such as imaging, datasets can often be regarded as distributions in a space with metric structure. In such a setting, a Wasserstein loss function based on optimal transportation theory is a natural choice since it incorporates knowledge about the geometry of the underlying space. We introduce a general mathematical framework for computing non-negative factorisations of matrices and tensors with respect to an optimal transport loss, and derive an efficient method for its solution using a convex dual formulation. We demonstrate the applicability of this approach with several numerical examples.
stat
Estimating variances in time series linear regression models using empirical BLUPs and convex optimization
We propose a two-stage estimation method of variance components in time series models known as FDSLRMs, whose observations can be described by a linear mixed model (LMM). We based estimating variances, fundamental quantities in a time series forecasting approach called kriging, on the empirical (plug-in) best linear unbiased predictions of unobservable random components in FDSLRM. The method, providing invariant non-negative quadratic estimators, can be used for any absolutely continuous probability distribution of time series data. As a result of applying the convex optimization and the LMM methodology, we resolved two problems $-$ theoretical existence and equivalence between least squares estimators, non-negative (M)DOOLSE, and maximum likelihood estimators, (RE)MLE, as possible starting points of our method and a practical lack of computational implementation for FDSLRM. As for computing (RE)MLE in the case of $ n $ observed time series values, we also discovered a new algorithm of order $\mathcal{O}(n)$, which at the default precision is $10^7$ times more accurate and $n^2$ times faster than the best current Python(or R)-based computational packages, namely CVXPY, CVXR, nlme, sommer and mixed. We illustrate our results on three real data sets $-$ electricity consumption, tourism and cyber security $-$ which are easily available, reproducible, sharable and modifiable in the form of interactive Jupyter notebooks.
stat
Anytime Online-to-Batch Conversions, Optimism, and Acceleration
A standard way to obtain convergence guarantees in stochastic convex optimization is to run an online learning algorithm and then output the average of its iterates: the actual iterates of the online learning algorithm do not come with individual guarantees. We close this gap by introducing a black-box modification to any online learning algorithm whose iterates converge to the optimum in stochastic scenarios. We then consider the case of smooth losses, and show that combining our approach with optimistic online learning algorithms immediately yields a fast convergence rate of $O(L/T^{3/2}+\sigma/\sqrt{T})$ on $L$-smooth problems with $\sigma^2$ variance in the gradients. Finally, we provide a reduction that converts any adaptive online algorithm into one that obtains the optimal accelerated rate of $\tilde O(L/T^2 + \sigma/\sqrt{T})$, while still maintaining $\tilde O(1/\sqrt{T})$ convergence in the non-smooth setting. Importantly, our algorithms adapt to $L$ and $\sigma$ automatically: they do not need to know either to obtain these rates.
stat
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
We develop amortized population Gibbs (APG) samplers, a class of scalable methods that frames structured variational inference as adaptive importance sampling. APG samplers construct high-dimensional proposals by iterating over updates to lower-dimensional blocks of variables. We train each conditional proposal by minimizing the inclusive KL divergence with respect to the conditional posterior. To appropriately account for the size of the input data, we develop a new parameterization in terms of neural sufficient statistics. Experiments show that APG samplers can train highly structured deep generative models in an unsupervised manner, and achieve substantial improvements in inference accuracy relative to standard autoencoding variational methods.
stat
Survival analysis for AdVerse events with VarYing follow-up times (SAVVY) -- estimation of adverse event risks
The SAVVY project aims to improve the analyses of adverse event (AE) data in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). Although statistical methodologies have advanced, in AE analyses often the incidence proportion, the incidence density, or a non-parametric Kaplan-Meier estimator (KME) are used, which either ignore censoring or CEs. In an empirical study including randomized clinical trials from several sponsor organisations, these potential sources of bias are investigated. The main aim is to compare the estimators that are typically used in AE analysis to the Aalen-Johansen estimator (AJE) as the gold-standard. Here, one-sample findings are reported, while a companion paper considers consequences when comparing treatment groups. Estimators are compared with descriptive statistics, graphical displays and with a random effects meta-analysis. The influence of different factors on the size of the bias is investigated in a meta-regression. Comparisons are conducted at the maximum follow-up time and at earlier evaluation time points. CEs definition does not only include death before AE but also end of follow-up for AEs due to events possibly related to the disease course or the treatment. Ten sponsor organisations provided 17 trials including 186 types of AEs. The one minus KME was on average about 1.2-fold larger than the AJE. Leading forces influencing bias were the amount of censoring and of CEs. As a consequence, the average bias using the incidence proportion was less than 5%. Assuming constant hazards using incidence densities was hardly an issue provided that CEs were accounted for. There is a need to improve the guidelines of reporting risks of AEs so that the KME and the incidence proportion are replaced by the AJE with an appropriate definition of CEs.
stat
Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
We propose a numerical accountant for evaluating the tight $(\varepsilon,\delta)$-privacy loss for algorithms with discrete one dimensional output. The method is based on the privacy loss distribution formalism and it uses the recently introduced Fast Fourier Transform based accounting technique. We carry out a complete error analysis of the method in terms of moment bounds of the privacy loss distribution which leads to rigorous lower and upper bounds for the true $(\varepsilon,\delta)$-values. As an application we give a novel approach to accurate privacy accounting of the subsampled Gaussian mechanism. This completes the previously proposed analysis by giving a strict lower and upper bounds for the $(\varepsilon,\delta)$-values. We also demonstrate the performance of the accountant on the binomial mechanism and show that our approach allows decreasing noise variance up to 75 percent at equal privacy compared to existing bounds in the literature. We also illustrate how to compute tight bounds for the exponential mechanism applied to counting queries.
stat
Generalizing the Balance Heuristic Estimator in Multiple Importance Sampling
In this paper, we propose a novel and generic family of multiple importance sampling estimators. We first revisit the celebrated balance heuristic estimator, a widely used Monte Carlo technique for the approximation of intractable integrals. Then, we establish a generalized framework for the combination of samples simulated from multiple proposals. We show that the novel framework contains the balance heuristic as a particular case. In addition, we study the optimal choice of the free parameters in such a way the variance of the resulting estimator is minimized. A theoretical variance study shows the optimal solution is always better than the balance heuristic estimator (except in degenerate cases where both are the same). As a side result of this analysis, we also provide new upper bounds for the balance heuristic estimator. Finally, we show the gap in the variance of both estimators by means of five numerical examples.
stat
Examining the impact of data quality and completeness of electronic health records on predictions of patients risks of cardiovascular disease
The objective is to assess the extent of variation of data quality and completeness of electronic health records and impact on the robustness of risk predictions of incident cardiovascular disease (CVD) using a risk prediction tool that is based on routinely collected data (QRISK3). The study design is a longitudinal cohort study with a setting of 392 general practices (including 3.6 million patients) linked to hospital admission data. Variation in data quality was assessed using Saez stability metrics quantifying outlyingness of each practice. Statistical frailty models evaluated whether accuracy of QRISK3 predictions on individual predictions and effects of overall risk factors (linear predictor) varied between practices. There was substantial heterogeneity between practices in CVD incidence unaccounted for by QRISK3. In the lowest quintile of statistical frailty, a QRISK3 predicted risk of 10% for female was in a range between 7.1% and 9.0% when incorporating practice variability into the statistical frailty models; for the highest quintile, this was 10.9%-16.4%. Data quality (using Saez metrics) and completeness were comparable across different levels of statistical frailty. For example, recording of missing information on ethnicity was 55.7%, 62.7%, 57.8%, 64.8% and 62.1% for practices from lowest to highest quintiles of statistical frailty respectively. The effects of risk factors did not vary between practices with little statistical variation of beta coefficients. In conclusion, the considerable unmeasured heterogeneity in CVD incidence between practices was not explained by variations in data quality or effects of risk factors. QRISK3 risk prediction should be supplemented with clinical judgement and evidence of additional risk factors.
stat
Decomposition of Total Effect with the Notion of Natural Counterfactual Interaction Effect
Mediation analysis serves as a crucial tool to obtain causal inference based on directed acyclic graphs, which has been widely employed in the areas of biomedical science, social science, epidemiology and psychology. Decomposition of total effect provides a deep insight to fully understand the casual contribution from each path and interaction term. Since the four-way decomposition method was proposed to identify the mediated interaction effect in counterfactual framework, the idea had been extended to a more sophisticated scenario with non-sequential multiple mediators. However, the method exhibits limitations as the causal structure contains direct causal edges between mediators, such as inappropriate modeling of dependence and non-identifiability. We develop the notion of natural counterfactual interaction effect and find that the decomposition of total effect can be consistently realized with our proposed notion. Furthermore, natural counterfactual interaction effect overcomes the drawbacks and possesses a clear and significant interpretation, which may largely improve the capacity of researchers to analyze highly complex causal structures.
stat
Linear Iterative Feature Embedding: An Ensemble Framework for Interpretable Model
A new ensemble framework for interpretable model called Linear Iterative Feature Embedding (LIFE) has been developed to achieve high prediction accuracy, easy interpretation and efficient computation simultaneously. The LIFE algorithm is able to fit a wide single-hidden-layer neural network (NN) accurately with three steps: defining the subsets of a dataset by the linear projections of neural nodes, creating the features from multiple narrow single-hidden-layer NNs trained on the different subsets of the data, combining the features with a linear model. The theoretical rationale behind LIFE is also provided by the connection to the loss ambiguity decomposition of stack ensemble methods. Both simulation and empirical experiments confirm that LIFE consistently outperforms directly trained single-hidden-layer NNs and also outperforms many other benchmark models, including multi-layers Feed Forward Neural Network (FFNN), Xgboost, and Random Forest (RF) in many experiments. As a wide single-hidden-layer NN, LIFE is intrinsically interpretable. Meanwhile, both variable importance and global main and interaction effects can be easily created and visualized. In addition, the parallel nature of the base learner building makes LIFE computationally efficient by leveraging parallel computing.
stat
Metric Gaussian Variational Inference
Solving Bayesian inference problems approximately with variational approaches can provide fast and accurate results. Capturing correlation within the approximation requires an explicit parametrization. This intrinsically limits this approach to either moderately dimensional problems, or requiring the strongly simplifying mean-field approach. We propose Metric Gaussian Variational Inference (MGVI) as a method that goes beyond mean-field. Here correlations between all model parameters are taken into account, while still scaling linearly in computational time and memory. With this method we achieve higher accuracy and in many cases a significant speedup compared to traditional methods. MGVI is an iterative method that performs a series of Gaussian approximations to the posterior. We alternate between approximating the covariance with the inverse Fisher information metric evaluated at an intermediate mean estimate and optimizing the KL-divergence for the given covariance with respect to the mean. This procedure is iterated until the uncertainty estimate is self-consistent with the mean parameter. We achieve linear scaling by avoiding to store the covariance explicitly at any time. Instead we draw samples from the approximating distribution relying on an implicit representation and numerical schemes to approximately solve linear equations. Those samples are used to approximate the KL-divergence and its gradient. The usage of natural gradient descent allows for rapid convergence. Formulating the Bayesian model in standardized coordinates makes MGVI applicable to any inference problem with continuous parameters. We demonstrate the high accuracy of MGVI by comparing it to HMC and its fast convergence relative to other established methods in several examples. We investigate real-data applications, as well as synthetic examples of varying size and complexity and up to a million model parameters.
stat
Inferring Influence Networks from Longitudinal Bipartite Relational Data
Longitudinal bipartite relational data characterize the evolution of relations between pairs of actors, where actors are of two distinct types and relations exist only between disparate types. A common goal is to understand the temporal dependencies, specifically which actor relations incite later actor relations. There are two existing approaches to this problem. The first approach projects the bipartite data in each time period to a unipartite network and uses existing unipartite network models. Unfortunately, information is lost in calculating the projection and generative models for networks obtained through this process are scarce. The second approach represents dependencies using two unipartite \emph{influence networks}, corresponding to the two actor types. Existing models taking this approach are bilinear in the influence networks, creating challenges in computation and interpretation. We propose a novel generative model that permits estimation of weighted, directed influence networks and does not suffer from these shortcomings. The proposed model is linear in the influence networks, permitting inference using off-the-shelf software tools. We prove our estimator is consistent under cases of model misspecification and nearly asymptotically equivalent to the bilinear estimator. We demonstrate the performance of the proposed model in simulation studies and an analysis of weekly international state interactions.
stat
Learning Manifolds from Non-stationary Streaming Data
Streaming adaptations of manifold learning based dimensionality reduction methods, such as Isomap, are based on the assumption that a small initial batch of observations is enough for exact learning of the manifold, while remaining streaming data instances can be cheaply mapped to this manifold. However, there are no theoretical results to show that this core assumption is valid. Moreover, such methods typically assume that the underlying data distribution is stationary. Such methods are not equipped to detect, or handle, sudden changes or gradual drifts in the distribution that may occur when the data is streaming. We present theoretical results to show that the quality of a manifold asymptotically converges as the size of data increases. We then show that a Gaussian Process Regression (GPR) model, that uses a manifold-specific kernel function and is trained on an initial batch of sufficient size, can closely approximate the state-of-art streaming Isomap algorithms. The predictive variance obtained from the GPR prediction is then shown to be an effective detector of changes in the underlying data distribution. Results on several synthetic and real data sets show that the resulting algorithm can effectively learn lower dimensional representation of high dimensional data in a streaming setting, while identifying shifts in the generative distribution.
stat
With Malice Towards None: Assessing Uncertainty via Equalized Coverage
An important factor to guarantee a fair use of data-driven recommendation systems is that we should be able to communicate their uncertainty to decision makers. This can be accomplished by constructing prediction intervals, which provide an intuitive measure of the limits of predictive performance. To support equitable treatment, we force the construction of such intervals to be unbiased in the sense that their coverage must be equal across all protected groups of interest. We present an operational methodology that achieves this goal by offering rigorous distribution-free coverage guarantees holding in finite samples. Our methodology, equalized coverage, is flexible as it can be viewed as a wrapper around any predictive algorithm. We test the applicability of the proposed framework on real data, demonstrating that equalized coverage constructs unbiased prediction intervals, unlike competitive methods.
stat
Gradient Ascent for Active Exploration in Bandit Problems
We present a new algorithm based on an gradient ascent for a general Active Exploration bandit problem in the fixed confidence setting. This problem encompasses several well studied problems such that the Best Arm Identification or Thresholding Bandits. It consists of a new sampling rule based on an online lazy mirror ascent. We prove that this algorithm is asymptotically optimal and, most importantly, computationally efficient.
stat
Calibration of the Pareto and related distributions -a reference-intrinsic approach
We study two Bayesian (Reference Intrinsic and Jeffreys prior) and two frequentist (MLE and PWM) approaches to calibrating the Pareto and related distributions. Three of these approaches are compared in a simulation study and all four to investigate how much equity risk capital banks subject to Basel II banking regulations must hold. The Reference Intrinsic approach, which is invariant under one-to-one transformations of the data and parameter, performs better when fitting a generalised Pareto distribution to data simulated from a Pareto distribution and is competitive in the case study on equity capital requirements
stat
Choosing among notions of multivariate depth statistics
Classical multivariate statistics measures the outlyingness of a point by its Mahalanobis distance from the mean, which is based on the mean and the covariance matrix of the data. A multivariate depth function is a function which, given a point and a distribution in d-space, measures centrality by a number between 0 and 1, while satisfying certain postulates regarding invariance, monotonicity, convexity and continuity. Accordingly, numerous notions of multivariate depth have been proposed in the literature, some of which are also robust against extremely outlying data. The departure from classical Mahalanobis distance does not come without cost. There is a trade-off between invariance, robustness and computational feasibility. In the last few years, efficient exact algorithms as well as approximate ones have been constructed and made available in R-packages. Consequently, in practical applications the choice of a depth statistic is no more restricted to one or two notions due to computational limits; rather often more notions are feasible, among which the researcher has to decide. The article debates theoretical and practical aspects of this choice, including invariance and uniqueness, robustness and computational feasibility. Complexity and speed of exact algorithms are compared. The accuracy of approximate approaches like the random Tukey depth is discussed as well as the application to large and high-dimensional data. Extensions to local and functional depths and connections to regression depth are shortly addressed.
stat
Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation
Traffic speed data imputation is a fundamental challenge for data-driven transport analysis. In recent years, with the ubiquity of GPS-enabled devices and the widespread use of crowdsourcing alternatives for the collection of traffic data, transportation professionals increasingly look to such user-generated data for many analysis, planning, and decision support applications. However, due to the mechanics of the data collection process, crowdsourced traffic data such as probe-vehicle data is highly prone to missing observations, making accurate imputation crucial for the success of any application that makes use of that type of data. In this article, we propose the use of multi-output Gaussian processes (GPs) to model the complex spatial and temporal patterns in crowdsourced traffic data. While the Bayesian nonparametric formalism of GPs allows us to model observation uncertainty, the multi-output extension based on convolution processes effectively enables us to capture complex spatial dependencies between nearby road segments. Using 6 months of crowdsourced traffic speed data or "probe vehicle data" for several locations in Copenhagen, the proposed approach is empirically shown to significantly outperform popular state-of-the-art imputation methods.
stat
Improved Classification Based on Deep Belief Networks
For better classification generative models are used to initialize the model and model features before training a classifier. Typically it is needed to solve separate unsupervised and supervised learning problems. Generative restricted Boltzmann machines and deep belief networks are widely used for unsupervised learning. We developed several supervised models based on DBN in order to improve this two-phase strategy. Modifying the loss function to account for expectation with respect to the underlying generative model, introducing weight bounds, and multi-level programming are applied in model development. The proposed models capture both unsupervised and supervised objectives effectively. The computational study verifies that our models perform better than the two-phase training approach.
stat
Empirical bias-reducing adjustments to estimating functions
We develop a novel, general framework for reduced-bias $M$-estimation from asymptotically unbiased estimating functions. The framework relies on an empirical approximation of the bias by a function of derivatives of estimating function contributions. Reduced-bias $M$-estimation operates either implicitly, by solving empirically adjusted estimating equations, or explicitly, by subtracting the estimated bias from the original $M$-estimates, and applies to models that are partially- or fully-specified, with either likelihoods or other surrogate objectives. Automatic differentiation can be used to abstract away the only algebra required to implement reduced-bias $M$-estimation. As a result, the bias reduction methods we introduce have markedly broader applicability and more straightforward implementation than other established bias-reduction methods that require resampling or evaluation of expectations of products of log-likelihood derivatives. If $M$-estimation is by maximizing an objective, then there always exists a bias-reducing penalized objective. That penalized objective relates closely to information criteria for model selection, and can be further enhanced with plug-in penalties to deliver reduced-bias $M$-estimates with extra properties, like finiteness in models for categorical data. The reduced-bias $M$-estimators have the same asymptotic distribution as the original $M$-estimators, and, hence, standard procedures for inference and model selection apply unaltered with the improved estimates. We demonstrate and assess the properties of reduced-bias $M$-estimation in well-used, prominent modelling settings of varying complexity.
stat
Self-Validated Ensemble Models for Design of Experiments
In this paper we introduce a new model building algorithm called self-validating ensemble modeling or SVEM. The method enables the fitting of validated predictive models to the relatively small data sets typically generated from designed experiments where prediction is the desired outcome which is often the case in Quality by Design studies in bio-pharmaceutical industries. In order to fit validated predictive models, SVEM uses a unique weighting scheme applied to the responses and fractional weighted bootstrapping to generate a large ensemble of fitted models. The weighting scheme allows the original data to serve both as a training set and validation set. The method is very general in application and works with most model selection algorithms. Through extensive simulation studies and a case study we demonstrate that SVEM generates models with lower prediction error as compared to more traditional statistical approaches that are based on fitting a single model.
stat
Neural Connectivity with Hidden Gaussian Graphical State-Model
The noninvasive procedures for neural connectivity are under questioning. Theoretical models sustain that the electromagnetic field registered at external sensors is elicited by currents at neural space. Nevertheless, what we observe at the sensor space is a superposition of projected fields, from the whole gray-matter. This is the reason for a major pitfall of noninvasive Electrophysiology methods: distorted reconstruction of neural activity and its connectivity or leakage. It has been proven that current methods produce incorrect connectomes. Somewhat related to the incorrect connectivity modelling, they disregard either Systems Theory and Bayesian Information Theory. We introduce a new formalism that attains for it, Hidden Gaussian Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS is equivalent to a frequency domain Linear State Space Model (LSSM) but with sparse connectivity prior. The mathematical contribution here is the theory for high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS can attenuate the leakage effect in the most critical case: the distortion EEG signal due to head volume conduction heterogeneities. Its application in EEG is illustrated with retrieved connectivity patterns from human Steady State Visual Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence for noninvasive procedures of neural connectivity: concurrent EEG and Electrocorticography (ECoG) recordings on monkey. Open source packages are freely available online, to reproduce the results presented in this paper and to analyze external MEEG databases.
stat
Overcoming the inconsistences of the variance inflation factor: a redefined VIF and a test to detect statistical troubling multicollinearity
Multicollinearity is relevant to many different fields where linear regression models are applied, and its existence may affect the analysis of ordinary least squares (OLS) estimators from both the numerical and statistical points of views. Thus, multicollinearity can lead to incoherence in the statistical significance of the independent variables and the global significance of the model. The variance inflation factor (VIF) is traditionally applied to diagnose the possible existence of multicollinearity, but it is not always the case that detection by VIF of a troubling degree of multicollinearity corresponds to negative effects on the statistical analysis. The reason for the lack of specificity of VIF is that there are other factors, such as the size of the sample and the variance of the random disturbance, that can lead to high values of the VIF but not to problematic variance in the OLS estimators (see O'Brien 2007). This paper presents a new variance inflation factor (TVIF) that consider all these additional factors. Thresholds for this new measure and from the index provided by Stewart (1987) are also provided. These thresholds are reinterpreted and presented as a new statistical test to diagnose the existence of statistical troubling multicollinearity. The contributions of this paper are illustrated with two real data examples previously applied in the scientific literature.
stat
Selective inference after feature selection via multiscale bootstrap
It is common to show the confidence intervals or $p$-values of selected features, or predictor variables in regression, but they often involve selection bias. The selective inference approach solves this bias by conditioning on the selection event. Most existing studies of selective inference consider a specific algorithm, such as Lasso, for feature selection, and thus they have difficulties in handling more complicated algorithms. Moreover, existing studies often consider unnecessarily restrictive events, leading to over-conditioning and lower statistical power. Our novel and widely-applicable resampling method addresses these issues to compute an approximately unbiased selective $p$-value for the selected features. We prove that the $p$-value computed by our resampling method is more accurate and more powerful than existing methods, while the computational cost is the same order as the classical bootstrap method. Numerical experiments demonstrate that our algorithm works well even for more complicated feature selection methods such as non-convex regularization.
stat
Moment-Based Domain Adaptation: Learning Bounds and Algorithms
This thesis contributes to the mathematical foundation of domain adaptation as emerging field in machine learning. In contrast to classical statistical learning, the framework of domain adaptation takes into account deviations between probability distributions in the training and application setting. Domain adaptation applies for a wider range of applications as future samples often follow a distribution that differs from the ones of the training samples. A decisive point is the generality of the assumptions about the similarity of the distributions. Therefore, in this thesis we study domain adaptation problems under as weak similarity assumptions as can be modelled by finitely many moments.
stat
The wrapped xgamma distribution for modeling circular data appearing in geological context
The technique of wrapping of a univariate probability distribution is very effective in getting a circular form of the underlying density. In this article, we introduce the circular (wrapped) version of xgamma distribution and study its different distributional properties. To estimate the unknown parameter, maximum likelihood method is proposed. A Monte-Carlo simulation study is performed to understand the behaviour of the estimates for varying sample size. To illustrate the application of the proposed distribution, a real data set on the long axis orientation of feldspar laths in basalt rock is analyzed and compared with other circular distributions.
stat
Augmenting expert detection of early coronary artery occlusion from 12 lead electrocardiograms using deep learning
Early diagnosis of acute coronary artery occlusion based on electrocardiogram (ECG) findings is essential for prompt delivery of primary percutaneous coronary intervention. Current ST elevation (STE) criteria are specific but insensitive. Consequently, it is likely that many patients are missing out on potentially life-saving treatment. Experts combining non-specific ECG changes with STE detect ischaemia with higher sensitivity, but at the cost of specificity. We show that a deep learning model can detect ischaemia caused by acute coronary artery occlusion with a better balance of sensitivity and specificity than STE criteria, existing computerised analysers or expert cardiologists.
stat
Estimating Individualized Treatment Regimes from Crossover Designs
The field of precision medicine aims to tailor treatment based on patient-specific factors in a reproducible way. To this end, estimating an optimal individualized treatment regime (ITR) that recommends treatment decisions based on patient characteristics to maximize the mean of a pre-specified outcome is of particular interest. Several methods have been proposed for estimating an optimal ITR from clinical trial data in the parallel group setting where each subject is randomized to a single intervention. However, little work has been done in the area of estimating the optimal ITR from crossover study designs. Such designs naturally lend themselves to precision medicine, because they allow for observing the response to multiple treatments for each patient. In this paper, we introduce a method for estimating the optimal ITR using data from a 2x2 crossover study with or without carryover effects. The proposed method is similar to policy search methods such as outcome weighted learning; however, we take advantage of the crossover design by using the difference in responses under each treatment as the observed reward. We establish Fisher and global consistency, present numerical experiments, and analyze data from a feeding trial to demonstrate the improved performance of the proposed method compared to standard methods for a parallel study design.
stat
Hydra: A method for strain-minimizing hyperbolic embedding of network- and distance-based data
We introduce hydra (hyperbolic distance recovery and approximation), a new method for embedding network- or distance-based data into hyperbolic space. We show mathematically that hydra satisfies a certain optimality guarantee: It minimizes the `hyperbolic strain' between original and embedded data points. Moreover, it recovers points exactly, when they are located on a hyperbolic submanifold of the feature space. Testing on real network data we show that the embedding quality of hydra is competitive with existing hyperbolic embedding methods, but achieved at substantially shorter computation time. An extended method, termed hydra+, outperforms existing methods in both computation time and embedding quality.
stat
Uniformly Valid Post-Regularization Confidence Regions for Many Functional Parameters in Z-Estimation Framework
In this paper we develop procedures to construct simultaneous confidence bands for $\tilde p$ potentially infinite-dimensional parameters after model selection for general moment condition models where $\tilde p$ is potentially much larger than the sample size of available data, $n$. This allows us to cover settings with functional response data where each of the $\tilde p$ parameters is a function. The procedure is based on the construction of score functions that satisfy certain orthogonality condition. The proposed simultaneous confidence bands rely on uniform central limit theorems for high-dimensional vectors (and not on Donsker arguments as we allow for $\tilde p \gg n$). To construct the bands, we employ a multiplier bootstrap procedure which is computationally efficient as it only involves resampling the estimated score functions (and does not require resolving the high-dimensional optimization problems). We formally apply the general theory to inference on regression coefficient process in the distribution regression model with a logistic link, where two implementations are analyzed in detail. Simulations and an application to real data are provided to help illustrate the applicability of the results.
stat
Optimal Clustering with Missing Values
Missing values frequently arise in modern biomedical studies due to various reasons, including missing tests or complex profiling technologies for different omics measurements. Missing values can complicate the application of clustering algorithms, whose goals are to group points based on some similarity criterion. A common practice for dealing with missing values in the context of clustering is to first impute the missing values, and then apply the clustering algorithm on the completed data. We consider missing values in the context of optimal clustering, which finds an optimal clustering operator with reference to an underlying random labeled point process (RLPP). We show how the missing-value problem fits neatly into the overall framework of optimal clustering by incorporating the missing value mechanism into the random labeled point process and then marginalizing out the missing-value process. In particular, we demonstrate the proposed framework for the Gaussian model with arbitrary covariance structures. Comprehensive experimental studies on both synthetic and real-world RNA-seq data show the superior performance of the proposed optimal clustering with missing values when compared to various clustering approaches. Optimal clustering with missing values obviates the need for imputation-based pre-processing of the data, while at the same time possessing smaller clustering errors.
stat
Long-Term Effect Estimation with Surrogate Representation
There are many scenarios where short- and long-term causal effects of an intervention are different. For example, low-quality ads may increase short-term ad clicks but decrease the long-term revenue via reduced clicks. This work, therefore, studies the problem of long-term effect where the outcome of primary interest, or primary outcome, takes months or even years to accumulate. The observational study of long-term effect presents unique challenges. First, the confounding bias causes large estimation error and variance, which can further accumulate towards the prediction of primary outcomes. Second, short-term outcomes are often directly used as the proxy of the primary outcome, i.e., the surrogate. Nevertheless, this method entails the strong surrogacy assumption that is often impractical. To tackle these challenges, we propose to build connections between long-term causal inference and sequential models in machine learning. This enables us to learn surrogate representations that account for the temporal unconfoundedness and circumvent the stringent surrogacy assumption by conditioning on the inferred time-varying confounders. Experimental results show that the proposed framework outperforms the state-of-the-art.
stat
Big Data and model-based survey sampling
Big Data are huge amounts of digital information that are automatically accrued or merged from several sources and rarely result from properly planned surveys. A Big Dataset is herein conceived of as a collection of information concerning a finite population. We suggest selecting a sample of observations to get the inferential goal. We assume a super-population model has generated the Big Dataset. With this assumption, we can apply the theory of optimal design to draw a sample from the Big Dataset that contains the majority of the information about the unknown parameters.
stat
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
The coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures in order to slow down the outbreak. Questions on whether governments have acted promptly enough, and whether lockdown measures can be lifted soon have since been central in public discourse. Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential for addressing these questions and informing governments on future policy directions. To this end, this paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context -- we treat each country as a distinct data point, and exploit variations of policies across countries to learn country-specific policy effects. Our model utilizes a two-layer Gaussian process (GP) prior -- the lower layer uses a compartmental SEIR (Susceptible, Exposed, Infected, Recovered) model as a prior mean function with "country-and-policy-specific" parameters that capture fatality curves under "counterfactual" policies within each country, whereas the upper layer is shared across all countries, and learns lower-layer SEIR parameters as a function of a country's features and its policy indicators. Our model combines the solid mechanistic foundations of SEIR models (Bayesian priors) with the flexible data-driven modeling and gradient-based optimization routines of machine learning (Bayesian posteriors) -- i.e., the entire model is trained end-to-end via stochastic variational inference. We compare the projections of COVID-19 fatalities by our model with other models listed by the Center for Disease Control (CDC), and provide scenario analyses for various lockdown and reopening strategies highlighting their impact on COVID-19 fatalities.
stat
ARIMA forecasting of COVID-19 incidence in Italy, Russia, and the USA
The novel Coronavirus disease (COVID-19) is a severe respiratory infection that officially occurred in Wuhan, China, in December 2019. In late February, the disease began to spread quickly across the world, causing serious health, social, and economic emergencies. This paper aims to forecast the short to medium-term incidence of COVID-19 epidemic through the medium of an autoregressive integrated moving average (ARIMA) model, applied to Italy, Russia, and the USA The analysis is carried out on the number of new daily confirmed COVID-19 cases, collected by Worldometer website. The best ARIMA models are Italy (4,2,4), Russia (1,2,1), and the USA (6,2,3). The results show that: i) ARIMA models are reliable enough when new daily cases begin to stabilize; ii) Italy, the USA, and Russia reached the peak of COVID-19 infections in mid-April, mid-May, and late May, respectively; and iii) Russia and the USA will require much more time than Italy to drop COVID-19 cases near zero. This may suggest the importance of the application of quick and effective lockdown measures, which have been relatively stricter in Italy. Therefore, even if the results should be interpreted with caution, ARIMA models seem to be a good tool that can help the health authorities to monitor the diffusion of the outbreak.
stat
Distributed estimation of principal support vector machines for sufficient dimension reduction
The principal support vector machines method (Li et al., 2011) is a powerful tool for sufficient dimension reduction that replaces original predictors with their low-dimensional linear combinations without loss of information. However, the computational burden of the principal support vector machines method constrains its use for massive data. To address this issue, we in this paper propose two distributed estimation algorithms for fast implementation when the sample size is large. Both the two distributed sufficient dimension reduction estimators enjoy the same statistical efficiency as merging all the data together, which provides rigorous statistical guarantees for their application to large scale datasets. The two distributed algorithms are further adapt to principal weighted support vector machines (Shin et al., 2016) for sufficient dimension reduction in binary classification. The statistical accuracy and computational complexity of our proposed methods are examined through comprehensive simulation studies and a real data application with more than 600000 samples.
stat
To Aid Scientific Inference, Emphasize Unconditional Descriptions of Statistics
We have elsewhere reviewed proposals to reform terminology and improve interpretations of conventional statistics by emphasizing logical and information concepts over probability concepts. We here give detailed reasons and methods for reinterpreting statistics (including but not limited to) P-values and interval estimates in unconditional terms, which describe compatibility of observations with an entire set of analysis assumptions, rather than just a narrow target hypothesis. Such reinterpretations help avoid overconfident inferences whenever there is uncertainty about the assumptions used to derive and compute the statistical results. Examples of such assumptions include not only standard statistical modeling assumptions, but also assumptions about absence of systematic errors, protocol violations, and data corruption. Unconditional descriptions introduce uncertainty about such assumptions directly into statistical presentations of results, rather than leaving that only to the informal discussion that ensues. We thus view unconditional description as a vital component of good statistical training and presentation.
stat
Boltzmann Generators -- Sampling Equilibrium States of Many-Body Systems with Deep Learning
Computing equilibrium states in condensed-matter many-body systems, such as solvated proteins, is a long-standing challenge. Lacking methods for generating statistically independent equilibrium samples in "one shot", vast computational effort is invested for simulating these system in small steps, e.g., using Molecular Dynamics. Combining deep learning and statistical mechanics, we here develop Boltzmann Generators, that are shown to generate unbiased one-shot equilibrium samples of representative condensed matter systems and proteins. Boltzmann Generators use neural networks to learn a coordinate transformation of the complex configurational equilibrium distribution to a distribution that can be easily sampled. Accurate computation of free energy differences and discovery of new configurations are demonstrated, providing a statistical mechanics tool that can avoid rare events during sampling without prior knowledge of reaction coordinates.
stat
Optimal designs for some bivariate cokriging models
This article focuses on the estimation and design aspects of a bivariate collocated cokriging experiment. For a large class of covariance matrices a linear dependency criterion is identified, which allows the best linear unbiased estimator of the primary variable in a bivariate collocated cokriging setup to reduce to a univariate kriging estimator. Exact optimal designs for efficient prediction for such simple and ordinary cokriging models, with one dimensional inputs are determined. Designs are found by minimizing the maximum and integrated prediction variance. For simple and ordinary cokriging models with known covariance parameters, the equispaced design is shown to be optimal for both criterion functions. The more realistic scenario of unknown covariance parameters is addressed by assuming prior distributions on the parameter vector, thus adopting a Bayesian approach to the design problem. The equispaced design is proved to be the Bayesian optimal design for both criteria. The work is motivated by designing an optimal water monitoring system for an Indian river.
stat
Geometric Losses for Distributional Learning
Building upon recent advances in entropy-regularized optimal transport, and upon Fenchel duality between measures and continuous functions , we propose a generalization of the logistic loss that incorporates a metric or cost between classes. Unlike previous attempts to use optimal transport distances for learning, our loss results in unconstrained convex objective functions, supports infinite (or very large) class spaces, and naturally defines a geometric generalization of the softmax operator. The geometric properties of this loss make it suitable for predicting sparse and singular distributions, for instance supported on curves or hyper-surfaces. We study the theoretical properties of our loss and show-case its effectiveness on two applications: ordinal regression and drawing generation.
stat
Privacy-preserving Q-Learning with Functional Noise in Continuous State Spaces
We consider differentially private algorithms for reinforcement learning in continuous spaces, such that neighboring reward functions are indistinguishable. This protects the reward information from being exploited by methods such as inverse reinforcement learning. Existing studies that guarantee differential privacy are not extendable to infinite state spaces, as the noise level to ensure privacy will scale accordingly to infinity. Our aim is to protect the value function approximator, without regard to the number of states queried to the function. It is achieved by adding functional noise to the value function iteratively in the training. We show rigorous privacy guarantees by a series of analyses on the kernel of the noise space, the probabilistic bound of such noise samples, and the composition over the iterations. We gain insight into the utility analysis by proving the algorithm's approximate optimality when the state space is discrete. Experiments corroborate our theoretical findings and show improvement over existing approaches.
stat