title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Long-range Event-level Prediction and Response Simulation for Urban Crime and Global Terrorism with Granger Networks
Large-scale trends in urban crime and global terrorism are well-predicted by socio-economic drivers, but focused, event-level predictions have had limited success. Standard machine learning approaches are promising, but lack interpretability, are generally interpolative, and ineffective for precise future interventions with costly and wasteful false positives. Here, we are introducing Granger Network inference as a new forecasting approach for individual infractions with demonstrated performance far surpassing past results, yet transparent enough to validate and extend social theory. Considering the problem of predicting crime in the City of Chicago, we achieve an average AUC of ~90\% for events predicted a week in advance within spatial tiles approximately $1000$ ft across. Instead of pre-supposing that crimes unfold across contiguous spaces akin to diffusive systems, we learn the local transport rules from data. As our key insights, we uncover indications of suburban bias -- how law-enforcement response is modulated by socio-economic contexts with disproportionately negative impacts in the inner city -- and how the dynamics of violent and property crimes co-evolve and constrain each other -- lending quantitative support to controversial pro-active policing policies. To demonstrate broad applicability to spatio-temporal phenomena, we analyze terror attacks in the middle-east in the recent past, and achieve an AUC of ~80% for predictions made a week in advance, and within spatial tiles measuring approximately 120 miles across. We conclude that while crime operates near an equilibrium quickly dissipating perturbations, terrorism does not. Indeed terrorism aims to destabilize social order, as shown by its dynamics being susceptible to run-away increases in event rates under small perturbations.
stat
Constrained Bayesian Optimization with Max-Value Entropy Search
Bayesian optimization (BO) is a model-based approach to sequentially optimize expensive black-box functions, such as the validation error of a deep neural network with respect to its hyperparameters. In many real-world scenarios, the optimization is further subject to a priori unknown constraints. For example, training a deep network configuration may fail with an out-of-memory error when the model is too large. In this work, we focus on a general formulation of Gaussian process-based BO with continuous or binary constraints. We propose constrained Max-value Entropy Search (cMES), a novel information theoretic-based acquisition function implementing this formulation. We also revisit the validity of the factorized approximation adopted for rapid computation of the MES acquisition function, showing empirically that this leads to inaccurate results. On an extensive set of real-world constrained hyperparameter optimization problems we show that cMES compares favourably to prior work, while being simpler to implement and faster than other constrained extensions of Entropy Search.
stat
Leveraging Global Parameters for Flow-based Neural Posterior Estimation
Inferring the parameters of a stochastic model based on experimental observations is central to the scientific method. A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations. This arises in many practical situations, such as when inferring the distance and power of a radio source (is the source close and weak or far and strong?) or when estimating the amplifier gain and underlying brain activity of an electrophysiological experiment. In this work, we present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters. Our method extends recent developments in simulation-based inference(SBI) based on normalizing flows to Bayesian hierarchical models. We validate quantitatively our proposal on a motivating example amenable to analytical solutions, and then apply it to invert a well known non-linear model from computational neuroscience.
stat
More Efficient Estimation for Logistic Regression with Optimal Subsample
In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. 2018 Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling rate, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. The proposed approach requires to use a pilot estimator to correct biases of un-weighted estimators. We further show that even if the pilot estimator is inconsistent, the resulting estimators are still consistent and asymptotically normal if the model is correctly specified.
stat
Variational Mixture of Normalizing Flows
In the past few years, deep generative models, such as generative adversarial networks \autocite{GAN}, variational autoencoders \autocite{vaepaper}, and their variants, have seen wide adoption for the task of modelling complex data distributions. In spite of the outstanding sample quality achieved by those early methods, they model the target distributions \emph{implicitly}, in the sense that the probability density functions induced by them are not explicitly accessible. This fact renders those methods unfit for tasks that require, for example, scoring new instances of data with the learned distributions. Normalizing flows have overcome this limitation by leveraging the change-of-variables formula for probability density functions, and by using transformations designed to have tractable and cheaply computable Jacobians. Although flexible, this framework lacked (until recently \autocites{semisuplearning_nflows, RAD}) a way to introduce discrete structure (such as the one found in mixtures) in the models it allows to construct, in an unsupervised scenario. The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model. This procedure is based on variational inference, and uses a variational posterior parameterized by a neural network. As will become clear, this model naturally lends itself to (multimodal) density estimation, semi-supervised learning, and clustering. The proposed model is illustrated on two synthetic datasets, as well as on a real-world dataset. Keywords: Deep generative models, normalizing flows, variational inference, probabilistic modelling, mixture models.
stat
tmleCommunity: A R Package Implementing Target Maximum Likelihood Estimation for Community-level Data
Over the past years, many applications aim to assess the causal effect of treatments assigned at the community level, while data are still collected at the individual level among individuals of the community. In many cases, one wants to evaluate the effect of a stochastic intervention on the community, where all communities in the target population receive probabilistically assigned treatments based on a known specified mechanism (e.g., implementing a community-level intervention policy that target stochastic changes in the behavior of a target population of communities). The tmleCommunity package is recently developed to implement targeted minimum loss-based estimation (TMLE) of the effect of community-level intervention(s) at a single time point on an individual-based outcome of interest, including the average causal effect. Implementations of the inverse-probability-of-treatment-weighting (IPTW) and the G-computation formula (GCOMP) are also available. The package supports multivariate arbitrary (i.e., static, dynamic or stochastic) interventions with a binary or continuous outcome. Besides, it allows user-specified data-adaptive machine learning algorithms through SuperLearner, sl3 and h2oEnsemble packages. The usage of the tmleCommunity package, along with a few examples, will be described in this paper.
stat
Target-Embedding Autoencoders for Supervised Representation Learning
Autoencoder-based learning has emerged as a staple for disciplining representations in unsupervised and semi-supervised settings. This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional. We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets---encoding the prior that variations in targets are driven by a compact set of underlying factors. As our theoretical contribution, we provide a guarantee of generalization for linear TEAs by demonstrating uniform stability, interpreting the benefit of the auxiliary reconstruction task as a form of regularization. As our empirical contribution, we extend validation of this approach beyond existing static classification applications to multivariate sequence forecasting, verifying their advantage on both linear and nonlinear recurrent architectures---thereby underscoring the further generality of this framework beyond feedforward instantiations.
stat
Online Adaptive Image Reconstruction (OnAIR) Using Dictionary Models
Sparsity and low-rank models have been popular for reconstructing images and videos from limited or corrupted measurements. Dictionary or transform learning methods are useful in applications such as denoising, inpainting, and medical image reconstruction. This paper proposes a framework for online (or time-sequential) adaptive reconstruction of dynamic image sequences from linear (typically undersampled) measurements. We model the spatiotemporal patches of the underlying dynamic image sequence as sparse in a dictionary, and we simultaneously estimate the dictionary and the images sequentially from streaming measurements. Multiple constraints on the adapted dictionary are also considered such as a unitary matrix, or low-rank dictionary atoms that provide additional efficiency or robustness. The proposed online algorithms are memory efficient and involve simple updates of the dictionary atoms, sparse coefficients, and images. Numerical experiments demonstrate the usefulness of the proposed methods in inverse problems such as video reconstruction or inpainting from noisy, subsampled pixels, and dynamic magnetic resonance image reconstruction from very limited measurements.
stat
Automatic Forecasting using Gaussian Processes
Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. We propose an approach for automatic forecasting based on Gaussian Processes (GPs). So far, the main limits of GPs on this task have been the lack of a criterion for the selection of the kernel and the long times required for training different competing kernels. We design a fixed additive kernel, which contains the components needed to model most time series. During training the unnecessary components are made irrelevant by automatic relevance determination. We assign priors to each hyperparameter. We design the priors by analyzing a separate set of time series through a hierarchical GP. The resulting model performs very well on different types of time series, being competitive or outperforming the state-of-the-art approaches.Thanks to the priors, we reliably estimate the parameters with a single restart; this speedup makes the model efficient to train and suitable for processing a large number of time series.
stat
More Efficient Policy Learning via Optimal Retargeting
Policy learning can be used to extract individualized treatment regimes from observational data in healthcare, civics, e-commerce, and beyond. One big hurdle to policy learning is a commonplace lack of overlap in the data for different actions, which can lead to unwieldy policy evaluation and poorly performing learned policies. We study a solution to this problem based on retargeting, that is, changing the population on which policies are optimized. We first argue that at the population level, retargeting may induce little to no bias. We then characterize the optimal reference policy and retargeting weights in both binary-action and multi-action settings. We do this in terms of the asymptotic efficient estimation variance of the new learning objective. Extensive empirical results in a simulation study and a case study of personalized job counseling demonstrate that retargeting is a fairly easy way to significantly improve any policy learning procedure applied to observational data.
stat
Bayesian Analysis of Spatial Generalized Linear Mixed Models with Laplace Random Fields
Gaussian random field (GRF) models are widely used in spatial statistics to capture spatially correlated error. We investigate the results of replacing Gaussian processes with Laplace moving averages (LMAs) in spatial generalized linear mixed models (SGLMMs). We demonstrate that LMAs offer improved predictive power when the data exhibits localized spikes in the response. SGLMMs with LMAs are shown to maintain analogous parameter inference and similar computing to Gaussian SGLMMs. We propose a novel discrete space LMA model for irregular lattices and construct conjugate samplers for LMAs with georeferenced and areal support. We provide a Bayesian analysis of SGLMMs with LMAs and GRFs over multiple data support and response types.
stat
Better lower bounds for missing species: improved non-parametric moment-based estimation for large experiments
Estimation of the number of species or unobserved classes from a random sample of the underlying population is a ubiquitous problem in statistics. In classical settings, the size of the sample is usually small. New technologies such as high-throughput DNA sequencing have allowed for the sampling of extremely large and heterogeneous populations at scales not previously attainable or even considered. New algorithms are required that take advantage of the size of the data to account for heterogeneity, but are also sufficiently fast and scale well with large data. We present a non-parametric moment-based estimator that is both computationally efficient and is sufficiently flexible to account for heterogeneity in the abundances of underlying population. This estimator is based on an extension of a popular moment-based lower bound (Chao, 1984), originally developed by Harris (1959) but unattainable due to the lack of economical algorithms to solve the system of nonlinear equation required for estimation. We apply results from the classical moment problem to show that solutions can be obtained efficiently, allowing for estimators that are simultaneously conservative and use more information. This is critical for modern genomic applications, where there may be many large experiments that require the application of species estimation. We present applications of our estimator to estimating T-Cell receptor repertoire and dropout in single cell RNA-seq experiments.
stat
Covariate-Adjusted Inference for Differential Analysis of High-Dimensional Networks
Differences between biological networks corresponding to disease conditions can help delineate the underlying disease mechanisms. Existing methods for differential network analysis do not account for dependence of networks on covariates. As a result, these approaches may detect spurious differential connections induced by the effect of the covariates on both the disease condition and the network. To address this issue, we propose a general covariate-adjusted test for differential network analysis. Our method assesses differential network connectivity by testing the null hypothesis that the network is the same for individuals who have identical covariates and only differ in disease status. We show empirically in a simulation study that the covariate-adjusted test exhibits improved type-I error control compared with na\"ive hypothesis testing procedures that do not account for covariates. We additionally show that there are settings in which our proposed methodology provides improved power to detect differential connections. We illustrate our method by applying it to detect differences in breast cancer gene co-expression networks by subtype.
stat
The von Mises-Fisher Procrustes model in functional Magnetic Resonance Imaging data
The Procrustes method allows to align matrices into a common space using similarity transformation. However, it is an ill-posed problem, i.e., it doesn't return a unique solution about the optimal transformation, losing results interpretability. For that, we extend the Perturbation model, which rephrases the Procrustes method as a statistical model, defining the von Mises-Fisher Procrustes model. The extension is focused on specifying a regularization term, using a proper prior distribution for the orthogonal matrix parameter of the Perturbation model. The von Mises-Fisher distribution is then utilized to insert prior information about the final common space structure. Thanks to that, we resolve the no-uniqueness problem of the Procrustes method, getting an interpretable estimator for the orthogonal matrix transformation. Being a conjugate prior, the posterior parameter is a sort of weighted average between the maximum likelihood and prior estimator. Application on functional Magnetic Resonance Imaging data shows an improvement in the group-level analysis in terms of inference and interpretability of the results. In this case, the prior information used is the three-dimensional voxel coordinates. It permits the construction of the location matrix parameter of the von Mises-Fisher distribution as a similarity euclidean matrix. In this way, we can exploit the idea that the orthogonal matrix must combine spatially close variables, i.e., voxels. The resulting orthogonal estimators reflect the three-dimensional structure of the voxel's space, as the final group-analysis results.
stat
Recurrent machines for likelihood-free inference
Likelihood-free inference is concerned with the estimation of the parameters of a non-differentiable stochastic simulator that best reproduce real observations. In the absence of a likelihood function, most of the existing inference methods optimize the simulator parameters through a handcrafted iterative procedure that tries to make the simulated data more similar to the observations. In this work, we explore whether meta-learning can be used in the likelihood-free context, for learning automatically from data an iterative optimization procedure that would solve likelihood-free inference problems. We design a recurrent inference machine that learns a sequence of parameter updates leading to good parameter estimates, without ever specifying some explicit notion of divergence between the simulated data and the real data distributions. We demonstrate our approach on toy simulators, showing promising results both in terms of performance and robustness.
stat
Pitfalls and Protocols in Practice of Manufacturing Data Science
The practical application of machine learning and data science (ML/DS) techniques present a range of procedural issues to be examined and resolve including those relating to the data issues, methodologies, assumptions, and applicable conditions. Each of these issues can present difficulties in practice; particularly, associated with the manufacturing characteristics and domain knowledge. The purpose of this paper is to highlight some of the pitfalls that have been identified in real manufacturing application under each of these headings and to suggest protocols to avoid the pitfalls and guide the practical applications of the ML/DS methodologies from predictive analytics to prescriptive analytics.
stat
Adding new experimental arms to randomised clinical trials: impact on error rates
Background: Experimental treatments pass through various stages of development. If a treatment passes through early phase experiments, the investigators may want to assess it in a late phase randomised controlled trial. An efficient way to do this is adding it as a new research arm to an ongoing trial. This allows to add the new treatment while the existing arms continue. The familywise type I error rate (FWER) is often a key quantity of interest in any multi-arm trial. We set out to clarify how it should be calculated when new arms are added to a trial some time after it has started. Methods: We show how the FWER, any-pair and all-pairs powers can be calculated when a new arm is added to a platform trial. We extend the Dunnett probability and derive analytical formulae for the correlation between the test statistics of the existing pairwise comparison and that of the newly added arm. We also verify our analytical derivation via simulations. Results: Our results indicate that the FWER depends on the shared control arm information (i.e. individuals in continuous and binary outcomes and primary outcome events in time-to-event outcomes) from the common control arm patients and the allocation ratio. The FWER is driven more by the number of pairwise comparisons and the corresponding (pairwise) Type I error rates than by the timing of the addition of the new arms. The FWER can be estimated using \v{S}id\'{a}k's correction if the correlation between the test statistics of pairwise comparisons is less than 0:30. Conclusions: The findings we present in this article can be used to design trials with pre-planned deferred arms or to design new pairwise comparisons within an ongoing platform trial where control of the pairwise error rate (PWER) or FWER (for a subset of pairwise comparisons) is required.
stat
Breaking hypothesis testing for failure rates
We describe the utility of point processes and failure rates and the most common point process for modeling failure rates, the Poisson point process. Next, we describe the uniformly most powerful test for comparing the rates of two Poisson point processes for a one-sided test (henceforth referred to as the "rate test"). A common argument against using this test is that real world data rarely follows the Poisson point process. We thus investigate what happens when the distributional assumptions of tests like these are violated and the test still applied. We find a non-pathological example (using the rate test on a Compound Poisson distribution with Binomial compounding) where violating the distributional assumptions of the rate test make it perform better (lower error rates). We also find that if we replace the distribution of the test statistic under the null hypothesis with any other arbitrary distribution, the performance of the test (described in terms of the false negative rate to false positive rate trade-off) remains exactly the same. Next, we compare the performance of the rate test to a version of the Wald test customized to the Negative Binomial point process and find it to perform very similarly while being much more general and versatile. Finally, we discuss the applications to Microsoft Azure. The code for all experiments performed is open source and linked in the introduction.
stat
COT-GAN: Generating Sequential Data via Causal Optimal Transport
We introduce COT-GAN, an adversarial algorithm to train implicit generative models optimized for producing sequential data. The loss function of this algorithm is formulated using ideas from Causal Optimal Transport (COT), which combines classic optimal transport methods with an additional temporal causality constraint. Remarkably, we find that this causality condition provides a natural framework to parameterize the cost function that is learned by the discriminator as a robust (worst-case) distance, and an ideal mechanism for learning time dependent data distributions. Following Genevay et al.\ (2018), we also include an entropic penalization term which allows for the use of the Sinkhorn algorithm when computing the optimal transport cost. Our experiments show effectiveness and stability of COT-GAN when generating both low- and high-dimensional time series data. The success of the algorithm also relies on a new, improved version of the Sinkhorn divergence which demonstrates less bias in learning.
stat
Performance and Application of Estimators for the Value of an Optimal Dynamic Treatment Rule
Given an (optimal) dynamic treatment rule, it may be of interest to evaluate that rule -- that is, to ask the causal question: what is the expected outcome had every subject received treatment according to that rule? In this paper, we study the performance of estimators that approximate the true value of: 1) an $a$ $priori$ known dynamic treatment rule 2) the true, unknown optimal dynamic treatment rule (ODTR); 3) an estimated ODTR, a so-called "data-adaptive parameter," whose true value depends on the sample. Using simulations of point-treatment data, we specifically investigate: 1) the impact of increasingly data-adaptive estimation of nuisance parameters and/or of the ODTR on performance; 2) the potential for improved efficiency and bias reduction through the use of semiparametric efficient estimators; and, 3) the importance of sample splitting based on CV-TMLE for accurate inference. In the simulations considered, there was very little cost and many benefits to using the cross-validated targeted maximum likelihood estimator (CV-TMLE) to estimate the value of the true and estimated ODTR; importantly, and in contrast to non cross-validated estimators, the performance of CV-TMLE was maintained even when highly data-adaptive algorithms were used to estimate both nuisance parameters and the ODTR. In addition, we apply these estimators for the value of the rule to the "Interventions" Study, an ongoing randomized controlled trial, to identify whether assigning cognitive behavioral therapy (CBT) to criminal justice-involved adults with mental illness using an ODTR significantly reduces the probability of recidivism, compared to assigning CBT in a non-individualized way.
stat
What You See May Not Be What You Get: UCB Bandit Algorithms Robust to {\epsilon}-Contamination
Motivated by applications of bandit algorithms in education, we consider a stochastic multi-armed bandit problem with $\varepsilon$-contaminated rewards. We allow an adversary to give arbitrary unbounded contaminated rewards with full knowledge of the past and future. We impose the constraint that for each time $t$ the proportion of contaminated rewards for any action is less than or equal to $\varepsilon$. We derive concentration inequalities for two robust mean estimators for sub-Gaussian distributions in the $\varepsilon$-contamination context. We define the $\varepsilon$-contaminated stochastic bandit problem and use our robust mean estimators to give two variants of a robust Upper Confidence Bound (UCB) algorithm, crUCB. Using regret derived from only the underlying stochastic rewards, both variants of crUCB achieve $\mathcal{O} (\sqrt{KT\log T})$ regret for small enough contamination proportions. Our simulations assume small horizons, reflecting the newly explored setting of bandits in education. We show that in certain adversarial regimes crUCB not only outperforms algorithms designed for stochastic (UCB1) and adversarial (EXP3) bandits but also those that have "best of both worlds" guarantees (EXP3++ and TsallisInf) even when our constraint on the proportion of contaminated rewards is broken.
stat
Basis Expansions for Functional Snippets
Estimation of mean and covariance functions is fundamental for functional data analysis. While this topic has been studied extensively in the literature, a key assumption is that there are enough data in the domain of interest to estimate both the mean and covariance functions. In this paper, we investigate mean and covariance estimation for functional snippets in which observations from a subject are available only in an interval of length strictly (and often much) shorter than the length of the whole interval of interest. For such a sampling plan, no data is available for direct estimation of the off-diagonal region of the covariance function. We tackle this challenge via a basis representation of the covariance function. The proposed approach allows one to consistently estimate an infinite-rank covariance function from functional snippets. We establish the convergence rates for the proposed estimators and illustrate their finite-sample performance via simulation studies and two data applications.
stat
Bias in Zipf's Law Estimators
The prevailing maximum likelihood estimators for inferring power law models from rank-frequency data are biased. The source of this bias is an inappropriate likelihood function. The correct likelihood function is derived and shown to be computationally intractable. A more computationally efficient method of approximate Bayesian computation (ABC) is explored. This method is shown to have less bias for data generated from idealised rank-frequency Zipfian distributions. However, the existing estimators and the ABC estimator described here assume that words are drawn from a simple probability distribution, while language is a much more complex process. We show that this false assumption leads to continued biases when applying any of these methods to natural language to estimate Zipf exponents. We recommend caution when applying maximum likelihood estimation to investigate power laws in rank-frequency data, and suggest that researchers instead consider using graphical methods such as ordinary least squares and/or transform the data to a frequency-size representation.
stat
A joint model for multiple dynamic processes and clinical endpoints: application to Alzheimer's disease
As other neurodegenerative diseases, Alzheimer's disease, the most frequent dementia in the elderly, is characterized by multiple progressive impairments in the brain structure and in clinical functions such as cognitive functioning and functional disability. Until recently, these components were mostly studied independently since no joint model for multivariate longitudinal data and time to event was available in the statistical community. Yet, these components are fundamentally inter-related in the degradation process towards dementia and should be analyzed together. We thus propose a joint model to simultaneously describe the dynamics of multiple correlated components. Each component, defined as a latent process, is measured by one or several continuous markers (not necessarily Gaussian). Rather than considering the associated time to diagnosis as in standard joint models, we assume diagnosis corresponds to the passing above a covariate-specific threshold (to be estimated) of a pathological process which is modelled as a combination of the component-specific latent processes. This definition captures the clinical complexity of diagnoses such as dementia diagnosis but also benefits from simplifications for the computation of Maximum Likelihood Estimates. We show that the model and estimation procedure can also handle competing clinical endpoints. The estimation procedure, implemented in a R package, is validated by simulations and the method is illustrated on a large French population-based cohort of cerebral aging in which we focused on the dynamics of three clinical manifestations and the associated risk of dementia and death before dementia.
stat
Moments of the multivariate Beta distribution
In this paper, we extend Beta distribution to 2 by 2 matrix and give the analytical formula for its moments. Our analytical formula can be used to analyze the asymptotic behavior of Beta distribution for 2 by 2 matrix.
stat
Gaussian Process Learning via Fisher Scoring of Vecchia's Approximation
We derive a single pass algorithm for computing the gradient and Fisher information of Vecchia's Gaussian process loglikelihood approximation, which provides a computationally efficient means for applying the Fisher scoring algorithm for maximizing the loglikelihood. The advantages of the optimization techniques are demonstrated in numerical examples and in an application to Argo ocean temperature data. The new methods are more accurate and much faster than an optimization method that uses only function evaluations, especially when the covariance function has many parameters. This allows practitioners to fit nonstationary models to large spatial and spatial-temporal datasets.
stat
On the Estimation of Entropy in the FastICA Algorithm
The fastICA method is a popular dimension reduction technique used to reveal patterns in data. Here we show both theoretically and in practice that the approximations used in fastICA can result in patterns not being successfully recognised. We demonstrate this problem using a two-dimensional example where a clear structure is immediately visible to the naked eye, but where the projection chosen by fastICA fails to reveal this structure. This implies that care is needed when applying fastICA. We discuss how the problem arises and how it is intrinsically connected to the approximations that form the basis of the computational efficiency of fastICA.
stat
A streaming algorithm for bivariate empirical copulas
Empirical copula functions can be used to model the dependence structure of multivariate data. The Greenwald and Khanna algorithm is adapted in order to provide a space-memory efficient approximation to the empirical copula function of a bivariate stream of data. A succinct space-memory efficient summary of values seen in the stream up to a certain time is maintained and can be queried at any point to return an approximation to the empirical bivariate copula function with guaranteed error bounds. An example then illustrates how these summaries can be used as a tool to compute approximations to higher dimensional copula decompositions containing bivariate copulas. The computational benefits and approximation error of the algorithm is theoretically and numerically assessed.
stat
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
For nonconvex optimization in machine learning, this article proves that every local minimum achieves the globally optimal value of the perturbable gradient basis model at any differentiable point. As a result, nonconvex machine learning is theoretically as supported as convex machine learning with a handcrafted basis in terms of the loss at differentiable local minima, except in the case when a preference is given to the handcrafted basis over the perturbable gradient basis. The proofs of these results are derived under mild assumptions. Accordingly, the proven results are directly applicable to many machine learning models, including practical deep neural networks, without any modification of practical methods. Furthermore, as special cases of our general results, this article improves or complements several state-of-the-art theoretical results on deep neural networks, deep residual networks, and overparameterized deep neural networks with a unified proof technique and novel geometric insights. A special case of our results also contributes to the theoretical foundation of representation learning.
stat
Infinite attention: NNGP and NTK for deep attention networks
There is a growing amount of literature on the relationship between wide neural networks (NNs) and Gaussian processes (GPs), identifying an equivalence between the two for a variety of NN architectures. This equivalence enables, for instance, accurate approximation of the behaviour of wide Bayesian NNs without MCMC or variational approximations, or characterisation of the distribution of randomly initialised wide NNs optimised by gradient descent without ever running an optimiser. We provide a rigorous extension of these results to NNs involving attention layers, showing that unlike single-head attention, which induces non-Gaussian behaviour, multi-head attention architectures behave as GPs as the number of heads tends to infinity. We further discuss the effects of positional encodings and layer normalisation, and propose modifications of the attention mechanism which lead to improved results for both finite and infinitely wide NNs. We evaluate attention kernels empirically, leading to a moderate improvement upon the previous state-of-the-art on CIFAR-10 for GPs without trainable kernels and advanced data preprocessing. Finally, we introduce new features to the Neural Tangents library (Novak et al., 2020) allowing applications of NNGP/NTK models, with and without attention, to variable-length sequences, with an example on the IMDb reviews dataset.
stat
Investigation of finite-sample properties of robust location and scale estimators
When the experimental data set is contaminated, we usually employ robust alternatives to common location and scale estimators such as the sample median and Hodges-Lehmann estimators for location and the sample median absolute deviation and Shamos estimators for scale. It is well known that these estimators have high positive asymptotic breakdown points and are Fisher-consistent as the sample size tends to infinity. To the best of our knowledge, the finite-sample properties of these estimators, depending on the sample size, have not well been studied in the literature. In this paper, we fill this gap by providing their closed-form finite-sample breakdown points and calculating the unbiasing factors and relative efficiencies of the robust estimators through the extensive Monte Carlo simulations up to the sample size 100. The numerical study shows that the unbiasing factor improves the finite-sample performance significantly. In addition, we provide the predicted values for the unbiasing factors obtained by using the least squares method which can be used for the case of sample size more than 100.
stat
A Latent Survival Analysis Enabled Simulation Platform For Nursing Home Staffing Strategy Evaluation
Nursing homes are critical facilities for caring frail older adults with round-the-clock formal care and personal assistance. To ensure quality care for nursing home residents, adequate staffing level is of great importance. Current nursing home staffing practice is mainly based on experience and regulation. The objective of this paper is to investigate the viability of experience-based and regulation-based strategies, as well as alternative staffing strategies to minimize labor costs subject to heterogeneous service demand of nursing home residents under various scenarios of census. We propose a data-driven analysis framework to model heterogeneous service demand of nursing home residents and further identify appropriate staffing strategies by combing survival model and computer simulation techniques as well as domain knowledge. Specifically, in the analysis, we develop an agent-based simulation tool consisting of four main modules, namely individual length of stay predictor, individual daily staff time generator, facility level staffing strategy evaluator, and graphical user interface. We use real nursing home data to validate the proposed model, and demonstrate that the identified staffing strategy significantly reduces the total labor cost of certified nursing assistants compared to the benchmark strategies. Additionally, the proposed length of stay predictive model that considers multiple discharge dispositions exhibits superior accuracy and offers better staffing decisions than those without the consideration. Further, we construct different census scenarios of nursing home residents to demonstrate the capability of the proposed framework in helping adjust staffing decisions of nursing home administrators in various realistic settings.
stat
Outlier detection in non-elliptical data by kernel MRCD
The minimum regularized covariance determinant method (MRCD) is a robust estimator for multivariate location and scatter, which detects outliers by fitting a robust covariance matrix to the data. Its regularization ensures that the covariance matrix is well-conditioned in any dimension. The MRCD assumes that the non-outlying observations are roughly elliptically distributed, but many datasets are not of that form. Moreover, the computation time of MRCD increases substantially when the number of variables goes up, and nowadays datasets with many variables are common. The proposed Kernel Minimum Regularized Covariance Determinant (KMRCD) estimator addresses both issues. It is not restricted to elliptical data because it implicitly computes the MRCD estimates in a kernel induced feature space. A fast algorithm is constructed that starts from kernel-based initial estimates and exploits the kernel trick to speed up the subsequent computations. Based on the KMRCD estimates, a rule is proposed to flag outliers. The KMRCD algorithm performs well in simulations, and is illustrated on real-life data.
stat
Partition-Mallows Model and Its Inference for Rank Aggregation
Learning how to aggregate ranking lists has been an active research area for many years and its advances have played a vital role in many applications ranging from bioinformatics to internet commerce. The problem of discerning reliability of rankers based only on the rank data is of great interest to many practitioners, but has received less attention from researchers. By dividing the ranked entities into two disjoint groups, i.e., relevant and irrelevant/background ones, and incorporating the Mallows model for the relative ranking of relevant entities, we propose a framework for rank aggregation that can not only distinguish quality differences among the rankers but also provide the detailed ranking information for relevant entities. Theoretical properties of the proposed approach are established, and its advantages over existing approaches are demonstrated via simulation studies and real-data applications. Extensions of the proposed method to handle partial ranking lists and conduct covariate-assisted rank aggregation are also discussed.
stat
TCA and TLRA: A comparison on contingency tables and compositional data
There are two popular general approaches for the analysis and visualization of a contingency table and a compositional data set: Correspondence analysis (CA) and log ratio analysis (LRA). LRA includes two independently well developed methods: association models and compositional data analysis. The application of either CA or LRA to a contingency table or to compositional data set includes a preprocessing centering step. In CA the centering step is multiplicative, while in LRA it is log bi-additive. A preprocessed matrix is double-centered, so it is a residuel matrix; which implies that it affects the final results of the analysis. This paper introduces a novel index named the intrinsic measure of the quality of the signs of the residuals (QSR) for the choice of the preprocessing, and consequently of the method. The criterion is based on taxicab singular value decomposition (TSVD) on which the package TaxicabCA in R is developed. We present a minimal R script that can be executed to obtain the numerical results and the maps in this paper. Three relatively small sized data sets available freely on the web are used as examples.
stat
Kernel density estimation for directional-linear data
A nonparametric kernel density estimator for directional-linear data is introduced. The proposal is based on a product kernel accounting for the different nature of both (directional and linear) components of the random vector. Expressions for bias, variance and Mean Integrated Squared Error (MISE) are derived, jointly with an asymptotic normality result for the proposed estimator. For some particular distributions, an explicit formula for the MISE is obtained and compared with its asymptotic version, both for directional and directional-linear kernel density estimators. In this same setting a closed expression for the bootstrap MISE is also derived.
stat
Improving the replicability of results from a single psychological experiment
We identify two aspects of selective inference as major obstacles for replicability. The practice of highlighting a subset of statistical results without taking into consideration the multiple comparisons made in the analysis from which they were selected. The file-drawer effect, the tendency to only publish statistically significant results. We propose to address the first issue by controlling the FDR using the hierarchical Benjamini-Hochberg procedure of Benjamini and Bogomolov. To address the second issue, we propose constructing confidence intervals and estimators that are conditioned on passing a threshold level of statistical significance. We apply our proposed methodologies to the 100 experimental psychology studies for which replication was tested as part of the Reproducibility Project in Psychology (RPP). We showed that these two simple-to-use tools can enhance the replicability of published findings without sacrificing statistical power, and are essential even when adhering to alternative methods proposed for addressing the replicability crisis in psychology.
stat
On Negative Transfer and Structure of Latent Functions in Multi-output Gaussian Processes
The multi-output Gaussian process ($\mathcal{MGP}$) is based on the assumption that outputs share commonalities, however, if this assumption does not hold negative transfer will lead to decreased performance relative to learning outputs independently or in subsets. In this article, we first define negative transfer in the context of an $\mathcal{MGP}$ and then derive necessary conditions for an $\mathcal{MGP}$ model to avoid negative transfer. Specifically, under the convolution construction, we show that avoiding negative transfer is mainly dependent on having a sufficient number of latent functions $Q$ regardless of the flexibility of the kernel or inference procedure used. However, a slight increase in $Q$ leads to a large increase in the number of parameters to be estimated. To this end, we propose two latent structures that scale to arbitrarily large datasets, can avoid negative transfer and allow any kernel or sparse approximations to be used within. These structures also allow regularization which can provide consistent and automatic selection of related outputs.
stat
How Ominous is the Future Global Warming Premonition?
Global warming, the phenomenon of increasing global average temperature in the recent decades, is receiving wide attention due to its very significant adverse effects on climate. Whether global warming will continue even in the future, is a question that is most important to investigate. In this regard, the so-called general circulation models (GCMs) have attempted to project the future climate, and nearly all of them exhibit alarming rates of global temperature rise in the future. Although global warming in the current time frame is undeniable, it is important to assess the validity of the future predictions of the GCMs. In this article, we attempt such a study using our recently-developed Bayesian multiple testing paradigm for model selection in inverse regression problems. The model we assume for the global temperature time series is based on Gaussian process emulation of the black box scenario, realistically treating the dynamic evolution of the time series as unknown. We apply our ideas to datasets available from the Intergovernmental Panel on Climate Change (IPCC) website. The best GCM models selected by our method under different assumptions on future climate change scenarios do not convincingly support the present global warming pattern when only the future predictions are considered known. Using our Gaussian process idea, we also forecast the future temperature time series given the current one. Interestingly, our results do not support drastic future global warming predicted by almost all the GCM models.
stat
Graph Enhanced High Dimensional Kernel Regression
In this paper, the flexibility, versatility and predictive power of kernel regression are combined with now lavishly available network data to create regression models with even greater predictive performances. Building from previous work featuring generalized linear models built in the presence of network cohesion data, we construct a kernelized extension that captures subtler nonlinearities in extremely high dimensional spaces and also produces far better predictive performances. Applications of seamless yet substantial adaptation to simulated and real-life data demonstrate the appeal and strength of our work.
stat
Properties of restricted randomization with implications for experimental design
Recently, there as been an increasing interest in the use of heavily restricted randomization designs which enforces balance on observed covariates in randomized controlled trials. However, when restrictions are too strict, there is a risk that the treatment effect estimator will have a very high mean squared error. In this paper, we formalize this risk and propose a novel combinatoric-based approach to describe and address this issue. First, some known properties of complete randomization and restricted randomization are re-proven using basic combinatorics. Second, a novel diagnostic measure that only use the information embedded in the combinatorics of the design is proposed. Finally, we identify situations in which restricted designs can lead to an increased risk of getting a high mean squared error and discuss how our diagnostic measure can be used to detect and avoid such designs. Our results have implications for any restricted randomization design and can be used to evaluate the trade-off between enforcing balance on observed covariates and avoiding too restrictive designs.
stat
Sharpening the Rosenbaum Sensitivity Bounds to Address Concerns About Interactions Between Observed and Unobserved Covariates
In observational studies, it is typically unrealistic to assume that treatments are randomly assigned, even conditional on adjusting for all observed covariates. Therefore, a sensitivity analysis is often needed to examine how hidden biases due to unobserved covariates would affect inferences on treatment effects. In matched observational studies where each treated unit is matched to one or multiple untreated controls for observed covariates, the Rosenbaum bounds sensitivity analysis is one of the most popular sensitivity analysis models. In this paper, we show that in the presence of interactions between observed and unobserved covariates, directly applying the Rosenbaum bounds will almost inevitably exaggerate the report of sensitivity of causal conclusions to hidden bias. We give sharper odds ratio bounds to fix this deficiency. We illustrate our new method through studying the effect of anger/hostility tendency on the risk of having heart problems.
stat
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise
Stochastic gradient descent with momentum (SGDm) is one of the most popular optimization algorithms in deep learning. While there is a rich theory of SGDm for convex problems, the theory is considerably less developed in the context of deep learning where the problem is non-convex and the gradient noise might exhibit a heavy-tailed behavior, as empirically observed in recent studies. In this study, we consider a \emph{continuous-time} variant of SGDm, known as the underdamped Langevin dynamics (ULD), and investigate its asymptotic properties under heavy-tailed perturbations. Supported by recent studies from statistical physics, we argue both theoretically and empirically that the heavy-tails of such perturbations can result in a bias even when the step-size is small, in the sense that \emph{the optima of stationary distribution} of the dynamics might not match \emph{the optima of the cost function to be optimized}. As a remedy, we develop a novel framework, which we coin as \emph{fractional} ULD (FULD), and prove that FULD targets the so-called Gibbs distribution, whose optima exactly match the optima of the original cost. We observe that the Euler discretization of FULD has noteworthy algorithmic similarities with \emph{natural gradient} methods and \emph{gradient clipping}, bringing a new perspective on understanding their role in deep learning. We support our theory with experiments conducted on a synthetic model and neural networks.
stat
Establishing phone-pair co-usage by comparing mobility patterns
In forensic investigations it is often of value to establish whether two phones were used by the same person during a given time period. We present a method that uses time and location of cell tower registrations of mobile phones to assess the strength of evidence that any pair of phones were used by the same person. The method is transparent as it uses logistic regression to discriminate between the hypotheses of same and different user, and a standard kernel density estimation to quantify the weight of evidence in terms of a likelihood ratio. We further add to previous theoretical work by training and validating our method on real world data, paving the way for application in practice. The method shows good performance under different modeling choices and robustness under lower quantity or quality of data. We discuss practical usage in court.
stat
Spatiotemporal Analysis of Ridesourcing and Taxi Demand by Taxi zones in New York City
The burst of demand for TNCs has significantly changed the transportation landscape and dramatically disrupted the Vehicle for Hire (VFH) market that used to be dominated by taxicabs for many years. Since first being introduced by Uber in 2009, ridesourcing companies have rapidly penetrated the market. This paper aims to investigate temporal and spatial patterns in taxi and TNC usage based on data at the taxi zone level in New York City. Specifically, we fit suitable time series models to estimate the temporal patterns. Next, we filter out the temporal effects and investigate spatial dependence in the residuals using global and local Moran's I statistics. We discuss the relationship between the spatial correlations and the demographic and land use effects at the taxi zone level. Estimating and removing these effects via a multiple linear regression (MLR) model and recomputing the Moran's I statistics on the resulting residuals enables us to investigate spatial dependence after accounting for these effects. Our analysis indicates interesting patterns in spatial correlations between taxi zones in NYC and over time, indicating that predictive modeling of ridesourcing usage must incorporate both temporal and spatial dependence.
stat
Kernel quadrature with DPPs
We study quadrature rules for functions from an RKHS, using nodes sampled from a determinantal point process (DPP). DPPs are parametrized by a kernel, and we use a truncated and saturated version of the RKHS kernel. This link between the two kernels, along with DPP machinery, leads to relatively tight bounds on the quadrature error, that depends on the spectrum of the RKHS kernel. Finally, we experimentally compare DPPs to existing kernel-based quadratures such as herding, Bayesian quadrature, or leverage score sampling. Numerical results confirm the interest of DPPs, and even suggest faster rates than our bounds in particular cases.
stat
Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries
Approximate Bayesian computation (ABC) is a simulation-based likelihood-free method applicable to both model selection and parameter estimation. ABC parameter estimation requires the ability to forward simulate datasets from a candidate model, but because the sizes of the observed and simulated datasets usually need to match, this can be computationally expensive. Additionally, since ABC inference is based on comparisons of summary statistics computed on the observed and simulated data, using computationally expensive summary statistics can lead to further losses in efficiency. ABC has recently been applied to the family of mechanistic network models, an area that has traditionally lacked tools for inference and model choice. Mechanistic models of network growth repeatedly add nodes to a network until it reaches the size of the observed network, which may be of the order of millions of nodes. With ABC, this process can quickly become computationally prohibitive due to the resource intensive nature of network simulations and evaluation of summary statistics. We propose two methodological developments to enable the use of ABC for inference in models for large growing networks. First, to save time needed for forward simulating model realizations, we propose a procedure to extrapolate (via both least squares and Gaussian processes) summary statistics from small to large networks. Second, to reduce computation time for evaluating summary statistics, we use sample-based rather than census-based summary statistics. We show that the ABC posterior obtained through this approach, which adds two additional layers of approximation to the standard ABC, is similar to a classic ABC posterior. Although we deal with growing network models, both extrapolated summaries and sampled summaries are expected to be relevant in other ABC settings where the data are generated incrementally.
stat
Computer model calibration based on image warping metrics: an application for sea ice deformation
Arctic sea ice plays an important role in the global climate. Sea ice models governed by physical equations have been used to simulate the state of the ice including characteristics such as ice thickness, concentration, and motion. More recent models also attempt to capture features such as fractures or leads in the ice. These simulated features can be partially misaligned or misshapen when compared to observational data, whether due to numerical approximation or incomplete physics. In order to make realistic forecasts and improve understanding of the underlying processes, it is necessary to calibrate the numerical model to field data. Traditional calibration methods based on generalized least-square metrics are flawed for linear features such as sea ice cracks. We develop a statistical emulation and calibration framework that accounts for feature misalignment and misshapenness, which involves optimally aligning model output with observed features using cutting edge image registration techniques. This work can also have application to other physical models which produce coherent structures.
stat
Optimal allocation of subjects in a cluster randomized trial with fixed number of clusters when the ICCs or costs are heterogeneous over clusters
The intra-cluster correlation coefficient (ICC) plays an important role while designing the cluster randomized trials (CRTs). Often optimal CRTs are designed assuming that the magnitude of the ICC is constant across the clusters. However, this assumption is hardly satisfied. In some applications, the precise information about the cluster specific correlation is known in advance. In this article, we propose an optimal design with non-constant ICC across the clusters. Also in many situations, the cost of sampling of an observation from a particular cluster may differ from that of some other cluster. An optimal design in those scenarios is also obtained assuming unequal costs of sampling from different clusters. The theoretical findings are supplemented by thorough numerical examples.
stat
Non-separable Models with High-dimensional Data
This paper studies non-separable models with a continuous treatment when the dimension of the control variables is high and potentially larger than the effective sample size. We propose a three-step estimation procedure to estimate the average, quantile, and marginal treatment effects. In the first stage we estimate the conditional mean, distribution, and density objects by penalized local least squares, penalized local maximum likelihood estimation, and numerical differentiation, respectively, where control variables are selected via a localized method of L1-penalization at each value of the continuous treatment. In the second stage we estimate the average and marginal distribution of the potential outcome via the plug-in principle. In the third stage, we estimate the quantile and marginal treatment effects by inverting the estimated distribution function and using the local linear regression, respectively. We study the asymptotic properties of these estimators and propose a weighted-bootstrap method for inference. Using simulated and real datasets, we demonstrate that the proposed estimators perform well in finite samples.
stat
Infinite-channel deep stable convolutional neural networks
The interplay between infinite-width neural networks (NNs) and classes of Gaussian processes (GPs) is well known since the seminal work of Neal (1996). While numerous theoretical refinements have been proposed in the recent years, the interplay between NNs and GPs relies on two critical distributional assumptions on the NN's parameters: A1) finite variance; A2) independent and identical distribution (iid). In this paper, we consider the problem of removing A1 in the general context of deep feed-forward convolutional NNs. In particular, we assume iid parameters distributed according to a stable distribution and we show that the infinite-channel limit of a deep feed-forward convolutional NNs, under suitable scaling, is a stochastic process with multivariate stable finite-dimensional distributions. Such a limiting distribution is then characterized through an explicit backward recursion for its parameters over the layers. Our contribution extends results of Favaro et al. (2020) to convolutional architectures, and it paves the way to expand exciting recent lines of research that rely on classes of GP limits.
stat
A response-matrix-centred approach to presenting cross-section measurements
The current canonical approach to publishing cross-section data is to unfold the reconstructed distributions. Detector effects like efficiency and smearing are undone mathematically, yielding distributions in true event properties. This is an ill-posed problem, as even small statistical variations in the reconstructed data can lead to large changes in the unfolded spectra. This work presents an alternative or complementary approach: the response-matrix-centred forward-folding approach. It offers a convenient way to forward-fold model expectations in truth space to reconstructed quantities. These can then be compared to the data directly, similar to what is usually done with full detector simulations within the experimental collaborations. For this, the detector response (efficiency and smearing) is parametrised as a matrix. The effects of the detector on the measurement of a given model is simulated by simply multiplying the binned truth expectation values by this response matrix. Systematic uncertainties in the detector response are handled by providing a set of matrices according to the prior distribution of the detector properties and marginalising over them. Background events can be included in the likelihood calculation by giving background events their own bins in truth space. To facilitate a straight-forward use of response matrices, a new software framework has been developed: the Response Matrix Utilities (ReMU). ReMU is a Python package distributed via the Python Package Index. It only uses widely available, standard scientific Python libraries and does not depend on any custom experiment-specific software. It offers all methods needed to build response matrices from Monte Carlo data sets, use the response matrix to forward-fold truth-level model predictions, and compare the predictions to real data using Bayesian or frequentist statistical inference.
stat
Economic variable selection
Regression plays a key role in many research areas and its variable selection is a classic and major problem. This study emphasizes cost of predictors to be purchased for future use, when we select a subset of them. Its economic aspect is naturally formalized by the decision-theoretic approach. In addition, two Bayesian approaches are proposed to address uncertainty about model parameters and models: the restricted and extended approaches, which lead us to rethink about model averaging. From objective, rule-based, or robust Bayes point of view, the former is preferred. Proposed method is applied to three popular datasets for illustration.
stat
Bayesian experimental design without posterior calculations: an adversarial approach
Most computational approaches to Bayesian experimental design require making posterior calculations, such evidence estimates, repeatedly for a large number of potential designs and/or simulated datasets. This can be expensive and prohibit scaling up these methods to models with many parameters, or designs with many unknowns to select. We introduce an efficient alternative approach without posterior calculations, based on optimising the expected trace of the Fisher information, as discussed by Walker (2016). We illustrate drawbacks of this approach, including lack of invariance to reparameterisation and encouraging designs which are informative about one parameter combination but not any others. We show these can be avoided by using an adversarial approach: the experimenter must select their design while an adversary attempts to select the least favourable parameterisation. We present theoretical properties of this approach and show it can be used with gradient based optimisation methods to find designs efficiently in practice.
stat
Elastic Integrative Analysis of Randomized Trial and Real-World Data for Treatment Heterogeneity Estimation
Parallel randomized trial (RT) and real-world (RW) data are becoming increasingly available for treatment evaluation. Given the complementary features of the RT and RW data, we propose a test-based elastic integrative analysis of the RT and RW data for accurate and robust estimation of the heterogeneity of treatment effect (HTE), which lies at the heart of precision medicine. When the RW data are not subject to bias, e.g., due to unmeasured confounding, our approach combines the RT and RW data for optimal estimation by exploiting semiparametric efficiency theory. Utilizing the design advantage of RTs, we construct a built-in test procedure to gauge the reliability of the RW data and decide whether or not to use RW data in an integrative analysis. We characterize the asymptotic distribution of the test-based elastic integrative estimator under local alternatives, which provides a better approximation of the finite-sample behaviors of the test and estimator when the idealistic assumption required for the RW data is weakly violated. We provide a data-adaptive procedure to select the threshold of the test statistic that promises the smallest mean square error of the proposed estimator of the HTE. Lastly, we construct an elastic confidence interval that has a good finite-sample coverage property. We apply the proposed method to characterize who can benefit from adjuvant chemotherapy in patients with stage IB non-small cell lung cancer.
stat
Equivariant Hamiltonian Flows
This paper introduces equivariant hamiltonian flows, a method for learning expressive densities that are invariant with respect to a known Lie-algebra of local symmetry transformations while providing an equivariant representation of the data. We provide proof of principle demonstrations of how such flows can be learnt, as well as how the addition of symmetry invariance constraints can improve data efficiency and generalisation. Finally, we make connections to disentangled representation learning and show how this work relates to a recently proposed definition.
stat
Sequential Optimization in Locally Important Dimensions
Optimizing an expensive, black-box function $f(\cdot)$ is challenging when its input space is high-dimensional. Sequential design frameworks first model $f(\cdot)$ with a surrogate function and then optimize an acquisition function to determine input settings to evaluate next. Optimization of both $f(\cdot)$ and the acquisition function benefit from effective dimension reduction. Global variable selection detects and removes input variables that do not affect $f(\cdot)$ across the input space. Further dimension reduction may be possible if we consider local variable selection around the current optimum estimate. We develop a sequential design algorithm called Sequential Optimization in Locally Important Dimensions (SOLID) that incorporates global and local variable selection to optimize a continuous, differentiable function. SOLID performs local variable selection by comparing the surrogate's predictions in a localized region around the estimated optimum with the $p$ alternative predictions made by removing each input variable. The search space of the acquisition function is further restricted to focus only on the variables that are deemed locally active, leading to greater emphasis on refining the surrogate model in locally active dimensions. A simulation study across three test functions and an application to the Sarcos robot dataset show that SOLID outperforms conventional approaches.
stat
Scaled Vecchia approximation for fast computer-model emulation
Many scientific phenomena are studied using computer experiments consisting of multiple runs of a computer model while varying the input settings. Gaussian processes (GPs) are a popular tool for the analysis of computer experiments, enabling interpolation between input settings, but direct GP inference is computationally infeasible for large datasets. We adapt and extend a powerful class of GP methods from spatial statistics to enable the scalable analysis and emulation of large computer experiments. Specifically, we apply Vecchia's ordered conditional approximation in a transformed input space, with each input scaled according to how strongly it relates to the computer-model response. The scaling is learned from the data, by estimating parameters in the GP covariance function using Fisher scoring. Our methods are highly scalable, enabling estimation, joint prediction and simulation in near-linear time in the number of model runs. In several numerical examples, our approach substantially outperformed existing methods.
stat
Split Regularized Regression
We propose an approach for fitting linear regression models that splits the set of covariates into groups. The optimal split of the variables into groups and the regularized estimation of the regression coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. The estimated coefficients are then pooled together to form the final fit. Our procedure works on top of a given penalized linear regression estimator (e.g., Lasso, elastic net) by fitting it to possibly overlapping groups of features, encouraging diversity among these groups to reduce the correlation of the corresponding predictions. For the case of two groups, elastic net penalty and orthogonal predictors, we give a closed form solution for the regression coefficients in each group. We establish the consistency of our method with the number of predictors possibly increasing with the sample size. An extensive simulation study and real-data applications show that in general the proposed method improves the prediction accuracy of the base estimator used in the procedure. Possible extensions to GLMs and other models are discussed. The supplemental material for this article, available online, contains the proofs of our theoretical results and the full results of our simulation study.
stat
Learning Rate Adaptation for Federated and Differentially Private Learning
We propose an algorithm for the adaptation of the learning rate for stochastic gradient descent (SGD) that avoids the need for validation set use. The idea for the adaptiveness comes from the technique of extrapolation: to get an estimate for the error against the gradient flow which underlies SGD, we compare the result obtained by one full step and two half-steps. The algorithm is applied in two separate frameworks: federated and differentially private learning. Using examples of deep neural networks we empirically show that the adaptive algorithm is competitive with manually tuned commonly used optimisation methods for differentially privately training. We also show that it works robustly in the case of federated learning unlike commonly used optimisation methods.
stat
Simultaneous inference for mixed and small area parameters
We address simultaneous inference for mixed parameters which are the key ingredients in small area estimation. We assume linear mixed model framework. Firstly, we analyse statistical properties of a max-type statistic and use it to construct simultaneous prediction intervals as well as to implement multiple testing procedure. Secondly, we derive bands based on the volume-of-tube formula. In addition, we adapt some of the simultaneous inference methods from regression and nonparametric curve estimation and compare them with our approaches. Simultaneous intervals are necessary to compare clusters since the presently available intervals are not statistically valid for such analysis. The proposed testing procedures can be used to validate certain statements about the set of mixed parameters or to test pairwise differences. Our proposal is accompanied by simulation experiments and a data example on small area household incomes. Both of them demonstrate an excellent performance and utility of our techniques.
stat
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Density Estimation is one of the central areas of statistics whose purpose is to estimate the probability density function underlying the observed data. It serves as a building block for many tasks in statistical inference, visualization, and machine learning. Density Estimation is widely adopted in the domain of unsupervised learning especially for the application of clustering. As big data become pervasive in almost every area of data sciences, analyzing high-dimensional data that have many features and variables appears to be a major focus in both academia and industry. High-dimensional data pose challenges not only from the theoretical aspects of statistical inference, but also from the algorithmic/computational considerations of machine learning and data analytics. This paper reviews a collection of selected nonparametric density estimation algorithms for high-dimensional data, some of them are recently published and provide interesting mathematical insights. The important application domain of nonparametric density estimation, such as { modal clustering}, are also included in this paper. Several research directions related to density estimation and high-dimensional data analysis are suggested by the authors.
stat
Graph-based regularization for regression problems with alignment and highly-correlated designs
Sparse models for high-dimensional linear regression and machine learning have received substantial attention over the past two decades. Model selection, or determining which features or covariates are the best explanatory variables, is critical to the interpretability of a learned model. Much of the current literature assumes that covariates are only mildly correlated. However, in many modern applications covariates are highly correlated and do not exhibit key properties (such as the restricted eigenvalue condition, restricted isometry property, or other related assumptions). This work considers a high-dimensional regression setting in which a graph governs both correlations among the covariates and the similarity among regression coefficients -- meaning there is \emph{alignment} between the covariates and regression coefficients. Using side information about the strength of correlations among features, we form a graph with edge weights corresponding to pairwise covariances. This graph is used to define a graph total variation regularizer that promotes similar weights for correlated features. This work shows how the proposed graph-based regularization yields mean-squared error guarantees for a broad range of covariance graph structures. These guarantees are optimal for many specific covariance graphs, including block and lattice graphs. Our proposed approach outperforms other methods for highly-correlated design in a variety of experiments on synthetic data and real biochemistry data.
stat
Deep Extreme Value Copulas for Estimation and Sampling
We propose a new method for modeling the distribution function of high dimensional extreme value distributions. The Pickands dependence function models the relationship between the covariates in the tails, and we learn this function using a neural network that is designed to satisfy its required properties. Moreover, we present new methods for recovering the spectral representation of extreme distributions and propose a generative model for sampling from extreme copulas. Numerical examples are provided demonstrating the efficacy and promise of our proposed methods.
stat
Learning with invariances in random features and kernel models
A number of machine learning tasks entail a high degree of invariance: the data distribution does not change if we act on the data with a certain group of transformations. For instance, labels of images are invariant under translations of the images. Certain neural network architectures -- for instance, convolutional networks -- are believed to owe their success to the fact that they exploit such invariance properties. With the objective of quantifying the gain achieved by invariant architectures, we introduce two classes of models: invariant random features and invariant kernel methods. The latter includes, as a special case, the neural tangent kernel for convolutional networks with global average pooling. We consider uniform covariates distributions on the sphere and hypercube and a general invariant target function. We characterize the test error of invariant methods in a high-dimensional regime in which the sample size and number of hidden units scale as polynomials in the dimension, for a class of groups that we call `degeneracy $\alpha$', with $\alpha \leq 1$. We show that exploiting invariance in the architecture saves a $d^\alpha$ factor ($d$ stands for the dimension) in sample size and number of hidden units to achieve the same test error as for unstructured architectures. Finally, we show that output symmetrization of an unstructured kernel estimator does not give a significant statistical improvement; on the other hand, data augmentation with an unstructured kernel estimator is equivalent to an invariant kernel estimator and enjoys the same improvement in statistical efficiency.
stat
Learning Theory for Inferring Interaction Kernels in Second-Order Interacting Agent Systems
Modeling the complex interactions of systems of particles or agents is a fundamental scientific and mathematical problem that is studied in diverse fields, ranging from physics and biology, to economics and machine learning. In this work, we describe a very general second-order, heterogeneous, multivariable, interacting agent model, with an environment, that encompasses a wide variety of known systems. We describe an inference framework that uses nonparametric regression and approximation theory based techniques to efficiently derive estimators of the interaction kernels which drive these dynamical systems. We develop a complete learning theory which establishes strong consistency and optimal nonparametric min-max rates of convergence for the estimators, as well as provably accurate predicted trajectories. The estimators exploit the structure of the equations in order to overcome the curse of dimensionality and we describe a fundamental coercivity condition on the inverse problem which ensures that the kernels can be learned and relates to the minimal singular value of the learning matrix. The numerical algorithm presented to build the estimators is parallelizable, performs well on high-dimensional problems, and is demonstrated on complex dynamical systems.
stat
Protecting Classifiers From Attacks. A Bayesian Approach
Classification problems in security settings are usually modeled as confrontations in which an adversary tries to fool a classifier manipulating the covariates of instances to obtain a benefit. Most approaches to such problems have focused on game-theoretic ideas with strong underlying common knowledge assumptions, which are not realistic in the security realm. We provide an alternative Bayesian framework that accounts for the lack of precise knowledge about the attacker's behavior using adversarial risk analysis. A key ingredient required by our framework is the ability to sample from the distribution of originating instances given the possibly attacked observed one. We propose a sampling procedure based on approximate Bayesian computation, in which we simulate the attacker's problem taking into account our uncertainty about his elements. For large scale problems, we propose an alternative, scalable approach that could be used when dealing with differentiable classifiers. Within it, we move the computational load to the training phase, simulating attacks from an adversary, adapting the framework to obtain a classifier robustified against attacks.
stat
spNNGP R package for Nearest Neighbor Gaussian Process models
This paper describes and illustrates functionality of the spNNGP R package. The package provides a suite of spatial regression models for Gaussian and non-Gaussian point-referenced outcomes that are spatially indexed. The package implements several Markov chain Monte Carlo (MCMC) and MCMC-free Nearest Neighbor Gaussian Process (NNGP) models for inference about large spatial data. Non-Gaussian outcomes are modeled using a NNGP Polya-Gamma latent variable. OpenMP parallelization options are provided to take advantage of multiprocessor systems. Package features are illustrated using simulated and real data sets.
stat
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning
Hyperbolic space is a geometry that is known to be well-suited for representation learning of data with an underlying hierarchical structure. In this paper, we present a novel hyperbolic distribution called \textit{pseudo-hyperbolic Gaussian}, a Gaussian-like distribution on hyperbolic space whose density can be evaluated analytically and differentiated with respect to the parameters. Our distribution enables the gradient-based learning of the probabilistic models on hyperbolic space that could never have been considered before. Also, we can sample from this hyperbolic probability distribution without resorting to auxiliary means like rejection sampling. As applications of our distribution, we develop a hyperbolic-analog of variational autoencoder and a method of probabilistic word embedding on hyperbolic space. We demonstrate the efficacy of our distribution on various datasets including MNIST, Atari 2600 Breakout, and WordNet.
stat
Modelling heterogeneity in Latent Space Models for Multidimensional Networks
Multidimensional network data can have different levels of complexity, as nodes may be characterized by heterogeneous individual-specific features, which may vary across the networks. This paper introduces a class of models for multidimensional network data, where different levels of heterogeneity within and between networks can be considered. The proposed framework is developed in the family of latent space models, and it aims to distinguish symmetric relations between the nodes and node-specific features. Model parameters are estimated via a Markov Chain Monte Carlo algorithm. Simulated data and an application to a real example, on fruits import/export data, are used to illustrate and comment on the performance of the proposed models.
stat
A Principle of Least Action for the Training of Neural Networks
Neural networks have been achieving high generalization performance on many tasks despite being highly over-parameterized. Since classical statistical learning theory struggles to explain this behavior, much effort has recently been focused on uncovering the mechanisms behind it, in the hope of developing a more adequate theoretical framework and having a better control over the trained models. In this work, we adopt an alternate perspective, viewing the neural network as a dynamical system displacing input particles over time. We conduct a series of experiments and, by analyzing the network's behavior through its displacements, we show the presence of a low kinetic energy displacement bias in the transport map of the network, and link this bias with generalization performance. From this observation, we reformulate the learning problem as follows: finding neural networks which solve the task while transporting the data as efficiently as possible. This offers a novel formulation of the learning problem which allows us to provide regularity results for the solution network, based on Optimal Transport theory. From a practical viewpoint, this allows us to propose a new learning algorithm, which automatically adapts to the complexity of the given task, and leads to networks with a high generalization ability even in low data regimes.
stat
$k$-means clustering of extremes
The $k$-means clustering algorithm and its variant, the spherical $k$-means clustering, are among the most important and popular methods in unsupervised learning and pattern detection. In this paper, we explore how the spherical $k$-means algorithm can be applied in the analysis of only the extremal observations from a data set. By making use of multivariate extreme value analysis we show how it can be adopted to find "prototypes" of extremal dependence and we derive a consistency result for our suggested estimator. In the special case of max-linear models we show furthermore that our procedure provides an alternative way of statistical inference for this class of models. Finally, we provide data examples which show that our method is able to find relevant patterns in extremal observations and allows us to classify extremal events.
stat
Skewed probit regression -- Identifiability, contraction and reformulation
Skewed probit regression is but one example of a statistical model that generalizes a simpler model, like probit regression. All skew-symmetric distributions and link functions arise from symmetric distributions by incorporating a skewness parameter through some skewing mechanism. In this work we address some fundamental issues in skewed probit regression, and more genreally skew-symmetric distributions or skew-symmetric link functions. We address the issue of identifiability of the skewed probit model parameters by reformulating the intercept from first principles. A new standardization of the skew link function is given to provide and anchored interpretation of the inference. Possible skewness parameters are investigated and the penalizing complexity priors of these are derived. This prior is invariant under reparameterization of the skewness parameter and quantifies the contraction of the skewed probit model to the probit model. The proposed results are available in the R-INLA package and we illustrate the use and effects of this work using simulated data, and well-known datasets using the link as well as the likelihood.
stat
Inference in a class of optimization problems: Confidence regions and finite sample bounds on errors in coverage probabilities
This paper describes a method for carrying out inference on partially identified parameters that are solutions to a class of optimization problems. The optimization problems arise in applications in which grouped data are used for estimation of a model's structural parameters. The parameters are characterized by restrictions that involve the unknown population means of observed random variables in addition to the structural parameters of interest. Inference consists of finding confidence intervals for the structural parameters. Our theory provides a finite-sample bound on the difference between the true and nominal probabilities with which a confidence interval contains the true but unknown value of a parameter. We contrast our method with an alternative inference method based on the median-of-means estimator of Minsker (2015). The results of Monte Carlo experiments and empirical examples illustrate the usefulness of our method.
stat
Emulation of stochastic simulators using generalized lambda models
Stochastic simulators are ubiquitous in many fields of applied sciences and engineering. In the context of uncertainty quantification and optimization, a large number of simulations are usually necessary, which become intractable for high-fidelity models. Thus surrogate models of stochastic simulators have been intensively investigated in the last decade. In this paper, we present a novel approach to surrogate the response distribution of a stochastic simulator which uses generalized lambda distributions, whose parameters are represented by polynomial chaos expansions of the model inputs. As opposed to most existing approaches, this new method does not require replicated runs of the simulator at each point of the experimental design. We propose a new fitting procedure which combines maximum conditional likelihood estimation with (modified) feasible generalized least-squares. We compare our method with state-of-the-art nonparametric kernel estimation on four different applications stemming from mathematical finance and epidemiology. Its performance is illustrated in terms of the accuracy of both the mean/variance of the stochastic simulator and the response distribution. As the proposed approach can also be used with experimental designs containing replications, we carry out a comparison on two of the examples, that show that replications do not help to get a better overall accuracy, and may even worsen the results (at fixed total number of runs of the simulator).
stat
Efficiently Breaking the Curse of Horizon in Off-Policy Evaluation with Double Reinforcement Learning
Off-policy evaluation (OPE) in reinforcement learning is notoriously difficult in long- and infinite-horizon settings due to diminishing overlap between behavior and target policies. In this paper, we study the role of Markovian and time-invariant structure in efficient OPE. We first derive the efficiency bounds for OPE when one assumes each of these structures. This precisely characterizes the curse of horizon: in time-variant processes, OPE is only feasible in the near-on-policy setting, where behavior and target policies are sufficiently similar. But, in time-invariant Markov decision processes, our bounds show that truly-off-policy evaluation is feasible, even with only just one dependent trajectory, and provide the limits of how well we could hope to do. We develop a new estimator based on Double Reinforcement Learning (DRL) that leverages this structure for OPE using the efficient influence function we derive. Our DRL estimator simultaneously uses estimated stationary density ratios and $q$-functions and remains efficient when both are estimated at slow, nonparametric rates and remains consistent when either is estimated consistently. We investigate these properties and the performance benefits of leveraging the problem structure for more efficient OPE.
stat
A Unified Approach to Translate Classical Bandit Algorithms to the Structured Bandit Setting
We consider a finite-armed structured bandit problem in which mean rewards of different arms are known functions of a common hidden parameter $\theta^*$. Since we do not place any restrictions of these functions, the problem setting subsumes several previously studied frameworks that assume linear or invertible reward functions. We propose a novel approach to gradually estimate the hidden $\theta^*$ and use the estimate together with the mean reward functions to substantially reduce exploration of sub-optimal arms. This approach enables us to fundamentally generalize any classic bandit algorithm including UCB and Thompson Sampling to the structured bandit setting. We prove via regret analysis that our proposed UCB-C algorithm (structured bandit versions of UCB) pulls only a subset of the sub-optimal arms $O(\log T)$ times while the other sub-optimal arms (referred to as non-competitive arms) are pulled $O(1)$ times. As a result, in cases where all sub-optimal arms are non-competitive, which can happen in many practical scenarios, the proposed algorithms achieve bounded regret. We also conduct simulations on the Movielens recommendations dataset to demonstrate the improvement of the proposed algorithms over existing structured bandit algorithms.
stat
A random covariance model for bi-level graphical modeling with application to resting-state fMRI data
This paper considers a novel problem, bi-level graphical modeling, in which multiple individual graphical models can be considered as variants of a common group-level graphical model and inference of both the group- and individual-level graphical models are of interest. Such problem arises from many applications including multi-subject neuroimaging and genomics data analysis. We propose a novel and efficient statistical method, the random covariance model, to learn the group- and individual-level graphical models simultaneously. The proposed method can be nicely interpreted as a random covariance model that mimics the random effects model for mean structures in linear regression. It accounts for similarity between individual graphical models, identifies group-level connections that are shared by individuals in the group, and at the same time infers multiple individual-level networks. Compared to existing multiple graphical modeling methods that only focus on individual-level networks, our model learns the group-level structure underlying the multiple individual networks and enjoys computational efficiency that is particularly attractive for practical use. We further define a measure of degrees-of-freedom for the complexity of the model that can be used for model selection. We demonstrate the asymptotic properties of the method and show its finite sample performance through simulation studies. Finally, we apply the proposed method to our motivating clinical data, a multi-subject resting-state functional magnetic resonance imaging (fMRI) dataset collected from schizophrenia patients.
stat
Efficient Estimation of General Treatment Effects using Neural Networks with A Diverging Number of Confounders
The estimation of causal effects is a primary goal of behavioral, social, economic and biomedical sciences. Under the unconfounded treatment assignment condition, adjustment for confounders requires estimating the nuisance functions relating outcome and/or treatment to confounders. The conventional approaches rely on either a parametric or a nonparametric modeling strategy to approximate the nuisance functions. Parametric methods can introduce serious bias into casual effect estimation due to possible mis-specification, while nonparametric estimation suffers from the "curse of dimensionality". This paper proposes a new unified approach for efficient estimation of treatment effects using feedforward artificial neural networks when the number of covariates is allowed to increase with the sample size. We consider a general optimization framework that includes the average, quantile and asymmetric least squares treatment effects as special cases. Under this unified setup, we develop a generalized optimization estimator for the treatment effect with the nuisance function estimated by neural networks. We further establish the consistency and asymptotic normality of the proposed estimator and show that it attains the semiparametric efficiency bound. The proposed methods are illustrated via simulation studies and a real data application.
stat
Regional now- and forecasting for data reported with delay: Towards surveillance of COVID-19 infections
Governments around the world continue to act to contain and mitigate the spread of COVID-19. The rapidly evolving situation compels officials and executives to continuously adapt policies and social distancing measures depending on the current state of the spread of the disease. In this context, it is crucial for policymakers to have a firm grasp on what the current state of the pandemic is as well as to have an idea of how the infective situation is going to unfold in the next days. However, as in many other situations of compulsorily-notifiable diseases and beyond, cases are reported with delay to a central register, with this delay deferring an up-to-date view of the state of things. We provide a stable tool for monitoring current infection levels as well as predicting infection numbers in the immediate future at the regional level. We accomplish this through nowcasting of cases that have not yet been reported as well as through predictions of future infections. We apply our model to German data, for which our focus lies in predicting and explain infectious behavior by district.
stat
Domination Number of an Interval Catch Digraph Family and its use for Testing Uniformity
We consider a special type of interval catch digraph (ICD) family for one-dimensional data in a randomized setting and propose its use for testing uniformity. These ICDs are defined with an expansion and a centrality parameter, hence we will refer to this ICD as parameterized ICD (PICD). We derive the exact (and asymptotic) distribution of the domination number of this PICD family when its vertices are from a uniform (and non-uniform) distribution in one dimension for the entire range of the parameters; thereby determine the parameters for which the asymptotic distribution is non-degenerate. We observe jumps (from degeneracy to non-degeneracy or from a non-degenerate distribution to another) in the asymptotic distribution of the domination number at certain parameter combinations. We use the domination number for testing uniformity of data in real line, prove its consistency against certain alternatives, and compare it with two commonly used tests and three recently proposed tests in literature and also arc density of this ICD and of another ICD family in terms of size and power. Based on our extensive Monte Carlo simulations, we demonstrate that domination number of our PICD has higher power for certain types of deviations from uniformity compared to other tests.
stat
Improved Covariance Matrix Estimator using Shrinkage Transformation and Random Matrix Theory
One of the major challenges in multivariate analysis is the estimation of population covariance matrix from sample covariance matrix (SCM). Most recent covariance matrix estimators use either shrinkage transformations or asymptotic results from Random Matrix Theory (RMT). Shrinkage techniques help in pulling extreme correlation values towards certain target values whereas tools from RMT help in removing noisy eigenvalues of SCM. Both of these techniques use different approaches to achieve a similar goal which is to remove noisy correlations and add structure to SCM to overcome the bias-variance trade-off. In this paper, we first critically evaluate the pros and cons of these two techniques and then propose an improved estimator which exploits the advantages of both by taking an optimally weighted convex combination of covariance matrices estimated by an improved shrinkage transformation and a RMT based filter. It is a generalized estimator which can adapt to changing sampling noise conditions in various datasets by performing hyperparameter optimization. We show the effectiveness of this estimator on the problem of designing a financial portfolio with minimum risk. We have chosen this problem because the complex properties of stock market data provide extreme conditions to test the robustness of a covariance estimator. Using data from four of the world's largest stock exchanges, we show that our proposed estimator outperforms existing estimators in minimizing the out-of-sample risk of the portfolio and hence predicts population statistics more precisely. Since covariance analysis is a crucial statistical tool, this estimator can be used in a wide range of machine learning, signal processing and high dimensional pattern recognition applications.
stat
Replacing the do-calculus with Bayes rule
The concept of causality has a controversial history. The question of whether it is possible to represent and address causal problems with probability theory, or if fundamentally new mathematics such as the do calculus is required has been hotly debated, e.g. Pearl (2001) states "the building blocks of our scientific and everyday knowledge are elementary facts such as "mud does not cause rain" and "symptoms do not cause disease" and those facts, strangely enough, cannot be expressed in the vocabulary of probability calculus". This has lead to a dichotomy between advocates of causal graphical modeling and the do calculus, and researchers applying Bayesian methods. In this paper we demonstrate that, while it is critical to explicitly model our assumptions on the impact of intervening in a system, provided we do so, estimating causal effects can be done entirely within the standard Bayesian paradigm. The invariance assumptions underlying causal graphical models can be encoded in ordinary Probabilistic graphical models, allowing causal estimation with Bayesian statistics, equivalent to the do calculus. Elucidating the connections between these approaches is a key step toward enabling the insights provided by each to be combined to solve real problems.
stat
Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R
Sequence analysis is being more and more widely used for the analysis of social sequences and other multivariate categorical time series data. However, it is often complex to describe, visualize, and compare large sequence data, especially when there are multiple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to detect underlying latent structures and they can be used in various longitudinal settings: to account for measurement error, to detect unobservable states, or to compress information across several types of observations. Extending to mixture hidden Markov models (MHMMs) allows clustering data into homogeneous subsets, with or without external covariates. The seqHMM package in R is designed for the efficient modeling of sequences and other categorical time series data containing one or multiple subjects with one or multiple interdependent sequences using HMMs and MHMMs. Also other restricted variants of the MHMM can be fitted, e.g., latent class models, Markov models, mixture Markov models, or even ordinary multinomial regression models with suitable parameterization of the HMM. Good graphical presentations of data and models are useful during the whole analysis process from the first glimpse at the data to model fitting and presentation of results. The package provides easy options for plotting parallel sequence data, and proposes visualizing HMMs as directed graphs.
stat
Kernel Mean Embedding Based Hypothesis Tests for Comparing Spatial Point Patterns
This paper introduces an approach for detecting differences in the first-order structures of spatial point patterns. The proposed approach leverages the kernel mean embedding in a novel way by introducing its approximate version tailored to spatial point processes. While the original embedding is infinite-dimensional and implicit, our approximate embedding is finite-dimensional and comes with explicit closed-form formulas. With its help we reduce the pattern comparison problem to the comparison of means in the Euclidean space. Hypothesis testing is based on conducting t-tests on each dimension of the embedding and combining the resulting p-values using one of the recently introduced p-value combination techniques. If desired, corresponding Bayes factors can be computed and averaged over all tests to quantify the evidence against the null. The main advantages of the proposed approach are that it can be applied to both single and replicated pattern comparisons and that neither bootstrap nor permutation procedures are needed to obtain or calibrate the p-values. Our experiments show that the resulting tests are powerful and the p-values are well-calibrated; two applications to real world data are presented.
stat
Nonparametric Bayesian volatility estimation
Given discrete time observations over a fixed time interval, we study a nonparametric Bayesian approach to estimation of the volatility coefficient of a stochastic differential equation. We postulate a histogram-type prior on the volatility with piecewise constant realisations on bins forming a partition of the time interval. The values on the bins are assigned an inverse Gamma Markov chain (IGMC) prior. Posterior inference is straightforward to implement via Gibbs sampling, as the full conditional distributions are available explicitly and turn out to be inverse Gamma. We also discuss in detail the hyperparameter selection for our method. Our nonparametric Bayesian approach leads to good practical results in representative simulation examples. Finally, we apply it on a classical data set in change-point analysis: weekly closings of the Dow-Jones industrial averages.
stat
MIXANDMIX: numerical techniques for the computation of empirical spectral distributions of population mixtures
The MIXANDMIX (mixtures by Anderson mixing) tool for the computation of the empirical spectral distribution of random matrices generated by mixtures of populations is described. Within the population mixture model the mapping between the population distributions and the limiting spectral distribution can be obtained by solving a set of systems of non-linear equations, for which an efficient implementation is provided. The contributions include a method for accelerated fixed point convergence, a homotopy continuation strategy to prevent convergence to non-admissible solutions, a blind non-uniform grid construction for effective distribution support detection and approximation, and a parallel computing architecture. Comparisons are performed with available packages for the single population case and with results obtained by simulation for the more general model implemented here. Results show competitive performance and improved flexibility.
stat
Automatic dimensionality selection for principal component analysis models with the ignorance score
Principal component analysis (PCA) is by far the most widespread tool for unsupervised learning with high-dimensional data sets. Its application is popularly studied for the purpose of exploratory data analysis and online process monitoring. Unfortunately, fine-tuning PCA models and particularly the number of components remains a challenging task. Today, this selection is often based on a combination of guiding principles, experience, and process understanding. Unlike the case of regression, where cross-validation of the prediction error is a widespread and trusted approach for model selection, there are no tools for PCA model selection which reach this level of acceptance. In this work, we address this challenge and evaluate the utility of the cross-validated ignorance score with both simulated and experimental data sets. Application of this method is based on the interpretation of PCA as a density model, as in probabilistic principal component analysis, and is shown to be a valuable tool to identify an optimal number of principal components.
stat
Finite-sample analysis of interpolating linear classifiers in the overparameterized regime
We prove bounds on the population risk of the maximum margin algorithm for two-class linear classification. For linearly separable training data, the maximum margin algorithm has been shown in previous work to be equivalent to a limit of training with logistic loss using gradient descent, as the training error is driven to zero. We analyze this algorithm applied to random data including misclassification noise. Our assumptions on the clean data include the case in which the class-conditional distributions are standard normal distributions. The misclassification noise may be chosen by an adversary, subject to a limit on the fraction of corrupted labels. Our bounds show that, with sufficient over-parameterization, the maximum margin algorithm trained on noisy data can achieve nearly optimal population risk.
stat
Misuse of the sign test in narrative synthesis of evidence
In narrative synthesis of evidence, it can be the case that the only quantitative measures available concerning the efficacy of an intervention is the direction of the effect, i.e. whether it is positive or negative. In such situations, the sign test has been proposed in the literature and in recent Cochrane guidelines as a way to test whether the proportion of positive effects is favourable. I argue that the sign test is inappropriate in this context as the data are not generated according to the Binomial distribution it employs. I demonstrate possible consequences for both hypothesis testing and estimation via hypothetical examples.
stat
Goodness-of-fit tests on manifolds
We develop a general theory for the goodness-of-fit test to non-linear models. In particular, we assume that the observations are noisy samples of a submanifold defined by a \yao{sufficiently smooth non-linear map}. The observation noise is additive Gaussian. Our main result shows that the "residual" of the model fit, by solving a non-linear least-square problem, follows a (possibly noncentral) $\chi^2$ distribution. The parameters of the $\chi^2$ distribution are related to the model order and dimension of the problem. We further present a method to select the model orders sequentially. We demonstrate the broad application of the general theory in machine learning and signal processing, including determining the rank of low-rank (possibly complex-valued) matrices and tensors from noisy, partial, or indirect observations, determining the number of sources in signal demixing, and potential applications in determining the number of hidden nodes in neural networks.
stat
krippendorffsalpha: An R Package for Measuring Agreement Using Krippendorff's Alpha Coefficient
R package krippendorffsalpha provides tools for measuring agreement using Krippendorff's Alpha coefficient, a well-known nonparametric measure of agreement (also called inter-rater reliability and various other names). This article first develops Krippendorff's Alpha in a natural way, and situates Alpha among statistical procedures. Then the usage of package krippendorffsalpha is illustrated via analyses of two datasets, the latter of which was collected during an imaging study of hip cartilage. The package permits users to apply the Alpha methodology using built-in distance functions for the nominal, ordinal, interval, or ratio levels of measurement. User-defined distance functions are also supported. The fitting function can accommodate any number of units, any number of coders, and missingness. Bootstrap inference is supported, and the bootstrap computation can be carried out in parallel.
stat
Recovering Bandits
We study the recovering bandits problem, a variant of the stochastic multi-armed bandit problem where the expected reward of each arm varies according to some unknown function of the time since the arm was last played. While being a natural extension of the classical bandit problem that arises in many real-world settings, this variation is accompanied by significant difficulties. In particular, methods need to plan ahead and estimate many more quantities than in the classical bandit setting. In this work, we explore the use of Gaussian processes to tackle the estimation and planing problem. We also discuss different regret definitions that let us quantify the performance of the methods. To improve computational efficiency of the methods, we provide an optimistic planning approximation. We complement these discussions with regret bounds and empirical studies.
stat
Multilevel Optimal Transport: a Fast Approximation of Wasserstein-1 distances
We propose a fast algorithm for the calculation of the Wasserstein-1 distance, which is a particular type of optimal transport distance with homogeneous of degree one transport cost. Our algorithm is built on multilevel primal-dual algorithms. Several numerical examples and a complexity analysis are provided to demonstrate its computational speed. On some commonly used image examples of size $512\times512$, the proposed algorithm gives solutions within $0.2\sim 1.5$ seconds on a single CPU, which is much faster than the state-of-the-art algorithms.
stat
Dynamic Weights in Gaussian Mixture Models: A Bayesian Approach
In this paper we consider a Gaussian mixture model where the mixture weight behaves as an unknown function of time. To estimate the mixture weight function, we develop a Bayesian nonlinear dynamic approach for polynomial models. Two estimation methods that can be extended to other situations are considered. One of them, called here component-wise Metropolis-Hastings, is more general and can be used for any situation where the observation and state equations are nonlinearly connected. The other method tends to be faster but must be applied specifically to binary data (by using a probit link function). This kind of Gaussian mixture model is capable of successfully capturing the features of the data, as observed in numerical studies. It can be useful in studies such as clustering, change-point and process control. We apply the proposed method an array Comparative Genomic Hybridization (aCGH) dataset from glioblastoma cancer studies, where we illustrate the ability of the new method to detect chromosome aberrations.
stat
Bambi: A simple interface for fitting Bayesian linear models in Python
The popularity of Bayesian statistical methods has increased dramatically in recent years across many research areas and industrial applications. This is the result of a variety of methodological advances with faster and cheaper hardware as well as the development of new software tools. Here we introduce an open source Python package named Bambi (BAyesian Model Building Interface) that is built on top of the PyMC3 probabilistic programming framework and the ArviZ package for exploratory analysis of Bayesian models. Bambi makes it easy to specify complex generalized linear hierarchical models using a formula notation similar to those found in the popular R packages lme4, nlme, rstanarm and brms. We demonstrate Bambi's versatility and ease of use with a few examples spanning a range of common statistical models including multiple regression, logistic regression, and mixed-effects modeling with crossed group specific effects. Additionally we discuss how automatic priors are constructed. Finally, we conclude with a discussion of our plans for the future development of Bambi.
stat
Nonparametric analysis of nonhomogeneous multi-state processes based on clustered observations
Frequently, clinical trials and observational studies involve complex event history data with multiple events. When the observations are independent, the analysis of such studies can be based on standard methods for multi-state models. However, the independence assumption is often violated, such as in multicenter studies, which makes the use of standard methods improper. In this work we address the issue of nonparametric estimation and two-sample testing for the population-averaged transition and state occupation probabilities under general multi-state models based on right-censored, left-truncated, and clustered observations. The proposed methods do not impose assumptions regarding the within-cluster dependence, allow for informative cluster size, and are applicable to both Markov and non-Markov processes. Using empirical process theory, the estimators are shown to be uniformly consistent and to converge weakly to tight Gaussian processes. Closed-form variance estimators are derived, rigorous methodology for the calculation of simultaneous confidence bands is proposed, and the asymptotic properties of the nonparametric tests are established. Furthermore, we provide theoretical arguments for the validity of the nonparametric cluster bootstrap, which can be readily implemented in practice regardless of how complex the underlying multi-state model is. Simulation studies show that the performance of the proposed methods is good, and that methods that ignore the within-cluster dependence can lead to invalid inferences. Finally, the methods are applied to data from a multicenter randomized controlled trial.
stat
An example of application of optimal sample allocation in a finite population
The problem of estimating a proportion of objects with particular attribute in a finite population is considered. This paper shows an example of the application of estimation fraction using new proposed sample allocation in a population divided into two strata. Variance of estimator of proportion which uses proposed sample allocation is compared to variance of the standard one.
stat
Incremental causal effects
Causal evidence is needed to act and it is often enough for the evidence to point towards a direction of the effect of an action. For example, policymakers might be interested in estimating the effect of slightly increasing taxes on private spending across the whole population. We study identifiability and estimation of causal effects, where a continuous treatment is slightly shifted across the whole population (termed average partial effect or incremental causal effect). We show that incremental effects are identified under local ignorability and local overlap assumptions, where exchangeability and positivity only hold in a neighborhood of units. Average treatment effects are not identified under these assumptions. In this case, and under a smoothness condition, the incremental effect can be estimated via the average derivative. Moreover, we prove that in certain finite-sample observational settings, estimating the incremental effect is easier than estimating the average treatment effect in terms of asymptotic variance. For high-dimensional settings, we develop a simple feature transformation that allows for doubly-robust estimation and inference of incremental causal effects. Finally, we compare the behaviour of estimators of the incremental treatment effect and average treatment effect in experiments including data-inspired simulations.
stat
Semiparametric counterfactual density estimation
Causal effects are often characterized with averages, which can give an incomplete picture of the underlying counterfactual distributions. Here we consider estimating the entire counterfactual density and generic functionals thereof. We focus on two kinds of target parameters. The first is a density approximation, defined by a projection onto a finite-dimensional model using a generalized distance metric, which includes f-divergences as well as $L_p$ norms. The second is the distance between counterfactual densities, which can be used as a more nuanced effect measure than the mean difference, and as a tool for model selection. We study nonparametric efficiency bounds for these targets, giving results for smooth but otherwise generic models and distances. Importantly, we show how these bounds connect to means of particular non-trivial functions of counterfactuals, linking the problems of density and mean estimation. We go on to propose doubly robust-style estimators for the density approximations and distances, and study their rates of convergence, showing they can be optimally efficient in large nonparametric models. We also give analogous methods for model selection and aggregation, when many models may be available and of interest. Our results all hold for generic models and distances, but throughout we highlight what happens for particular choices, such as $L_2$ projections on linear models, and KL projections on exponential families. Finally we illustrate by estimating the density of CD4 count among patients with HIV, had all been treated with combination therapy versus zidovudine alone, as well as a density effect. Our results suggest combination therapy may have increased CD4 count most for high-risk patients. Our methods are implemented in the freely available R package npcausal on GitHub.
stat