title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Geographically Weighted Cox Regression for Prostate Cancer Survival Data in Louisiana
The Cox proportional hazard model is one of the most popular tools in analyzing time-to-event data in public health studies. When outcomes observed in clinical data from different regions yield a varying pattern correlated with location, it is often of great interest to investigate spatially varying effects of covariates. In this paper, we propose a geographically weighted Cox regression model for sparse spatial survival data. In addition, a stochastic neighborhood weighting scheme is introduced at the county level. Theoretical properties of the proposed geographically weighted estimators are examined in detail. A model selection scheme based on the Takeuchi's model robust information criteria (TIC) is discussed. Extensive simulation studies are carried out to examine the empirical performance of the proposed methods. We further apply the proposed methodology to analyze real data on prostate cancer from the Surveillance, Epidemiology, and End Results cancer registry for the state of Louisiana.
stat
Optimal Training of Fair Predictive Models
Recently there has been sustained interest in modifying prediction algorithms to satisfy fairness constraints. These constraints are typically complex nonlinear functionals of the observed data distribution. Focusing on the causal constraints proposed by Nabi and Shpitser (2018), we introduce new theoretical results and optimization techniques to make model training easier and more accurate. Specifically, we show how to reparameterize the observed data likelihood such that fairness constraints correspond directly to parameters that appear in the likelihood, transforming a complex constrained optimization objective into a simple optimization problem with box constraints. We also exploit methods from empirical likelihood theory in statistics to improve predictive performance, without requiring parametric models for high-dimensional feature vectors.
stat
Generalized Poisson Difference Autoregressive Processes
This paper introduces a new stochastic process with values in the set Z of integers with sign. The increments of process are Poisson differences and the dynamics has an autoregressive structure. We study the properties of the process and exploit the thinning representation to derive stationarity conditions and the stationary distribution of the process. We provide a Bayesian inference method and an efficient posterior approximation procedure based on Monte Carlo. Numerical illustrations on both simulated and real data show the effectiveness of the proposed inference.
stat
A Probabilistic Approach to Identifying Run Scoring Advantage in the Order of Playing Cricket
In the game of cricket, the result of coin toss is assumed to be one of the determinants of match outcome. The decision to bat first after winning the toss is often taken to make the best use of superior pitch conditions and set a big target for the opponent. However, the opponent may fail to show their natural batting performance in the second innings due to a number of factors, including deteriorated pitch conditions and excessive pressure of chasing a high target score. The advantage of batting first has been highlighted in the literature and expert opinions, however, the effect of batting and bowling order on match outcome has not been investigated well enough to recommend a solution to any potential bias. This study proposes a probability theory-based model to study venue-specific scoring and chasing characteristics of teams under different match outcomes. A total of 1117 one-day international matches held in ten popular venues are analyzed to show substantially high scoring advantage and likelihood when the winning team bat in the first innings. Results suggest that the same 'bat-first' winning team is very unlikely to score or chase such a high score if they were to bat in the second innings. Therefore, the coin toss decision may favor one team over the other. A Bayesian model is proposed to revise the target score for each venue such that the winning and scoring likelihood is equal regardless of the toss decision. The data and source codes have been shared publicly for future research in creating competitive match outcomes by eliminating the advantage of batting order in run scoring.
stat
Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network
Overparametrized neural networks trained by gradient descent (GD) can provably overfit any training data. However, the generalization guarantee may not hold for noisy data. From a nonparametric perspective, this paper studies how well overparametrized neural networks can recover the true target function in the presence of random noises. We establish a lower bound on the $L_2$ estimation error with respect to the GD iteration, which is away from zero without a delicate choice of early stopping. In turn, through a comprehensive analysis of $\ell_2$-regularized GD trajectories, we prove that for overparametrized one-hidden-layer ReLU neural network with the $\ell_2$ regularization: (1) the output is close to that of the kernel ridge regression with the corresponding neural tangent kernel; (2) minimax {optimal} rate of $L_2$ estimation error is achieved. Numerical experiments confirm our theory and further demonstrate that the $\ell_2$ regularization approach improves the training robustness and works for a wider range of neural networks.
stat
Bayesian Neural Network Priors Revisited
Isotropic Gaussian priors are the de facto standard for modern Bayesian neural network inference. However, such simplistic priors are unlikely to either accurately reflect our true beliefs about the weight distributions, or to give optimal performance. We study summary statistics of neural network weights in different networks trained using SGD. We find that fully connected networks (FCNNs) display heavy-tailed weight distributions, while convolutional neural network (CNN) weights display strong spatial correlations. Building these observations into the respective priors leads to improved performance on a variety of image classification datasets. Moreover, we find that these priors also mitigate the cold posterior effect in FCNNs, while in CNNs we see strong improvements at all temperatures, and hence no reduction in the cold posterior effect.
stat
Clustering of Big Data with Mixed Features
Clustering large, mixed data is a central problem in data mining. Many approaches adopt the idea of k-means, and hence are sensitive to initialisation, detect only spherical clusters, and require a priori the unknown number of clusters. We here develop a new clustering algorithm for large data of mixed type, aiming at improving the applicability and efficiency of the peak-finding technique. The improvements are threefold: (1) the new algorithm is applicable to mixed data; (2) the algorithm is capable of detecting outliers and clusters of relatively lower density values; (3) the algorithm is competent at deciding the correct number of clusters. The computational complexity of the algorithm is greatly reduced by applying a fast k-nearest neighbors method and by scaling down to component sets. We present experimental results to verify that our algorithm works well in practice. Keywords: Clustering; Big Data; Mixed Attribute; Density Peaks; Nearest-Neighbor Graph; Conductance.
stat
Instance-dependent $\ell_\infty$-bounds for policy evaluation in tabular reinforcement learning
Markov reward processes (MRPs) are used to model stochastic phenomena arising in operations research, control engineering, robotics, and artificial intelligence, as well as communication and transportation networks. In many of these cases, such as in the policy evaluation problem encountered in reinforcement learning, the goal is to estimate the long-term value function of such a process without access to the underlying population transition and reward functions. Working with samples generated under the synchronous model, we study the problem of estimating the value function of an infinite-horizon, discounted MRP on finitely many states in the $\ell_\infty$-norm. We analyze both the standard plug-in approach to this problem and a more robust variant, and establish non-asymptotic bounds that depend on the (unknown) problem instance, as well as data-dependent bounds that can be evaluated based on the observations of state-transitions and rewards. We show that these approaches are minimax-optimal up to constant factors over natural sub-classes of MRPs. Our analysis makes use of a leave-one-out decoupling argument tailored to the policy evaluation problem, one which may be of independent interest.
stat
Centralizing-Unitizing Standardized High-Dimensional Directional Statistics and Its Applications in Finance
Cross-sectional "Information Coefficient" (IC) is a widely and deeply accepted measure in portfolio management. The paper gives an insight into IC in view of high-dimensional directional statistics: IC is a linear operator on the components of a centralizing-unitizing standardized random vector of next-period cross-sectional returns. Our primary research first clearly defines IC with the high-dimensional directional statistics, discussing its first two moments. We derive the closed-form expressions of the directional statistics' covariance matrix and IC's variance in a homoscedastic condition. Also, we solve the optimization of IC's maximum expectation and minimum variance. Simulation intuitively characterizes the standardized directional statistics and IC's p.d.f.. The empirical analysis of the Chinese stock market uncovers interesting facts about the standardized vectors of cross-sectional returns and helps obtain the time series of the measure in the real market. The paper discovers a potential application of directional statistics in finance, proves explicit results of the projected normal distribution, and reveals IC's nature.
stat
A fresh look at introductory data science
The proliferation of vast quantities of available datasets that are large and complex in nature has challenged universities to keep up with the demand for graduates trained in both the statistical and the computational set of skills required to effectively plan, acquire, manage, analyze, and communicate the findings of such data. To keep up with this demand, attracting students early on to data science as well as providing them a solid foray into the field becomes increasingly important. We present a case study of an introductory undergraduate course in data science that is designed to address these needs. Offered at Duke University, this course has no pre-requisites and serves a wide audience of aspiring statistics and data science majors as well as humanities, social sciences, and natural sciences students. We discuss the unique set of challenges posed by offering such a course and in light of these challenges, we present a detailed discussion into the pedagogical design elements, content, structure, computational infrastructure, and the assessment methodology of the course. We also offer a repository containing all teaching materials that are open-source, along with supplemental materials and the R code for reproducing the figures found in the paper.
stat
Assumption-Lean Analysis of Cluster Randomized Trials in Infectious Diseases for Intent-to-Treat Effects and Spillover Effects Among A Vulnerable Subpopulation
Cluster randomized trials (CRTs) are a popular design to study the effect of interventions in infectious disease settings. However, standard analysis of CRTs primarily relies on strong parametric methods, usually a Normal mixed effect models to account for the clustering structure, and focus on the overall intent-to-treat (ITT) effect to evaluate effectiveness. The paper presents two methods to analyze two types of effects in CRTs, the overall and heterogeneous ITT effects and the spillover effect among never-takers who cannot or refuse to take the intervention. For the ITT effects, we make a modest extension of an existing method where we do not impose parametric models or asymptotic restrictions on cluster size. For the spillover effect among never-takers, we propose a new bound-based method that uses pre-treatment covariates, classification algorithms, and a linear program to obtain sharp bounds. A key feature of our method is that the bounds can become dramatically narrower as the classification algorithm improves and the method may also be useful for studies of partial identification with instrumental variables. We conclude by reanalyzing a CRT studying the effect of face masks and hand sanitizers on transmission of 2008 interpandemic influenza in Hong Kong.
stat
Where to find needles in a haystack?
In many existing methods in multiple comparison, one starts with either Fisher's p-values or the local fdr scores. The former one, with a usual definition as the tail probability exceeding the observed test statistic under the null distribution, fails to use the information from the alternative hypothesis and the targeted region of signals could be completely wrong especially when the likelihood ratio function is not monotone. The local fdr based approaches, usually relying on the density functions, are optimal oracally. However, the targeted region of the signals of the data-driven version is problematic because of the slow convergence of the non-parametric density estimation especially on the boundaries. In this paper, we propose a new method: Cdf and Local fdr Assisted multiple Testing method (CLAT), which is optimal for cases when the p-values based method are not. Additionally, the data-driven version only relies on the estimation of the cumulative distribution function and converges to the oracle version quickly. Both simulations and real data analysis demonstrate the superior performance of the proposed method than the existing ones. Furthermore, the computation is instantaneous based on a novel algorithm and is scalable to the large data set.
stat
Parameter elimination in particle Gibbs sampling
Bayesian inference in state-space models is challenging due to high-dimensional state trajectories. A viable approach is particle Markov chain Monte Carlo, combining MCMC and sequential Monte Carlo to form "exact approximations" to otherwise intractable MCMC methods. The performance of the approximation is limited to that of the exact method. We focus on particle Gibbs and particle Gibbs with ancestor sampling, improving their performance beyond that of the underlying Gibbs sampler (which they approximate) by marginalizing out one or more parameters. This is possible when the parameter prior is conjugate to the complete data likelihood. Marginalization yields a non-Markovian model for inference, but we show that, in contrast to the general case, this method still scales linearly in time. While marginalization can be cumbersome to implement, recent advances in probabilistic programming have enabled its automation. We demonstrate how the marginalized methods are viable as efficient inference backends in probabilistic programming, and demonstrate with examples in ecology and epidemiology.
stat
A robust nonlinear mixed-effects model for COVID-19 deaths data
The analysis of complex longitudinal data such as COVID-19 deaths is challenging due to several inherent features: (i) Similarly-shaped profiles with different decay patterns; (ii) Unexplained variation among repeated measurements within each country, these repeated measurements may be viewed as clustered data since they are taken on the same country at roughly the same time; (iii) Skewness, outliers or skew-heavy-tailed noises are possibly embodied within response variables. This article formulates a robust nonlinear mixed-effects model based in the class of scale mixtures of skew-normal distributions for modeling COVID-19 deaths, which allows the analysts to model such data in the presence of the above described features simultaneously. An efficient EM-type algorithm is proposed to carry out maximum likelihood estimation of model parameters. The bootstrap method is used to determine inherent characteristics of the nonlinear individual profiles such as confidence interval of the predicted deaths and fitted curves. The target is to model COVID-19 deaths curves from some Latin American countries since this region is the new epicenter of the disease. Moreover, since a mixed-effect framework borrows information from the population-average effects, in our analysis we include some countries from Europe and North America that are in a more advanced stage of their COVID-19 deaths curve.
stat
Transformed Central Quantile Subspace
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. However, application of QR can become very challenging when dealing with high-dimensional data, making it necessary to use dimension reduction techniques. Existing dimension reduction techniques focus on the entire conditional distribution. We turn our attention to dimension reduction techniques for conditional quantiles and introduce a method that serves as an intermediate step between linear and nonlinear dimension reduction. The idea is to apply existing linear dimension reduction techniques on the transformed predictors. The proposed estimator, which is shown to be root-n consistent, is demonstrated through simulation examples and real data applications. Our results suggest that this method outperforms linear dimension reduction for conditional quantiles.
stat
Estimation of Spatial Deformation for Nonstationary Processes via Variogram Alignment
In modeling spatial processes, a second-order stationarity assumption is often made. However, for spatial data observed on a vast domain, the covariance function often varies over space, leading to a heterogeneous spatial dependence structure, therefore requiring nonstationary modeling. Spatial deformation is one of the main methods for modeling nonstationary processes, assuming the nonstationary process has a stationary counterpart in the deformed space. The estimation of the deformation function poses severe challenges. Here, we introduce a novel approach for nonstationary geostatistical modeling, using space deformation, when a single realization of the spatial process is observed. Our method is based, at a fundamental level, on aligning regional variograms, where warping variability of the distance from each subregion explains the spatial nonstationarity. We propose to use multi-dimensional scaling to map the warped distances to spatial locations. We asses the performance of our new method using multiple simulation studies. Additionally, we illustrate our methodology on precipitation data to estimate the heterogeneous spatial dependence and to perform spatial predictions.
stat
A review and evaluation of secondary school accountability in England: Statistical strengths, weaknesses, and challenges for 'Progress 8'
School performance measures are published annually in England to hold schools to account and to support parental school choice. This article reviews and evaluates the Progress 8 secondary school accountability system for state-funded schools. We assess the statistical strengths and weaknesses of Progress 8 relating to: choice of pupil outcome attainment measures; potential adjustments for pupil input attainment and background characteristics; decisions around which schools and pupils are excluded from the measure; presentation of Progress 8 to users, choice of statistical model, and calculation of statistical uncertainty; and issues related to the volatility of school performance over time, including scope for reporting multi-year averages. We then discuss challenges for Progress 8 raised by the COVID-19 pandemic. Six simple recommendations follow to improve Progress 8 and school accountability in England.
stat
Granger Causality: A Review and Recent Advances
Introduced more than a half century ago, Granger causality has become a popular tool for analyzing time series data in many application domains, from economics and finance to genomics and neuroscience. Despite this popularity, the validity of this notion for inferring causal relationships among time series has remained the topic of continuous debate. Moreover, while the original definition was general, limitations in computational tools have primarily limited the applications of Granger causality to simple bivariate vector auto-regressive processes or pairwise relationships among a set of variables. Starting with a review of early developments and debates, this paper discusses recent advances that address various shortcomings of the earlier approaches, from models for high-dimensional time series to more recent developments that account for nonlinear and non-Gaussian observations and allow for sub-sampled and mixed frequency time series.
stat
Regularized ERM on random subspaces
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystr\"om approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This extension requires developing new proofs, that use different technical tools. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance. Theoretical results are illustrated with simple numerical experiments.
stat
Identify treatment effect patterns for personalised decisions
In personalised decision making, evidence is required to determine suitable actions for individuals. Such evidence can be obtained by identifying treatment effect heterogeneity in different subgroups of the population. In this paper, we design a new type of pattern, treatment effect pattern to represent and discover treatment effect heterogeneity from data for determining whether a treatment will work for an individual or not. Our purpose is to use the computational power to find the most specific and relevant conditions for individuals with respect to a treatment or an action to assist with personalised decision making. Most existing work on identifying treatment effect heterogeneity takes a top-down or partitioning based approach to search for subgroups with heterogeneous treatment effects. We propose a bottom-up generalisation algorithm to obtain the most specific patterns that fit individual circumstances the best for personalised decision making. For the generalisation, we follow a consistency driven strategy to maintain inner-group homogeneity and inter-group heterogeneity of treatment effects. We also employ graphical causal modelling technique to identify adjustment variables for reliable treatment effect pattern discovery. Our method can find the treatment effect patterns reliably as validated by the experiments. The method is faster than the two existing machine learning methods for heterogeneous treatment effect identification and it produces subgroups with higher inner-group treatment effect homogeneity.
stat
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Gaussian processes (DGPs) have struggled for relevance in applications due to the challenges and cost associated with Bayesian inference. In this paper we propose a sparse variational approximation for DGPs for which the approximate posterior mean has the same mathematical structure as a Deep Neural Network (DNN). We make the forward pass through a DGP equivalent to a ReLU DNN by finding an interdomain transformation that represents the GP posterior mean as a sum of ReLU basis functions. This unification enables the initialisation and training of the DGP as a neural network, leveraging the well established practice in the deep learning community, and so greatly aiding the inference task. The experiments demonstrate improved accuracy and faster training compared to current DGP methods, while retaining favourable predictive uncertainties.
stat
Geodesically parameterized covariance estimation
Statistical modeling of spatiotemporal phenomena often requires selecting a covariance matrix from a covariance class. Yet standard parametric covariance families can be insufficiently flexible for practical applications, while non-parametric approaches may not easily allow certain kinds of prior knowledge to be incorporated. We propose instead to build covariance families out of geodesic curves. These covariances offer more flexibility for problem-specific tailoring than classical parametric families, and are preferable to simple convex combinations. Once the covariance family has been chosen, one typically needs to select a representative member by solving an optimization problem, e.g., by maximizing the likelihood of a data set. We consider instead a differential geometric interpretation of this problem: minimizing the geodesic distance to a sample covariance matrix ("natural projection"). Our approach is consistent with the notion of distance employed to build the covariance family and does not require assuming a particular probability distribution for the data. We show that natural projection and maximum likelihood estimation within the covariance family are locally equivalent up to second order. We also demonstrate that natural projection may yield more accurate estimates with noise-corrupted data.
stat
Variable screening based on Gaussian Centered L-moments
An important challenge in big data is identification of important variables. In this paper, we propose methods of discovering variables with non-standard univariate marginal distributions. The conventional moments-based summary statistics can be well-adopted for that purpose, but their sensitivity to outliers can lead to selection based on a few outliers rather than distributional shape such as bimodality. To address this type of non-robustness, we consider the L-moments. Using these in practice, however, has a limitation because they do not take zero values at the Gaussian distributions to which the shape of a marginal distribution is most naturally compared. As a remedy, we propose Gaussian Centered L-moments which share advantages of the L-moments but have zeros at the Gaussian distributions. The strength of Gaussian Centered L-moments over other conventional moments is shown in theoretical and practical aspects such as their performances in screening important genes in cancer genetics data.
stat
Bayesian Context Trees: Modelling and exact inference for discrete time series
We develop a new Bayesian modelling framework for the class of higher-order, variable-memory Markov chains, and introduce an associated collection of methodological tools for exact inference with discrete time series. We show that a version of the context tree weighting algorithm can compute the prior predictive likelihood exactly (averaged over both models and parameters), and two related algorithms are introduced, which identify the a posteriori most likely models and compute their exact posterior probabilities. All three algorithms are deterministic and have linear-time complexity. A family of variable-dimension Markov chain Monte Carlo samplers is also provided, facilitating further exploration of the posterior. The performance of the proposed methods in model selection, Markov order estimation and prediction is illustrated through simulation experiments and real-world applications with data from finance, genetics, neuroscience, and animal communication.
stat
Permutation test for the multivariate coefficient of variation in factorial designs
New inference methods for the multivariate coefficient of variation and its reciprocal, the standardized mean, are presented. While there are various testing procedures for both parameters in the univariate case, it is less known how to do inference in the multivariate setting appropriately. There are some existing procedures but they rely on restrictive assumptions on the underlying distributions. We tackle this problem by applying Wald-type statistics in the context of general, potentially heteroscedastic factorial designs. In addition to the $k$-sample case, higher-way layouts can be incorporated into this framework allowing the discussion of main and interaction effects. The resulting procedures are shown to be asymptotically valid under the null hypothesis and consistent under general alternatives. To improve the finite sample performance, we suggest permutation versions of the tests and shown that the tests' asymptotic properties can be transferred to them. An exhaustive simulation study compares the new tests, their permutation counterparts and existing methods. To further analyse the differences between the tests, we conduct two illustrative real data examples.
stat
Linking Bank Clients using Graph Neural Networks Powered by Rich Transactional Data
Financial institutions obtain enormous amounts of data about user transactions and money transfers, which can be considered as a large graph dynamically changing in time. In this work, we focus on the task of predicting new interactions in the network of bank clients and treat it as a link prediction problem. We propose a new graph neural network model, which uses not only the topological structure of the network but rich time-series data available for the graph nodes and edges. We evaluate the developed method using the data provided by a large European bank for several years. The proposed model outperforms the existing approaches, including other neural network models, with a significant gap in ROC AUC score on link prediction problem and also allows to improve the quality of credit scoring.
stat
Metropolized Knockoff Sampling
Model-X knockoffs is a wrapper that transforms essentially any feature importance measure into a variable selection algorithm, which discovers true effects while rigorously controlling the expected fraction of false positives. A frequently discussed challenge to apply this method is to construct knockoff variables, which are synthetic variables obeying a crucial exchangeability property with the explanatory variables under study. This paper introduces techniques for knockoff generation in great generality: we provide a sequential characterization of all possible knockoff distributions, which leads to a Metropolis-Hastingsformulation of an exact knockoff sampler. We further show how to use conditional independence structure to speed up computations. Combining these two threads, we introduce an explicit set of sequential algorithms and empirically demonstrate their effectiveness. Our theoretical analysis proves that our algorithms achieve near-optimal computational complexity in certain cases. The techniques we develop are sufficiently rich to enable knockoff sampling in challenging models including cases where the covariates are continuous and heavy-tailed, and follow a graphical model such as the Ising model.
stat
Sparse Structures for Multivariate Extremes
Extreme value statistics provides accurate estimates for the small occurrence probabilities of rare events. While theory and statistical tools for univariate extremes are well-developed, methods for high-dimensional and complex data sets are still scarce. Appropriate notions of sparsity and connections to other fields such as machine learning, graphical models and high-dimensional statistics have only recently been established. This article reviews the new domain of research concerned with the detection and modeling of sparse patterns in rare events. We first describe the different forms of extremal dependence that can arise between the largest observations of a multivariate random vector. We then discuss the current research topics including clustering, principal component analysis and graphical modeling for extremes. Identification of groups of variables which can be concomitantly extreme is also addressed. The methods are illustrated with an application to flood risk assessment.
stat
Testing Mediation Effects Using Logic of Boolean Matrices
Mediation analysis is becoming an increasingly important tool in scientific studies. A central question in high-dimensional mediation analysis is to infer the significance of individual mediators. The main challenge is the sheer number of possible paths that go through all combinations of mediators. Most existing mediation inference solutions either explicitly impose that the mediators are conditionally independent given the exposure, or ignore any potential directed paths among the mediators. In this article, we propose a novel hypothesis testing procedure to evaluate individual mediation effects, while taking into account potential interactions among the mediators. Our proposal thus fills a crucial gap, and greatly extends the scope of existing mediation tests. Our key idea is to construct the test statistic using the logic of Boolean matrices, which enables us to establish the proper limiting distribution under the null hypothesis. We further employ screening, data splitting, and decorrelated estimation to reduce the bias and increase the power of the test. We show our test can control both the size and false discovery rate asymptotically, and the power of the test approaches one, meanwhile allowing the number of mediators to diverge to infinity with the sample size. We demonstrate the efficacy of our method through both simulations and a neuroimaging study of Alzheimer's disease.
stat
Combining Non-probability and Probability Survey Samples Through Mass Imputation
This paper presents theoretical results on combining non-probability and probability survey samples through mass imputation, an approach originally proposed by Rivers (2007) as sample matching without rigorous theoretical justification. Under suitable regularity conditions, we establish the consistency of the mass imputation estimator and derive its asymptotic variance formula. Variance estimators are developed using either linearization or bootstrap. Finite sample performances of the mass imputation estimator are investigated through simulation studies and an application to analyzing a non-probability sample collected by the Pew Research Centre.
stat
Bayesian Regression and Classification Using Gaussian Process Priors Indexed by Probability Density Functions
In this paper, we introduce the notion of Gaussian processes indexed by probability density functions for extending the Mat\'ern family of covariance functions. We use some tools from information geometry to improve the efficiency and the computational aspects of the Bayesian learning model. We particularly show how a Bayesian inference with a Gaussian process prior (covariance parameters estimation and prediction) can be put into action on the space of probability density functions. Our framework has the capacity of classifiying and infering on data observations that lie on nonlinear subspaces. Extensive experiments on multiple synthetic, semi-synthetic and real data demonstrate the effectiveness and the efficiency of the proposed methods in comparison with current state-of-the-art methods.
stat
Rapid Numerical Approximation Method for Integrated Covariance Functions Over Irregular Data Regions
In many practical applications, spatial data are often collected at areal levels (i.e., block data) and the inferences and predictions about the variable at points or blocks different from those at which it has been observed typically depend on integrals of the underlying continuous spatial process. In this paper we describe a method based on Fourier transform by which multiple integrals of covariance functions over irregular data regions may be numerically approximated with the same level of accuracy to traditional methods, but at a greatly reduced computational expense.
stat
Incertitudes et mesures
Educational guide focused on the statistical treatment of measurement uncertainties. The conditions of application of current practices are detailed and precised: mean values, central limit theorem, linear regression. The last two chapters are devoted to an introduction to the Bayesian inference and a series of application cases: machine failure date, elimination of a background noise, linear adjustment with elimination of outliers.
stat
Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness
Current adoption of machine learning in industrial, societal and economical activities has raised concerns about the fairness, equity and ethics of automated decisions. Predictive models are often developed using biased datasets and thus retain or even exacerbate biases in their decisions and recommendations. Removing the sensitive covariates, such as gender or race, is insufficient to remedy this issue since the biases may be retained due to other related covariates. We present a regularization approach to this problem that trades off predictive accuracy of the learned models (with respect to biased labels) for the fairness in terms of statistical parity, i.e. independence of the decisions from the sensitive covariates. In particular, we consider a general framework of regularized empirical risk minimization over reproducing kernel Hilbert spaces and impose an additional regularizer of dependence between predictors and sensitive covariates using kernel-based measures of dependence, namely the Hilbert-Schmidt Independence Criterion (HSIC) and its normalized version. This approach leads to a closed-form solution in the case of squared loss, i.e. ridge regression. Moreover, we show that the dependence regularizer has an interpretation as modifying the corresponding Gaussian process (GP) prior. As a consequence, a GP model with a prior that encourages fairness to sensitive variables can be derived, allowing principled hyperparameter selection and studying of the relative relevance of covariates under fairness constraints. Experimental results in synthetic examples and in real problems of income and crime prediction illustrate the potential of the approach to improve fairness of automated decisions.
stat
Transfer Learning for High-dimensional Linear Regression: Prediction, Estimation, and Minimax Optimality
This paper considers the estimation and prediction of a high-dimensional linear regression in the setting of transfer learning, using samples from the target model as well as auxiliary samples from different but possibly related regression models. When the set of "informative" auxiliary samples is known, an estimator and a predictor are proposed and their optimality is established. The optimal rates of convergence for prediction and estimation are faster than the corresponding rates without using the auxiliary samples. This implies that knowledge from the informative auxiliary samples can be transferred to improve the learning performance of the target problem. In the case that the set of informative auxiliary samples is unknown, we propose a data-driven procedure for transfer learning, called Trans-Lasso, and reveal its robustness to non-informative auxiliary samples and its efficiency in knowledge transfer. The proposed procedures are demonstrated in numerical studies and are applied to a dataset concerning the associations among gene expressions. It is shown that Trans-Lasso leads to improved performance in gene expression prediction in a target tissue by incorporating the data from multiple different tissues as auxiliary samples.
stat
The Nu Class of Low-Degree-Truncated, Rational, Generalized Functions. I. IMSPE in Design of Computer Experiments: Integrals and Very-Low-N, Single-Factor, Free-Ranging Designs
We provide detailed algebra for determining the integrated mean-squared prediction error (IMSPE) of designs of computer experiments, with one factor and one or two points, under the exponential, Gaussian, or either of two Matern correlation functions. This algebra shall provide the basis for the identification of the IMSPE as a member of a special class of low-degree-truncated rational functions, which we name, here, the Nu class. We shall detail this function class in a series of papers, of which this is the first.
stat
Transformed Fay-Herriot Model with Measurement Error in Covariates
Statistical agencies are often asked to produce small area estimates (SAEs) for positively skewed variables. When domain sample sizes are too small to support direct estimators, effects of skewness of the response variable can be large. As such, it is important to appropriately account for the distribution of the response variable given available auxiliary information. Motivated by this issue and in order to stabilize the skewness and achieve normality in the response variable, we propose an area-level log-measurement error model on the response variable. Then, under our proposed modeling framework, we derive an empirical Bayes (EB) predictor of positive small area quantities subject to the covariates containing measurement error. We propose a corresponding mean squared prediction error (MSPE) of EB predictor using both a jackknife and a bootstrap method. We show that the order of the bias is $O(m^{-1})$, where $m$ is the number of small areas. Finally, we investigate the performance of our methodology using both design-based and model-based simulation studies.
stat
Particle filter with rejection control and unbiased estimator of the marginal likelihood
We consider the combined use of resampling and partial rejection control in sequential Monte Carlo methods, also known as particle filters. While the variance reducing properties of rejection control are known, there has not been (to the best of our knowledge) any work on unbiased estimation of the marginal likelihood (also known as the model evidence or the normalizing constant) in this type of particle filter. Being able to estimate the marginal likelihood without bias is highly relevant for model comparison, computation of interpretable and reliable confidence intervals, and in exact approximation methods, such as particle Markov chain Monte Carlo. In the paper we present a particle filter with rejection control that enables unbiased estimation of the marginal likelihood.
stat
Actions Speak Louder Than Goals: Valuing Player Actions in Soccer
Assessing the impact of the individual actions performed by soccer players during games is a crucial aspect of the player recruitment process. Unfortunately, most traditional metrics fall short in addressing this task as they either focus on rare actions like shots and goals alone or fail to account for the context in which the actions occurred. This paper introduces (1) a new language for describing individual player actions on the pitch and (2) a framework for valuing any type of player action based on its impact on the game outcome while accounting for the context in which the action happened. By aggregating soccer players' action values, their total offensive and defensive contributions to their team can be quantified. We show how our approach considers relevant contextual information that traditional player evaluation metrics ignore and present a number of use cases related to scouting and playing style characterization in the 2016/2017 and 2017/2018 seasons in Europe's top competitions.
stat
Any Target Function Exists in a Neighborhood of Any Sufficiently Wide Random Network: A Geometrical Perspective
It is known that any target function is realized in a sufficiently small neighborhood of any randomly connected deep network, provided the width (the number of neurons in a layer) is sufficiently large. There are sophisticated theories and discussions concerning this striking fact, but rigorous theories are very complicated. We give an elementary geometrical proof by using a simple model for the purpose of elucidating its structure. We show that high-dimensional geometry plays a magical role: When we project a high-dimensional sphere of radius 1 to a low-dimensional subspace, the uniform distribution over the sphere reduces to a Gaussian distribution of negligibly small covariances.
stat
Copula-based functional Bayes classification with principal components and partial least squares
We present a new functional Bayes classifier that uses principal component (PC) or partial least squares (PLS) scores from the common covariance function, that is, the covariance function marginalized over groups. When the groups have different covariance functions, the PC or PLS scores need not be independent or even uncorrelated. We use copulas to model the dependence. Our method is semiparametric; the marginal densities are estimated nonparametrically by kernel smoothing and the copula is modeled parametrically. We focus on Gaussian and t-copulas, but other copulas could be used. The strong performance of our methodology is demonstrated through simulation, real data examples, and asymptotic properties.
stat
Fast Adaptation with Linearized Neural Networks
The inductive biases of trained neural networks are difficult to understand and, consequently, to adapt to new settings. We study the inductive biases of linearizations of neural networks, which we show to be surprisingly good summaries of the full network functions. Inspired by this finding, we propose a technique for embedding these inductive biases into Gaussian processes through a kernel designed from the Jacobian of the network. In this setting, domain adaptation takes the form of interpretable posterior inference, with accompanying uncertainty estimation. This inference is analytic and free of local optima issues found in standard techniques such as fine-tuning neural network weights to a new task. We develop significant computational speed-ups based on matrix multiplies, including a novel implementation for scalable Fisher vector products. Our experiments on both image classification and regression demonstrate the promise and convenience of this framework for transfer learning, compared to neural network fine-tuning. Code is available at https://github.com/amzn/xfer/tree/master/finite_ntk.
stat
Graphical model inference: Sequential Monte Carlo meets deterministic approximations
Approximate inference in probabilistic graphical models (PGMs) can be grouped into deterministic methods and Monte-Carlo-based methods. The former can often provide accurate and rapid inferences, but are typically associated with biases that are hard to quantify. The latter enjoy asymptotic consistency, but can suffer from high computational costs. In this paper we present a way of bridging the gap between deterministic and stochastic inference. Specifically, we suggest an efficient sequential Monte Carlo (SMC) algorithm for PGMs which can leverage the output from deterministic inference methods. While generally applicable, we show explicitly how this can be done with loopy belief propagation, expectation propagation, and Laplace approximations. The resulting algorithm can be viewed as a post-correction of the biases associated with these methods and, indeed, numerical results show clear improvements over the baseline deterministic methods as well as over "plain" SMC.
stat
Qini-based Uplift Regression
Uplift models provide a solution to the problem of isolating the marketing effect of a campaign. For customer churn reduction, uplift models are used to identify the customers who are likely to respond positively to a retention activity only if targeted, and to avoid wasting resources on customers that are very likely to switch to another company. We introduce a Qini-based uplift regression model to analyze a large insurance company's retention marketing campaign. Our approach is based on logistic regression models. We show that a Qini-optimized uplift model acts as a regularizing factor for uplift, much as a penalized likelihood model does for regression. This results in interpretable parsimonious models with few relevant xplanatory variables. Our results show that performing Qini-based parameters estimation significantly improves the uplift models performance.
stat
Trading off Accuracy for Speedup: Multiplier Bootstraps for Subgraph Counts
We propose a new class of multiplier bootstraps for count functionals. We consider bootstrap procedures with linear and quadratic weights. These correspond to the first and second-order terms of the Hoeffding decomposition of the bootstrapped statistic arising from the multiplier bootstrap, respectively. We show that the quadratic bootstrap procedure achieves higher-order correctness for appropriately sparse graphs. The linear bootstrap procedure requires fewer estimated network statistics, leading to improved accuracy over its higher-order correct counterpart in sparser regimes. To improve the computational properties of the linear bootstrap further, we consider fast sketching methods to conduct approximate subgraph counting and establish consistency of the resulting bootstrap procedure. We complement our theoretical results with a simulation study and real data analysis and verify that our procedure offers state-of-the-art performance for several functionals.
stat
Semi-Structured Deep Distributional Regression: Combining Structured Additive Models and Deep Learning
Combining additive models and neural networks allows to broaden the scope of statistical regression and extends deep learning-based approaches by interpretable structured additive predictors at the same time. Existing approaches uniting the two modeling approaches are, however, limited to very specific combinations and, more importantly, involve an identifiability issue. As a consequence, interpretability and stable estimation is typically lost. We propose a general framework to combine structured regression models and deep neural networks into a unifying network architecture. To overcome the inherent identifiability issues between different model parts, we construct an orthogonalization cell that projects the deep neural network into the orthogonal complement of the statistical model predictor. This enables proper estimation of structured model parts and thereby interpretability. We demonstrate the framework's efficacy in numerical experiments and illustrate its special merits in benchmarks and real-world applications.
stat
Automatic Relevance Determination Bayesian Neural Networks for Credit Card Default Modelling
Credit risk modelling is an integral part of the global financial system. While there has been great attention paid to neural network models for credit default prediction, such models often lack the required interpretation mechanisms and measures of the uncertainty around their predictions. This work develops and compares Bayesian Neural Networks(BNNs) for credit card default modelling. This includes a BNNs trained by Gaussian approximation and the first implementation of BNNs trained by Hybrid Monte Carlo(HMC) in credit risk modelling. The results on the Taiwan Credit Dataset show that BNNs with Automatic Relevance Determination(ARD) outperform normal BNNs without ARD. The results also show that BNNs trained by Gaussian approximation display similar predictive performance to those trained by the HMC. The results further show that BNN with ARD can be used to draw inferences about the relative importance of different features thus critically aiding decision makers in explaining model output to consumers. The robustness of this result is reinforced by high levels of congruence between the features identified as important using the two different approaches for training BNNs.
stat
Sensor-based localization of epidemic sources on human mobility networks
We investigate the source detection problem in epidemiology, which is one of the most important issues for control of epidemics. Mathematically, we reformulate the problem as one of identifying the relevant component in a multivariate Gaussian mixture model. Focusing on the study of cholera and diseases with similar modes of transmission, we calibrate the parameters of our mixture model using human mobility networks within a stochastic, spatially explicit epidemiological model for waterborne disease. Furthermore, we adopt a Bayesian perspective, so that prior information on source location can be incorporated (e.g., reflecting the impact of local conditions). Posterior-based inference is performed, which permits estimates in the form of either individual locations or regions. Importantly, our estimator only requires first-arrival times of the epidemic by putative observers, typically located only at a small proportion of nodes. The proposed method is demonstrated within the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province of South Africa.
stat
An Automatic Relevance Determination Prior Bayesian Neural Network for Controlled Variable Selection
We present an Automatic Relevance Determination prior Bayesian Neural Network(BNN-ARD) weight l2-norm measure as a feature importance statistic for the model-x knockoff filter. We show on both simulated data and the Norwegian wind farm dataset that the proposed feature importance statistic yields statistically significant improvements relative to similar feature importance measures in both variable selection power and predictive performance on a real world dataset.
stat
Comparative Analysis of Machine Learning Approaches to Analyze and Predict the Covid-19 Outbreak
Background. Forecasting the time of forthcoming pandemic reduces the impact of diseases by taking precautionary steps such as public health messaging and raising the consciousness of doctors. With the continuous and rapid increase in the cumulative incidence of COVID-19, statistical and outbreak prediction models including various machine learning (ML) models are being used by the research community to track and predict the trend of the epidemic, and also in developing appropriate strategies to combat and manage its spread. Methods. In this paper, we present a comparative analysis of various ML approaches including Support Vector Machine, Random Forest, K-Nearest Neighbor and Artificial Neural Network in predicting the COVID-19 outbreak in the epidemiological domain. We first apply the autoregressive distributed lag (ARDL) method to identify and model the short and long-run relationships of the time-series COVID-19 datasets. That is, we determine the lags between a response variable and its respective explanatory time series variables as independent variables. Then, the resulting significant variables concerning their lags are used in the regression model selected by the ARDL for predicting and forecasting the trend of the epidemic. Results. Statistical measures i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for model accuracy. The values of MAPE for the best selected models for confirmed, recovered and deaths cases are 0.407, 0.094 and 0.124 respectively, which falls under the category of highly accurate forecasts. In addition, we computed fifteen days ahead forecast for the daily deaths, recover, and confirm patients and the cases fluctuated across time in all aspects. Besides, the results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.
stat
Group Testing for COVID-19: How to Stop Worrying and Test More
The corona virus disease 2019 (COVID-19) caused by the novel corona virus has an exponential rate of infection. COVID-19 is particularly notorious as the onset of symptoms in infected patients are usually delayed and there exists a large number of asymptomatic carriers. In order to prevent overwhelming of medical facilities and large fatality rate, early stage testing and diagnosis are key requirements. In this article, we discuss the methodologies from the group testing literature and its relevance to COVID-19 diagnosis. Specifically, we investigate the efficiency of group testing using polymerase chain reaction (PCR) for COVID-19. Group testing is a method in which multiple samples are pooled together in groups and fewer tests are performed on these groups to discern all the infected samples. We study the effect of dilution due to pooling in group testing and show that group tests can perform well even in the presence of dilution effects. We present multiple group testing algorithms that could reduce the number of tests performed for COVID-19 diagnosis. We analyze the efficiency of these tests and provide insights on their practical relevance. With the use of algorithms described here, test plans can be developed that can enable testing centers to increase the number of diagnosis performed without increasing the number of PCR tests. The codes for generating test plans are available online at [1].
stat
Clinical trials impacted by the COVID-19 pandemic: Adaptive designs to the rescue?
Very recently the new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified and the coronavirus disease 2019 (COVID-19) declared a pandemic by the World Health Organization. The pandemic has a number of consequences for the ongoing clinical trials in non-COVID-19 conditions. Motivated by four currently ongoing clinical trials in a variety of disease areas we illustrate the challenges faced by the pandemic and sketch out possible solutions including adaptive designs. Guidance is provided on (i) where blinded adaptations can help; (ii) how to achieve type I error rate control, if required; (iii) how to deal with potential treatment effect heterogeneity; (iv) how to utilize early readouts; and (v) how to utilize Bayesian techniques. In more detail approaches to resizing a trial affected by the pandemic are developed including considerations to stop a trial early, the use of group-sequential designs or sample size adjustment. All methods considered are implemented in a freely available R shiny app. Furthermore, regulatory and operational issues including the role of data monitoring committees are discussed.
stat
Independence Testing for Multivariate Time Series
Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the random processes, only detect linear association, require multiple tests, or forfeit power in high-dimensional, nonlinear settings. Estimating the distribution of any test statistic under the null is non-trivial, as the permutation test is invalid. This work juxtaposes distance correlation (Dcorr) and multiscale graph correlation (MGC) from independence testing literature and block permutation from time series analysis to address these challenges. The proposed nonparametric procedure is valid and consistent, building upon prior work by characterizing the geometry of the relationship, estimating the time lag at which dependence is maximized, avoiding the need for multiple testing, and exhibiting superior power in high-dimensional, low sample size, nonlinear settings. Neural connectivity is analyzed via fMRI data, revealing linear dependence of signals within the visual network and default mode network, and nonlinear relationships in other networks. This work uncovers a first-resort data analysis tool with open-source code available, directly impacting a wide range of scientific disciplines.
stat
Forecasting functional time series using weighted likelihood methodology
Functional time series whose sample elements are recorded sequentially over time are frequently encountered with increasing technology. Recent studies have shown that analyzing and forecasting of functional time series can be performed easily using functional principal component analysis and existing univariate/multivariate time series models. However, the forecasting performance of such functional time series models may be affected by the presence of outlying observations which are very common in many scientific fields. Outliers may distort the functional time series model structure, and thus, the underlying model may produce high forecast errors. We introduce a robust forecasting technique based on weighted likelihood methodology to obtain point and interval forecasts in functional time series in the presence of outliers. The finite sample performance of the proposed method is illustrated by Monte Carlo simulations and four real-data examples. Numerical results reveal that the proposed method exhibits superior performance compared with the existing method(s).
stat
Extraction Urban Clusters from Geospatial Data: A Case Study from Switzerland
Different techniques were developed to extract urban agglomerations from a big dataset. The urban agglomerations are used to understand the structure and growth of cities. However, the major challenge is to extract urban agglomerations from big data, which can reflect human activities. Community urban cluster refers to spatially clustered geographic events, such as human settlements or activities. It provides a powerful and innovative insight to analyze the structure and growth of the real city. In order to understand the shape and growth of urban agglomerations in Switzerland from spatial and temporal aspects, this work identifies urban clusters from nighttime light data and street network data. Nighttime light data record lights emitted from human settlements at night on the earth's surface. This work uses DMSP-OLS Nighttime light data to extract urban clusters from 1992 to 2013. The street is one of the most important factors to reflect human activities. Hence, urban clusters are also extracted from street network data to understand the structure of cities. Both of these data have a heavy-tailed distribution, which includes power laws as well as lognormal and exponential distributions. The head/tail breaks is a classification method to find the hierarchy of data with a heavy-tailed distribution. This work uses head/tail breaks classification to extract urban clusters of Switzerland. At last, the power law distribution of all the urban clusters was detected at the country level.
stat
NLS: an accurate and yet easy-to-interpret regression method
An important feature of successful supervised machine learning applications is to be able to explain the predictions given by the regression or classification model being used. However, most state-of-the-art models that have good predictive power lead to predictions that are hard to interpret. Thus, several model-agnostic interpreters have been developed recently as a way of explaining black-box classifiers. In practice, using these methods is a slow process because a novel fitting is required for each new testing instance, and several non-trivial choices must be made. We develop NLS (neural local smoother), a method that is complex enough to give good predictions, and yet gives solutions that are easy to be interpreted without the need of using a separate interpreter. The key idea is to use a neural network that imposes a local linear shape to the output layer. We show that NLS leads to predictive power that is comparable to state-of-the-art machine learning models, and yet is easier to interpret.
stat
Multi-Level Micro-Randomized Trial: Detecting the Proximal Effect of Messages on Physical Activity
Technological advancements in mobile devices have made it possible to deliver mobile health interventions to individuals. A novel intervention framework that emerges from such advancements is the just-in-time adaptive intervention (JITAI), where it aims to suggest the right support to the individual "just in time", when their needs arise, thus having proximal, near future effects. The micro-randomized trial (MRT) design was proposed recently to test the proximal effects of these JITAIs. In an MRT, participants are repeatedly randomized to one of the intervention options of various in the intervention components, at a scale of hundreds or thousands of decision time points over the course of the study. However, the extant MRT framework only tests the proximal effect of two-level intervention components (e.g. control vs intervention). In this paper, we propose a novel version of MRT design with multiple levels per intervention component, which we call "multi-level micro-randomized trial" (MLMRT) design. The MLMRT extends the existing MRT design by allowing multi-level intervention components, and the addition of more levels to the components during the study period. We apply generalized estimating equation type methodology on the longitudinal data arising from an MLMRT to develop the novel test statistics for assessing the proximal effects and deriving the associated sample size calculators. We conduct simulation studies to evaluate the sample size calculators based on both power and precision. We have developed an R shiny application of the sample size calculators. This proposed design is motivated by our involvement in the Diabetes and Mental Health Adaptive Notification Tracking and Evaluation (DIAMANTE) study. This study uses a novel mobile application, also called "DIAMANTE", which delivers adaptive text messages to encourage physical activity.
stat
Feature quantization for parsimonious and interpretable predictive models
For regulatory and interpretability reasons, logistic regression is still widely used. To improve prediction accuracy and interpretability, a preprocessing step quantizing both continuous and categorical data is usually performed: continuous features are discretized and, if numerous, levels of categorical features are grouped. An even better predictive accuracy can be reached by embedding this quantization estimation step directly into the predictive estimation step itself. But doing so, the predictive loss has to be optimized on a huge set. To overcome this difficulty, we introduce a specific two-step optimization strategy: first, the optimization problem is relaxed by approximating discontinuous quantization functions by smooth functions; second, the resulting relaxed optimization problem is solved via a particular neural network. The good performances of this approach, which we call glmdisc, are illustrated on simulated and real data from the UCI library and Cr\'edit Agricole Consumer Finance (a major European historic player in the consumer credit market).
stat
An Analysis of LIME for Text Data
Text data are increasingly handled in an automated fashion by machine learning algorithms. But the models handling these data are not always well-understood due to their complexity and are more and more often referred to as "black-boxes." Interpretability methods aim to explain how these models operate. Among them, LIME has become one of the most popular in recent years. However, it comes without theoretical guarantees: even for simple models, we are not sure that LIME behaves accurately. In this paper, we provide a first theoretical analysis of LIME for text data. As a consequence of our theoretical findings, we show that LIME indeed provides meaningful explanations for simple models, namely decision trees and linear models.
stat
Adjusting for Spatial Effects in Genomic Prediction
This paper investigates the problem of adjusting for spatial effects in genomic prediction. Despite being seldomly considered in genomic prediction, spatial effects often affect phenotypic measurements of plants. We consider a Gaussian random field model with an additive covariance structure that incorporates genotype effects, spatial effects and subpopulation effects. An empirical study shows the existence of spatial effects and heterogeneity across different subpopulation families, while simulations illustrate the improvement in selecting genotypically superior plants by adjusting for spatial effects in genomic prediction.
stat
Model-based Computed Tomography Image Estimation: Partitioning Approach
There is a growing interest to get a fully MR based radiotherapy. The most important development needed is to obtain improved bone tissue estimation. The existing model-based methods perform poorly on bone tissues. This paper was aimed at obtaining improved bone tissue estimation. Skew Gaussian mixture model and Gaussian mixture model were proposed to investigate CT image estimation from MR images by partitioning the data into two major tissue types. The performance of the proposed models was evaluated using leave-one-out cross-validation method on real data. In comparison with the existing model-based approaches, the model-based partitioning approach outperformed in bone tissue estimation, especially in dense bone tissue estimation.
stat
Modeling long-term capacity degradation of lithium-ion batteries
Capacity degradation of lithium-ion batteries under long-term cyclic aging is modelled via a flexible sigmoidal-type regression set-up, where the regression parameters can be interpreted. Different approaches known from the literature are discussed and compared with the new proposal. Statistical procedures, such as parameter estimation, confidence and prediction intervals are presented and applied to real data. The long-term capacity degradation model may be applied in second-life scenarios of batteries. Using some prior information or training data on the complete degradation path, the model can be fitted satisfactorily even if only short-term degradation data is available. The training data may arise from a single battery.
stat
High-Dimensional Regression with Binary Coefficients. Estimating Squared Error and a Phase Transition
We consider a sparse linear regression model Y=X\beta^{*}+W where X has a Gaussian entries, W is the noise vector with mean zero Gaussian entries, and \beta^{*} is a binary vector with support size (sparsity) k. Using a novel conditional second moment method we obtain a tight up to a multiplicative constant approximation of the optimal squared error \min_{\beta}\|Y-X\beta\|_{2}, where the minimization is over all k-sparse binary vectors \beta. The approximation reveals interesting structural properties of the underlying regression problem. In particular, a) We establish that n^*=2k\log p/\log (2k/\sigma^{2}+1) is a phase transition point with the following "all-or-nothing" property. When n exceeds n^{*}, (2k)^{-1}\|\beta_{2}-\beta^*\|_0\approx 0, and when n is below n^{*}, (2k)^{-1}\|\beta_{2}-\beta^*\|_0\approx 1, where \beta_2 is the optimal solution achieving the smallest squared error. With this we prove that n^{*} is the asymptotic threshold for recovering \beta^* information theoretically. b) We compute the squared error for an intermediate problem \min_{\beta}\|Y-X\beta\|_{2} where minimization is restricted to vectors \beta with \|\beta-\beta^{*}\|_0=2k \zeta, for \zeta\in [0,1]. We show that a lower bound part \Gamma(\zeta) of the estimate, which corresponds to the estimate based on the first moment method, undergoes a phase transition at three different thresholds, namely n_{\text{inf,1}}=\sigma^2\log p, which is information theoretic bound for recovering \beta^* when k=1 and \sigma is large, then at n^{*} and finally at n_{\text{LASSO/CS}}. c) We establish a certain Overlap Gap Property (OGP) on the space of all binary vectors \beta when n\le ck\log p for sufficiently small constant c. We conjecture that OGP is the source of algorithmic hardness of solving the minimization problem \min_{\beta}\|Y-X\beta\|_{2} in the regime n<n_{\text{LASSO/CS}}.
stat
Transfer Learning Robustness in Multi-Class Categorization by Fine-Tuning Pre-Trained Contextualized Language Models
This study compares the effectiveness and robustness of multi-class categorization of Amazon product data using transfer learning on pre-trained contextualized language models. Specifically, we fine-tuned BERT and XLNet, two bidirectional models that have achieved state-of-the-art performance on many natural language tasks and benchmarks, including text classification. While existing classification studies and benchmarks focus on binary targets, with the exception of ordinal ranking tasks, here we examine the robustness of such models as the number of classes grows from 1 to 20. Our experiments demonstrate an approximately linear decrease in performance metrics (i.e., precision, recall, $F_1$ score, and accuracy) with the number of class labels. BERT consistently outperforms XLNet using identical hyperparameters on the entire range of class label quantities for categorizing products based on their textual descriptions. BERT is also more affordable than XLNet in terms of the computational cost (i.e., time and memory) required for training. In all cases studied, the performance degradation rates were estimated to be 1% per additional class label.
stat
Understanding and adjusting the selection bias from a proof-of-concept study to a more confirmatory study
It has long been noticed that the efficacy observed in small early phase studies is generally better than that observed in later larger studies. Historically, the inflation of the efficacy results from early proof-of-concept studies is either ignored, or adjusted empirically using a frequentist or Bayesian approach. In this article, we systematically explained the underlying reason for the inflation of efficacy results in small early phase studies from the perspectives of measurement error models and selection bias. A systematic method was built to adjust the early phase study results from both frequentist and Bayesian perspectives. A hierarchical model was proposed to estimate the distribution of the efficacy for a portfolio of compounds, which can serve as the prior distribution for the Bayesian approach. We showed through theory that the systematic adjustment provides an unbiased estimator for the true mean efficacy for a portfolio of compounds. The adjustment was applied to paired data for the efficacy in early small and later larger studies for a set of compounds in diabetes and immunology. After the adjustment, the bias in the early phase small studies seems to be diminished.
stat
A coherent likelihood parametrization for doubly robust estimation of a causal effect with missing confounders
Missing data and confounding are two problems researchers face in observational studies for comparative effectiveness. Williamson et al. (2012) recently proposed a unified approach to handle both issues concurrently using a multiply-robust (MR) methodology under the assumption that confounders are missing at random. Their approach considers a union of models in which any submodel has a parametric component while the remaining models are unrestricted. We show that while their estimating function is MR in theory, the possibility for multiply robust inference is complicated by the fact that parametric models for different components of the union model are not variation independent and therefore the MR property is unlikely to hold in practice. To address this, we propose an alternative transparent parametrization of the likelihood function, which makes explicit the model dependencies between various nuisance functions needed to evaluate the MR efficient score. The proposed method is genuinely doubly-robust (DR) in that it is consistent and asymptotic normal if one of two sets of modeling assumptions holds. We evaluate the performance and doubly robust property of the DR method via a simulation study.
stat
Estimating Atmospheric Motion Winds from Satellite Image Data using Space-time Drift Models
Geostationary satellites collect high-resolution weather data comprising a series of images which can be used to estimate wind speed and direction at different altitudes. The Derived Motion Winds (DMW) Algorithm is commonly used to process these data and estimate atmospheric winds by tracking features in images taken by the GOES-R series of the NOAA geostationary meteorological satellites. However, the wind estimates from the DMW Algorithm are sparse and do not come with uncertainty measures. This motivates us to statistically model wind motions as a spatial process drifting in time. We propose a covariance function that depends on spatial and temporal lags and a drift parameter to capture the wind speed and wind direction. We estimate the parameters by local maximum likelihood. Our method allows us to compute standard errors of the estimates, enabling spatial smoothing of the estimates using a Gaussian kernel weighted by the inverses of the estimated variances. We conduct extensive simulation studies to determine the situations where our method performs well. The proposed method is applied to the GOES-15 brightness temperature data over Colorado and reduces prediction error of brightness temperature compared to the DMW Algorithm.
stat
Nudging the particle filter
We investigate a new sampling scheme aimed at improving the performance of particle filters whenever (a) there is a significant mismatch between the assumed model dynamics and the actual system, or (b) the posterior probability tends to concentrate in relatively small regions of the state space. The proposed scheme pushes some particles towards specific regions where the likelihood is expected to be high, an operation known as nudging in the geophysics literature. We re-interpret nudging in a form applicable to any particle filtering scheme, as it does not involve any changes in the rest of the algorithm. Since the particles are modified, but the importance weights do not account for this modification, the use of nudging leads to additional bias in the resulting estimators. However, we prove analytically that nudged particle filters can still attain asymptotic convergence with the same error rates as conventional particle methods. Simple analysis also yields an alternative interpretation of the nudging operation that explains its robustness to model errors. Finally, we show numerical results that illustrate the improvements that can be attained using the proposed scheme. In particular, we present nonlinear tracking examples with synthetic data and a model inference example using real-world financial data.
stat
Performance Metric Elicitation from Pairwise Classifier Comparisons
Given a binary prediction problem, which performance metric should the classifier optimize? We address this question by formalizing the problem of Metric Elicitation. The goal of metric elicitation is to discover the performance metric of a practitioner, which reflects her innate rewards (costs) for correct (incorrect) classification. In particular, we focus on eliciting binary classification performance metrics from pairwise feedback, where a practitioner is queried to provide relative preference between two classifiers. By exploiting key geometric properties of the space of confusion matrices, we obtain provably query efficient algorithms for eliciting linear and linear-fractional performance metrics. We further show that our method is robust to feedback and finite sample noise.
stat
Multinomial Logit Contextual Bandits: Provable Optimality and Practicality
We consider a sequential assortment selection problem where the user choice is given by a multinomial logit (MNL) choice model whose parameters are unknown. In each period, the learning agent observes a $d$-dimensional contextual information about the user and the $N$ available items, and offers an assortment of size $K$ to the user, and observes the bandit feedback of the item chosen from the assortment. We propose upper confidence bound based algorithms for this MNL contextual bandit. The first algorithm is a simple and practical method which achieves an $\tilde{\mathcal{O}}(d\sqrt{T})$ regret over $T$ rounds. Next, we propose a second algorithm which achieves a $\tilde{\mathcal{O}}(\sqrt{dT})$ regret. This matches the lower bound for the MNL bandit problem, up to logarithmic terms, and improves on the best known result by a $\sqrt{d}$ factor. To establish this sharper regret bound, we present a non-asymptotic confidence bound for the maximum likelihood estimator of the MNL model that may be of independent interest as its own theoretical contribution. We then revisit the simpler, significantly more practical, first algorithm and show that a simple variant of the algorithm achieves the optimal regret for a broad class of important applications.
stat
Online Action Learning in High Dimensions: A New Exploration Rule for Contextual $\epsilon_t$-Greedy Heuristics
Bandit problems are pervasive in various fields of research and are also present in several practical applications. Examples, including dynamic pricing and assortment and the design of auctions and incentives, permeate a large number of sequential treatment experiments. Different applications impose distinct levels of restrictions on viable actions. Some favor diversity of outcomes, while others require harmful actions to be closely monitored or mainly avoided. In this paper, we extend one of the most popular bandit solutions, the original $\epsilon_t$-greedy heuristics, to high-dimensional contexts. Moreover, we introduce a competing exploration mechanism that counts with searching sets based on order statistics. We view our proposals as alternatives for cases where pluralism is valued or, in the opposite direction, cases where the end-user should carefully tune the range of exploration of new actions. We find reasonable bounds for the cumulative regret of a decaying $\epsilon_t$-greedy heuristic in both cases and we provide an upper bound for the initialization phase that implies the regret bounds when order statistics are considered to be at most equal but mostly better than the case when random searching is the sole exploration mechanism. Additionally, we show that end-users have sufficient flexibility to avoid harmful actions since any cardinality for the higher-order statistics can be used to achieve an stricter upper bound. We illustrate the algorithms proposed in this paper both with simulated and real data.
stat
Inference for high-dimensional linear mixed-effects models: A quasi-likelihood approach
Linear mixed-effects models are widely used in analyzing clustered or repeated measures data. We propose a quasi-likelihood approach for estimation and inference of the unknown parameters in linear mixed-effects models with high-dimensional fixed effects. The proposed method is applicable to general settings where the dimension of the random effects and the cluster sizes are possibly large. Regarding the fixed effects, we provide rate optimal estimators and valid inference procedures that do not rely on the structural information of the variance components. We also study the estimation of variance components with high-dimensional fixed effects in general settings. The algorithms are easy to implement and computationally fast. The proposed methods are assessed in various simulation settings and are applied to a real study regarding the associations between body mass index and genetic polymorphic markers in a heterogeneous stock mice population.
stat
Convolutional Phase Retrieval via Gradient Descent
We study the convolutional phase retrieval problem, of recovering an unknown signal $\mathbf x \in \mathbb C^n $ from $m$ measurements consisting of the magnitude of its cyclic convolution with a given kernel $\mathbf a \in \mathbb C^m $. This model is motivated by applications such as channel estimation, optics, and underwater acoustic communication, where the signal of interest is acted on by a given channel/filter, and phase information is difficult or impossible to acquire. We show that when $\mathbf a$ is random and the number of observations $m$ is sufficiently large, with high probability $\mathbf x$ can be efficiently recovered up to a global phase shift using a combination of spectral initialization and generalized gradient descent. The main challenge is coping with dependencies in the measurement operator. We overcome this challenge by using ideas from decoupling theory, suprema of chaos processes and the restricted isometry property of random circulant matrices, and recent analysis of alternating minimization methods.
stat
A Locally Adaptive Interpretable Regression
Machine learning models with both good predictability and high interpretability are crucial for decision support systems. Linear regression is one of the most interpretable prediction models. However, the linearity in a simple linear regression worsens its predictability. In this work, we introduce a locally adaptive interpretable regression (LoAIR). In LoAIR, a metamodel parameterized by neural networks predicts percentile of a Gaussian distribution for the regression coefficients for a rapid adaptation. Our experimental results on public benchmark datasets show that our model not only achieves comparable or better predictive performance than the other state-of-the-art baselines but also discovers some interesting relationships between input and target variables such as a parabolic relationship between CO2 emissions and Gross National Product (GNP). Therefore, LoAIR is a step towards bridging the gap between econometrics, statistics, and machine learning by improving the predictive ability of linear regression without depreciating its interpretability.
stat
Unnormalized Variational Bayes
We unify empirical Bayes and variational Bayes for approximating unnormalized densities. This framework, named unnormalized variational Bayes (UVB), is based on formulating a latent variable model for the random variable $Y=X+N(0,\sigma^2 I_d)$ and using the evidence lower bound (ELBO), computed by a variational autoencoder, as a parametrization of the energy function of $Y$ which is then used to estimate $X$ with the empirical Bayes least-squares estimator. In this intriguing setup, the $\textit{gradient}$ of the ELBO with respect to noisy inputs plays the central role in learning the energy function. Empirically, we demonstrate that UVB has a higher capacity to approximate energy functions than the parametrization with MLPs as done in neural empirical Bayes (DEEN). We especially showcase $\sigma=1$, where the differences between UVB and DEEN become visible and qualitative in the denoising experiments. For this high level of noise, the distribution of $Y$ is very smoothed and we demonstrate that one can traverse in a single run $-$ without a restart $-$ all MNIST classes in a variety of styles via walk-jump sampling with a fast-mixing Langevin MCMC sampler. We finish by probing the encoder/decoder of the trained models and confirm UVB $\neq$ VAE.
stat
Targeted Estimation of Heterogeneous Treatment Effect in Observational Survival Analysis
The aim of clinical effectiveness research using repositories of electronic health records is to identify what health interventions 'work best' in real-world settings. Since there are several reasons why the net benefit of intervention may differ across patients, current comparative effectiveness literature focuses on investigating heterogeneous treatment effect and predicting whether an individual might benefit from an intervention. The majority of this literature has concentrated on the estimation of the effect of treatment on binary outcomes. However, many medical interventions are evaluated in terms of their effect on future events, which are subject to loss to follow-up. In this study, we describe a framework for the estimation of heterogeneous treatment effect in terms of differences in time-to-event (survival) probabilities. We divide the problem into three phases: (1) estimation of treatment effect conditioned on unique sets of the covariate vector; (2) identification of features important for heterogeneity using an ensemble of non-parametric variable importance methods; and (3) estimation of treatment effect on the reference classes defined by the previously selected features, using one-step Targeted Maximum Likelihood Estimation. We conducted a series of simulation studies and found that this method performs well when either sample size or event rate is high enough and the number of covariates contributing to the effect heterogeneity is moderate. An application of this method to a clinical case study was conducted by estimating the effect of oral anticoagulants on newly diagnosed non-valvular atrial fibrillation patients using data from the UK Clinical Practice Research Datalink.
stat
Asymptotic Errors for Teacher-Student Convex Generalized Linear Models (or : How to Prove Kabashima's Replica Formula)
There has been a recent surge of interest in the study of asymptotic reconstruction performance in various cases of generalized linear estimation problems in the teacher-student setting, especially for the case of i.i.d standard normal matrices. Here, we go beyond these matrices, and prove an analytical formula for the reconstruction performance of convex generalized linear models with rotationally-invariant data matrices with arbitrary bounded spectrum, rigorously confirming a conjecture originally derived using the replica method from statistical physics. The formula includes many problems such as compressed sensing or sparse logistic classification. The proof is achieved by leveraging on message passing algorithms and the statistical properties of their iterates, allowing to characterize the asymptotic empirical distribution of the estimator. Our proof is crucially based on the construction of converging sequences of an oracle multi-layer vector approximate message passing algorithm, where the convergence analysis is done by checking the stability of an equivalent dynamical system. We illustrate our claim with numerical examples on mainstream learning methods such as sparse logistic regression and linear support vector classifiers, showing excellent agreement between moderate size simulation and the asymptotic prediction.
stat
Reduced-order modeling using Dynamic Mode Decomposition and Least Angle Regression
Dynamic Mode Decomposition (DMD) yields a linear, approximate model of a system's dynamics that is built from data. We seek to reduce the order of this model by identifying a reduced set of modes that best fit the output. We adopt a model selection algorithm from statistics and machine learning known as Least Angle Regression (LARS). We modify LARS to be complex-valued and utilize LARS to select DMD modes. We refer to the resulting algorithm as Least Angle Regression for Dynamic Mode Decomposition (LARS4DMD). Sparsity-Promoting Dynamic Mode Decomposition (DMDSP), a popular mode-selection algorithm, serves as a benchmark for comparison. Numerical results from a Poiseuille flow test problem show that LARS4DMD yields reduced-order models that have comparable performance to DMDSP. LARS4DMD has the added benefit that the regularization weighting parameter required for DMDSP is not needed.
stat
Hierarchical causal variance decomposition for institution and provider comparisons in healthcare
Disease-specific quality indicators (QIs) are used to compare institutions and health care providers in terms processes or outcomes relevant to treatment of a particular condition. In the context of surgical cancer treatments, the performance variations can be due to hospital and/or surgeon level differences, creating a hierarchical clustering. We consider how the observed variation in care received at patient level can be decomposed into that causally explained by the hospital performance, surgeon performance within hospital, patient case-mix, and unexplained (residual) variation. For this purpose, we derive a four-way variance decomposition, with particular attention to the causal interpretation of the components. For estimation, we use inputs from a mixed-effect model with nested random hospital/surgeon-specific effects, and a multinomial logistic model for the hospital/surgeon-specific patient populations. We investigate the performance of our methods in a simulation study.
stat
Scalable penalized spatiotemporal land-use regression for ground-level nitrogen dioxide
Nitrogen dioxide (NO$_2$) is a primary constituent of traffic-related air pollution and has well established harmful environmental and human-health impacts. Knowledge of the spatiotemporal distribution of NO$_2$ is critical for exposure and risk assessment. A common approach for assessing air pollution exposure is linear regression involving spatially referenced covariates, known as land-use regression (LUR). We develop a scalable approach for simultaneous variable selection and estimation of LUR models with spatiotemporally correlated errors, by combining a general-Vecchia Gaussian process approximation with a penalty on the LUR coefficients. In comparisons to existing methods using simulated data, our approach resulted in higher model-selection specificity and sensitivity and in better prediction in terms of calibration and sharpness, for a wide range of relevant settings. In our spatiotemporal analysis of daily, US-wide, ground-level NO$_2$ data, our approach was more accurate, and produced a sparser and more interpretable model. Our daily predictions elucidate spatiotemporal patterns of NO$_2$ concentrations across the United States, including significant variations between cities and intra-urban variation. Thus, our predictions will be useful for epidemiological and risk-assessment studies seeking daily, national-scale predictions, and they can be used in acute-outcome health-risk assessments.
stat
Testing Conditional Independence in Supervised Learning Algorithms
We propose the conditional predictive impact (CPI), a consistent and unbiased estimator of the association between one or several features and a given outcome, conditional on a reduced feature set. Building on the knockoff framework of Cand\`es et al. (2018), we develop a novel testing procedure that works in conjunction with any valid knockoff sampler, supervised learning algorithm, and loss function. The CPI can be efficiently computed for high-dimensional data without any sparsity constraints. We demonstrate convergence criteria for the CPI and develop statistical inference procedures for evaluating its magnitude, significance, and precision. These tests aid in feature and model selection, extending traditional frequentist and Bayesian techniques to general supervised learning tasks. The CPI may also be applied in causal discovery to identify underlying multivariate graph structures. We test our method using various algorithms, including linear regression, neural networks, random forests, and support vector machines. Empirical results show that the CPI compares favorably to alternative variable importance measures and other nonparametric tests of conditional independence on a diverse array of real and simulated datasets. Simulations confirm that our inference procedures successfully control Type I error and achieve nominal coverage probability. Our method has been implemented in an R package, cpi, which can be downloaded from https://github.com/dswatson/cpi.
stat
Approximate Bayesian Model Inversion for PDEs with Heterogeneous and State-Dependent Coefficients
We present two approximate Bayesian inference methods for parameter estimation in partial differential equation (PDE) models with space-dependent and state-dependent parameters. We demonstrate that these methods provide accurate and cost-effective alternatives to Markov Chain Monte Carlo simulation. We assume a parameterized Gaussian prior on the unknown functions, and approximate the posterior density by a parameterized multivariate Gaussian density. The parameters of the prior and posterior are estimated from sparse observations of the PDE model's states and the unknown functions themselves by maximizing the evidence lower bound (ELBO), a lower bound on the log marginal likelihood of the observations. The first method, Laplace-EM, employs the expectation maximization algorithm to maximize the ELBO, with a Laplace approximation of the posterior on the E-step, and minimization of a Kullback-Leibler divergence on the M-step. The second method, DSVI-EB, employs the doubly stochastic variational inference (DSVI) algorithm, in which the ELBO is maximized via gradient-based stochastic optimization, with nosiy gradients computed via simple Monte Carlo sampling and Gaussian backpropagation. We apply these methods to identifying diffusion coefficients in linear and nonlinear diffusion equations, and we find that both methods provide accurate estimates of posterior densities and the hyperparameters of Gaussian priors. While the Laplace-EM method is more accurate, it requires computing Hessians of the physics model. The DSVI-EB method is found to be less accurate but only requires gradients of the physics model.
stat
DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions both to an individual's initial features and to intermediate outcomes and features at each subsequent stage, which are affected by decisions in prior stages. Examples include personalized first- and second-line treatments of chronic conditions like diabetes, cancer, and depression, which adapt to patient response to first-line treatment, disease progression, and individual characteristics. While existing literature mostly focuses on estimating the optimal DTR from offline data such as from sequentially randomized trials, we study the problem of developing the optimal DTR in an online manner, where the interaction with each individual affect both our cumulative reward and our data collection for future learning. We term this the DTR bandit problem. We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear. We demonstrate our algorithm and its benefits both in synthetic experiments and in a case study of adaptive treatment of major depressive disorder using real-world data.
stat
Low-Rank Autoregressive Tensor Completion for Multivariate Time Series Forecasting
Time series prediction has been a long-standing research topic and an essential application in many domains. Modern time series collected from sensor networks (e.g., energy consumption and traffic flow) are often large-scale and incomplete with considerable corruption and missing values, making it difficult to perform accurate predictions. In this paper, we propose a low-rank autoregressive tensor completion (LATC) framework to model multivariate time series data. The key of LATC is to transform the original multivariate time series matrix (e.g., sensor$\times$time point) to a third-order tensor structure (e.g., sensor$\times$time of day$\times$day) by introducing an additional temporal dimension, which allows us to model the inherent rhythms and seasonality of time series as global patterns. With the tensor structure, we can transform the time series prediction and missing data imputation problems into a universal low-rank tensor completion problem. Besides minimizing tensor rank, we also integrate a novel autoregressive norm on the original matrix representation into the objective function. The two components serve different roles. The low-rank structure allows us to effectively capture the global consistency and trends across all the three dimensions (i.e., similarity among sensors, similarity of different days, and current time v.s. the same time of historical days). The autoregressive norm can better model the local temporal trends. Our numerical experiments on three real-world data sets demonstrate the superiority of the integration of global and local trends in LATC in both missing data imputation and rolling prediction tasks.
stat
Unfolded Algorithms for Deep Phase Retrieval
Exploring the idea of phase retrieval has been intriguing researchers for decades, due to its appearance in a wide range of applications. The task of a phase retrieval algorithm is typically to recover a signal from linear phaseless measurements. In this paper, we approach the problem by proposing a hybrid model-based data-driven deep architecture, referred to as Unfolded Phase Retrieval (UPR), that exhibits significant potential in improving the performance of state-of-the art data-driven and model-based phase retrieval algorithms. The proposed method benefits from versatility and interpretability of well-established model-based algorithms, while simultaneously benefiting from the expressive power of deep neural networks. In particular, our proposed model-based deep architecture is applied to the conventional phase retrieval problem (via the incremental reshaped Wirtinger flow algorithm) and the sparse phase retrieval problem (via the sparse truncated amplitude flow algorithm), showing immense promise in both cases. Furthermore, we consider a joint design of the sensing matrix and the signal processing algorithm and utilize the deep unfolding technique in the process. Our numerical results illustrate the effectiveness of such hybrid model-based and data-driven frameworks and showcase the untapped potential of data-aided methodologies to enhance the existing phase retrieval algorithms.
stat
Which Minimizer Does My Neural Network Converge To?
The loss surface of an overparameterized neural network (NN) possesses many global minima of zero training error. We explain how common variants of the standard NN training procedure change the minimizer obtained. First, we make explicit how the size of the initialization of a strongly overparameterized NN affects the minimizer and can deteriorate its final test performance. We propose a strategy to limit this effect. Then, we demonstrate that for adaptive optimization such as AdaGrad, the obtained minimizer generally differs from the gradient descent (GD) minimizer. This adaptive minimizer is changed further by stochastic mini-batch training, even though in the non-adaptive case GD and stochastic GD result in essentially the same minimizer. Lastly, we explain that these effects remain relevant for less overparameterized NNs. While overparameterization has its benefits, our work highlights that it induces sources of error absent from underparameterized models, some of which can be challenging to control.
stat
Optimizing Graphical Procedures for Multiplicity Control in a Confirmatory Clinical Trial via Deep Learning
In confirmatory clinical trials, it has been proposed [Bretz et al., 2009] to use a simple iterative graphical approach to constructing and performing intersection hypotheses tests using weighted Bonferroni-type procedures to control type I errors in the strong sense. Given Phase II study results or prior knowledge, it is usually of main interest to find the optimal graph that maximizes a certain objective function in a future Phase III study. However, lack of a closed form expression in the objective function makes the optimization challenging. In this manuscript, we propose a general optimization framework to obtain the global maximum via feedforward neural networks (FNNs) in deep learning. Simulation studies show that our FNN-based approach has a better balance between robustness and time efficiency than some existing derivative-free constrained optimization algorithms. Compared to the traditional window searching approach, our optimizer has moderate multiplicity adjusted power gain when the number of hypotheses is relatively large or when their correlations are high. We further apply it to a case study to illustrate how to optimize a multiple test procedure with respect to a specific study objective.
stat
What can the millions of random treatments in nonexperimental data reveal about causes?
We propose a new method to estimate causal effects from nonexperimental data. Each pair of sample units is first associated with a stochastic 'treatment' - differences in factors between units - and an effect - a resultant outcome difference. It is then proposed that all such pairs can be combined to provide more accurate estimates of causal effects in observational data, provided a statistical model connecting combinatorial properties of treatments to the accuracy and unbiasedness of their effects. The article introduces one such model and a Bayesian approach to combine the $O(n^2)$ pairwise observations typically available in nonexperimnetal data. This also leads to an interpretation of nonexperimental datasets as incomplete, or noisy, versions of ideal factorial experimental designs. This approach to causal effect estimation has several advantages: (1) it expands the number of observations, converting thousands of individuals into millions of observational treatments; (2) starting with treatments closest to the experimental ideal, it identifies noncausal variables that can be ignored in the future, making estimation easier in each subsequent iteration while departing minimally from experiment-like conditions; (3) it recovers individual causal effects in heterogeneous populations. We evaluate the method in simulations and the National Supported Work (NSW) program, an intensively studied program whose effects are known from randomized field experiments. We demonstrate that the proposed approach recovers causal effects in common NSW samples, as well as in arbitrary subpopulations and an order-of-magnitude larger supersample with the entire national program data, outperforming Statistical, Econometrics and Machine Learning estimators in all cases...
stat
Evaluating Catchment Models as Multiple Working Hypotheses: on the Role of Error Metrics, Parameter Sampling, Model Structure, and Data Information Content
To evaluate models as hypotheses, we developed the method of Flux Mapping to construct a hypothesis space based on dominant runoff generating mechanisms. Acceptable model runs, defined as total simulated flow with similar (and minimal) model error, are mapped to the hypothesis space given their simulated runoff components. In each modeling case, the hypothesis space is the result of an interplay of factors: model structure and parameterization, chosen error metric, and data information content. The aim of this study is to disentangle the role of each factor in model evaluation. We used two model structures (SACRAMENTO and SIMHYD), two parameter sampling approaches (Latin Hypercube Sampling of the parameter space and guided-search of the solution space), three widely used error metrics (Nash-Sutcliffe Efficiency - NSE, Kling-Gupta Efficiency skill score - KGEss, and Willmott refined Index of Agreement - WIA), and hydrological data from a large sample of Australian catchments. First, we characterized how the three error metrics behave under different error types and magnitudes independent of any modeling. We then conducted a series of controlled experiments to unpack the role of each factor in runoff generation hypotheses. We show that KGEss is a more reliable metric compared to NSE and WIA for model evaluation. We further demonstrate that only changing the error metric -- while other factors remain constant -- can change the model solution space and hence vary model performance, parameter sampling sufficiency, and or the flux map. We show how unreliable error metrics and insufficient parameter sampling impair model-based inferences, particularly runoff generation hypotheses.
stat
Estimating Stochastic Poisson Intensities Using Deep Latent Models
We present methodology for estimating the stochastic intensity of a doubly stochastic Poisson process. Statistical and theoretical analyses of traffic traces show that these processes are appropriate models of high intensity traffic arriving at an array of service systems. The statistical estimation of the underlying latent stochastic intensity process driving the traffic model involves a rather complicated nonlinear filtering problem. We develop a novel simulation methodology, using deep neural networks to approximate the path measures induced by the stochastic intensity process, for solving this nonlinear filtering problem. Our simulation studies demonstrate that the method is quite accurate on both in-sample estimation and on an out-of-sample performance prediction task for an infinite server queue.
stat
Repeated measurements with unintended feedback: The Dutch new herring scandals
An econometric analysis of consumer research data which hit newspaper headlines in the Netherlands illustrates almost everything that can go wrong when statistical models are fit to the superficial characteristics of a data-set with no attention paid to the data generation mechanism. This paper is dedicated to Ornulf Borgan on the occasion of his virtual 65th birthday celebrations.
stat
A presmoothing approach for estimation in mixture cure models
A challenge when dealing with survival analysis data is accounting for a cure fraction, meaning that some subjects will never experience the event of interest. Mixture cure models have been frequently used to estimate both the probability of being cured and the time to event for the susceptible subjects, by usually assuming a parametric (logistic) form of the incidence. We propose a new estimation procedure for a parametric cure rate that relies on a preliminary smooth estimator and is independent of the model assumed for the latency. We investigate the theoretical properties of the estimators and show through simulations that, in the logistic/Cox model, presmoothing leads to more accurate results compared to the maximum likelihood estimator. To illustrate the practical use, we apply the new estimation procedure to two studies of melanoma survival data.
stat
Causal inference methods for small non-randomized studies: Methods and an application in COVID-19
The usual development cycles are too slow for the development of vaccines, diagnostics and treatments in pandemics such as the ongoing SARS-CoV-2 pandemic. Given the pressure in such a situation, there is a risk that findings of early clinical trials are overinterpreted despite their limitations in terms of size and design. Motivated by a non-randomized open-label study investigating the efficacy of hydroxychloroquine in patients with COVID-19, we describe in a unified fashion various alternative approaches to the analysis of non-randomized studies. A widely used tool to reduce the impact of treatment-selection bias are so-called propensity score (PS) methods. Conditioning on the propensity score allows one to replicate the design of a randomized controlled trial, conditional on observed covariates. Extensions include the g-computation approach, which is less frequently applied, in particular in clinical studies. Moreover, doubly robust estimators provide additional advantages. Here, we investigate the properties of propensity score based methods including three variations of doubly robust estimators in small sample settings, typical for early trials, in a simulation study. R code for the simulations is provided.
stat
HCmodelSets: An R package for specifying sets of well-fitting models in regression with a large number of potential explanatory variables
In the context of regression with a large number of explanatory variables, Cox and Battey (2017) emphasize that if there are alternative reasonable explanations of the data that are statistically indistinguishable, one should aim to specify as many of these explanations as is feasible. The standard practice, by contrast, is to report a single model effective for prediction. The present paper illustrates the R implementation of the new ideas in the package `HCmodelSets', using simple reproducible examples and real data. Results of some simulation experiments are also reported.
stat
On Shapley Credit Allocation for Interpretability
We emphasize the importance of asking the right question when interpreting the decisions of a learning model. We discuss a natural extension of the theoretical machinery from Janzing et. al. 2020, which answers the question "Why did my model predict a person has cancer?" for answering a more involved question, "What caused my model to predict a person has cancer?" While the former quantifies the direct effects of variables on the model, the latter also accounts for indirect effects, thereby providing meaningful insights wherever human beings can reason in terms of cause and effect. We propose three broad categories for interpretations: observational, model-specific and causal each of which are significant in their own right. Furthermore, this paper quantifies feature relevance by weaving different natures of interpretations together with different measures as characteristic functions for Shapley symmetrization. Besides the widely used expected value of the model, we also discuss measures of statistical uncertainty and dispersion as informative candidates, and their merits in generating explanations for each data point, some of which are used in this context for the first time. These measures are not only useful for studying the influence of variables on the model output, but also on the predictive performance of the model, and for that we propose relevant characteristic functions that are also used for the first time.
stat
Mining gold from implicit models to improve likelihood-free inference
Simulators often provide the best description of real-world phenomena. However, they also lead to challenging inverse problems because the density they implicitly define is often intractable. We present a new suite of simulation-based inference techniques that go beyond the traditional Approximate Bayesian Computation approach, which struggles in a high-dimensional setting, and extend methods that use surrogate models based on neural networks. We show that additional information, such as the joint likelihood ratio and the joint score, can often be extracted from simulators and used to augment the training data for these surrogate models. Finally, we demonstrate that these new techniques are more sample efficient and provide higher-fidelity inference than traditional methods.
stat
Solving high-dimensional parabolic PDEs using the tensor train format
High-dimensional partial differential equations (PDEs) are ubiquitous in economics, science and engineering. However, their numerical treatment poses formidable challenges since traditional grid-based methods tend to be frustrated by the curse of dimensionality. In this paper, we argue that tensor trains provide an appealing approximation framework for parabolic PDEs: the combination of reformulations in terms of backward stochastic differential equations and regression-type methods in the tensor format holds the promise of leveraging latent low-rank structures enabling both compression and efficient computation. Following this paradigm, we develop novel iterative schemes, involving either explicit and fast or implicit and accurate updates. We demonstrate in a number of examples that our methods achieve a favorable trade-off between accuracy and computational efficiency in comparison with state-of-the-art neural network based approaches.
stat
Statistically-Robust Clustering Techniques for Mapping Spatial Hotspots: A Survey
Mapping of spatial hotspots, i.e., regions with significantly higher rates or probability density of generating certain events (e.g., disease or crime cases), is a important task in diverse societal domains, including public health, public safety, transportation, agriculture, environmental science, etc. Clustering techniques required by these domains differ from traditional clustering methods due to the high economic and social costs of spurious results (e.g., false alarms of crime clusters). As a result, statistical rigor is needed explicitly to control the rate of spurious detections. To address this challenge, techniques for statistically-robust clustering have been extensively studied by the data mining and statistics communities. In this survey we present an up-to-date and detailed review of the models and algorithms developed by this field. We first present a general taxonomy of the clustering process with statistical rigor, covering key steps of data and statistical modeling, region enumeration and maximization, significance testing, and data update. We further discuss different paradigms and methods within each of key steps. Finally, we highlight research gaps and potential future directions, which may serve as a stepping stone in generating new ideas and thoughts in this growing field and beyond.
stat
Optimal curtailed designs for single arm phase II clinical trials
In single-arm phase II oncology trials, the most popular choice of design is Simon's two-stage design, which allows early stopping at one interim analysis. However, the expected trial sample size can be reduced further by allowing curtailment. Curtailment is stopping when the final go or no-go decision is certain, so-called non-stochastic curtailment, or very likely, known as stochastic curtailment. In the context of single-arm phase II oncology trials, stochastic curtailment has previously been restricted to stopping in the second stage and/or stopping for a no-go decision only. We introduce two designs that incorporate stochastic curtailment and allow stopping after every observation, for either a go or no-go decision. We obtain optimal stopping boundaries by searching over a range of potential conditional powers, beyond which the trial will stop for a go or no-go decision. This search is novel: firstly, the search is undertaken over a range of values unique to each possible design realisation. Secondly, these values are evaluated taking into account the possibility of early stopping. Finally, each design realisation's operating characteristics are obtained exactly. The proposed designs are compared to existing designs in a real data example. They are also compared under three scenarios, both with respect to four single optimality criteria and using a loss function. The proposed designs are superior in almost all cases. Optimising for the expected sample size under either the null or alternative hypothesis, the saving compared to the popular Simon's design ranges from 22% to 55%.
stat
Generalization in Deep Learning
This paper provides theoretical insights into why and how deep learning can generalize well, despite its large capacity, complexity, possible algorithmic instability, nonrobustness, and sharp minima, responding to an open question in the literature. We also discuss approaches to provide non-vacuous generalization guarantees for deep learning. Based on theoretical observations, we propose new open problems and discuss the limitations of our results.
stat