title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Causal Inference in Higher Education: Building Better Curriculums
Higher educational institutions constantly look for ways to meet students' needs and support them through graduation. Recent work in the field of learning analytics have developed methods for grade prediction and course recommendations. Although these methods work well, they often fail to discover causal relationships between courses, which may not be evident through correlation-based methods. In this work, we aim at understanding the causal relationships between courses to aid universities in designing better academic pathways for students and to help them make better choices. Our methodology employs methods of causal inference to study these relationships using historical student performance data. We make use of a doubly-robust method of matching and regression in order to obtain the casual relationship between a pair of courses. The results were validated by the existing prerequisite structure and by cross-validation of the regression model. Further, our approach was also tested for robustness and sensitivity to certain hyperparameters. This methodology shows promising results and is a step forward towards building better academic pathways for students.
stat
Assessing the effect of advertising expenditures upon sales: a Bayesian structural time series model
We propose a robust implementation of the Nerlove--Arrow model using a Bayesian structural time series model to explain the relationship between advertising expenditures of a country-wide fast-food franchise network with its weekly sales. Thanks to the flexibility and modularity of the model, it is well suited to generalization to other markets or situations. Its Bayesian nature facilitates incorporating \emph{a priori} information (the manager's views), which can be updated with relevant data. This aspect of the model will be used to present a strategy of budget scheduling across time and channels.
stat
Multiscale regression on unknown manifolds
We consider the regression problem of estimating functions on $\mathbb{R}^D$ but supported on a $d$-dimensional manifold $ \mathcal{M} \subset \mathbb{R}^D $ with $ d \ll D $. Drawing ideas from multi-resolution analysis and nonlinear approximation, we construct low-dimensional coordinates on $\mathcal{M}$ at multiple scales, and perform multiscale regression by local polynomial fitting. We propose a data-driven wavelet thresholding scheme that automatically adapts to the unknown regularity of the function, allowing for efficient estimation of functions exhibiting nonuniform regularity at different locations and scales. We analyze the generalization error of our method by proving finite sample bounds in high probability on rich classes of priors. Our estimator attains optimal learning rates (up to logarithmic factors) as if the function was defined on a known Euclidean domain of dimension $d$, instead of an unknown manifold embedded in $\mathbb{R}^D$. The implemented algorithm has quasilinear complexity in the sample size, with constants linear in $D$ and exponential in $d$. Our work therefore establishes a new framework for regression on low-dimensional sets embedded in high dimensions, with fast implementation and strong theoretical guarantees.
stat
Bayesian Data Synthesis and Disclosure Risk Quantification: An Application to the Consumer Expenditure Surveys
The release of synthetic data generated from a model estimated on the data helps statistical agencies disseminate respondent-level data with high utility and privacy protection. Motivated by the challenge of disseminating sensitive variables containing geographic information in the Consumer Expenditure Surveys (CE) at the U.S. Bureau of Labor Statistics, we propose two non-parametric Bayesian models as data synthesizers for the county identifier of each data record: a Bayesian latent class model and a Bayesian areal model. Both data synthesizers use Dirichlet Process priors to cluster observations of similar characteristics and allow borrowing information across observations. We develop innovative disclosure risks measures to quantify inherent risks in the confidential CE data and how those data risks are ameliorated by our proposed synthesizers. By creating a lower bound and an upper bound of disclosure risks under a minimum and a maximum disclosure risks scenarios respectively, our proposed inherent risks measures provide a range of acceptable disclosure risks for evaluating risks level in the synthetic datasets.
stat
Convergence rates for optimised adaptive importance samplers
Adaptive importance samplers are adaptive Monte Carlo algorithms to estimate expectations with respect to some target distribution which \textit{adapt} themselves to obtain better estimators over a sequence of iterations. Although it is straightforward to show that they have the same $\mathcal{O}(1/\sqrt{N})$ convergence rate as standard importance samplers, where $N$ is the number of Monte Carlo samples, the behaviour of adaptive importance samplers over the number of iterations has been left relatively unexplored. In this work, we investigate an adaptation strategy based on convex optimisation which leads to a class of adaptive importance samplers termed \textit{optimised adaptive importance samplers} (OAIS). These samplers rely on the iterative minimisation of the $\chi^2$-divergence between an exponential-family proposal and the target. The analysed algorithms are closely related to the class of adaptive importance samplers which minimise the variance of the weight function. We first prove non-asymptotic error bounds for the mean squared errors (MSEs) of these algorithms, which explicitly depend on the number of iterations and the number of samples together. The non-asymptotic bounds derived in this paper imply that when the target belongs to the exponential family, the $L_2$ errors of the optimised samplers converge to the optimal rate of $\mathcal{O}(1/\sqrt{N})$ and the rate of convergence in the number of iterations are explicitly provided. When the target does not belong to the exponential family, the rate of convergence is the same but the asymptotic $L_2$ error increases by a factor $\sqrt{\rho^\star} > 1$, where $\rho^\star - 1$ is the minimum $\chi^2$-divergence between the target and an exponential-family proposal.
stat
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs
We propose a probabilistic model for inferring the multivariate function from multiple areal data sets with various granularities. Here, the areal data are observed not at location points but at regions. Existing regression-based models can only utilize the sufficiently fine-grained auxiliary data sets on the same domain (e.g., a city). With the proposed model, the functions for respective areal data sets are assumed to be a multivariate dependent Gaussian process (GP) that is modeled as a linear mixing of independent latent GPs. Sharing of latent GPs across multiple areal data sets allows us to effectively estimate the spatial correlation for each areal data set; moreover it can easily be extended to transfer learning across multiple domains. To handle the multivariate areal data, we design an observation model with a spatial aggregation process for each areal data set, which is an integral of the mixed GP over the corresponding region. By deriving the posterior GP, we can predict the data value at any location point by considering the spatial correlations and the dependences between areal data sets, simultaneously. Our experiments on real-world data sets demonstrate that our model can 1) accurately refine coarse-grained areal data, and 2) offer performance improvements by using the areal data sets from multiple domains.
stat
An Advanced Hidden Markov Model for Hourly Rainfall Time Series
For hydrological applications, such as urban flood modelling, it is often important to be able to simulate sub-daily rainfall time series from stochastic models. However, modelling rainfall at this resolution poses several challenges, including a complex temporal structure including long dry periods, seasonal variation in both the occurrence and intensity of rainfall, and extreme values. We illustrate how the hidden Markov framework can be adapted to construct a compelling model for sub-daily rainfall, which is capable of capturing all of these important characteristics well. These adaptations include clone states and non-stationarity in both the transition matrix and conditional models. Set in the Bayesian framework, a rich quantification of both parametric and predictive uncertainty is available, and thorough model checking is made possible through posterior predictive analyses. Results from the model are interpretable, allowing for meaningful examination of seasonal variation and medium to long term trends in rainfall occurrence and intensity. To demonstrate the effectiveness of our approach, both in terms of model fit and interpretability, we apply the model to an 8-year long time series of hourly observations.
stat
Patient-Specific Effects of Medication Using Latent Force Models with Gaussian Processes
Multi-output Gaussian processes (GPs) are a flexible Bayesian nonparametric framework that has proven useful in jointly modeling the physiological states of patients in medical time series data. However, capturing the short-term effects of drugs and therapeutic interventions on patient physiological state remains challenging. We propose a novel approach that models the effect of interventions as a hybrid Gaussian process composed of a GP capturing patient physiology convolved with a latent force model capturing effects of treatments on specific physiological features. This convolution of a multi-output GP with a GP including a causal time-marked kernel leads to a well-characterized model of the patients' physiological state responding to interventions. We show that our model leads to analytically tractable cross-covariance functions, allowing scalable inference. Our hierarchical model includes estimates of patient-specific effects but allows sharing of support across patients. Our approach achieves competitive predictive performance on challenging hospital data, where we recover patient-specific response to the administration of three common drugs: one antihypertensive drug and two anticoagulants.
stat
Contagion Dynamics for Manifold Learning
Contagion maps exploit activation times in threshold contagions to assign vectors in high-dimensional Euclidean space to the nodes of a network. A point cloud that is the image of a contagion map reflects both the structure underlying the network and the spreading behaviour of the contagion on it. Intuitively, such a point cloud exhibits features of the network's underlying structure if the contagion spreads along that structure, an observation which suggests contagion maps as a viable manifold-learning technique. We test contagion maps as a manifold-learning tool on a number of different real-world and synthetic data sets, and we compare their performance to that of Isomap, one of the most well-known manifold-learning algorithms. We find that, under certain conditions, contagion maps are able to reliably detect underlying manifold structure in noisy data, while Isomap fails due to noise-induced error. This consolidates contagion maps as a technique for manifold learning.
stat
Bayesian Modeling of Spatial Transcriptomics Data via a Modified Ising Model
Recent technology breakthroughs in spatial molecular profiling (SMP), such as spatial transcriptomics sequencing, have enabled the comprehensive molecular characterization of single cells while preserving spatial and morphological information. One immediate question is how to identify spatially variable (SV) genes. Most of the current work builds upon the geostatistical model with Gaussian process that relies on the selection of \textit{ad hoc} kernels to account for spatial expression patterns. To overcome this potential challenge and capture more spatial patterns, we introduced a Bayesian modeling framework to identify SV genes. Our model first dichotomized the complex sequencing count data into latent binary gene expression levels. Then, binary pattern quantification problem is considered as a spatial correlation estimation problem via a modified Ising model using Hamiltonian energy to characterize spatial patterns. We used auxiliary variable Markov chain Monte Carlo algorithms to sample from the posterior distribution with an intractable normalizing constant. Simulation results showed high accuracy in detecting SV genes compared with kernel-based alternatives. We also applied our model to two real datasets and discovered novel spatial patterns that shed light on the biological mechanisms. This statistical methodology presents a new perspective for characterizing spatial patterns from SMP data.
stat
Collective dynamics of pedestrians in a non-panic evacuation scenario
We present a study of pedestrian motion along a corridor in a non-panic regime (e.g., schools, hospitals or airports). Such situations have been discussed so far within the Social Force Model (SFM). We suggest to enrich this model by interactions based on the velocity of the particles and some randomness, both of which we introduce using the ideas of the Vicsek Model (VM). This new model allows to introduce fluctuations for a given average speed and geometry, and considering that the alignment interactions are modulated by an external control parameter (the noise $\eta$) allows to introduce phase transitions between ordered and disordered states. We have compared simulations of pedestrian motion along a corridor using (a) the VM with two boundary conditions (periodic and bouncing back) and with or without desired direction of motion, (b) the SFM, and (c) the new model SFM+VM. The study of steady-state configurations in the VM with confined geometry shows the expected bands perpendicular to the motion direction, while in the SFM and SFM+VM particles order in stripes of a given width $w$ along the direction of motion. The results in the SFM+VM case show that $w(t)\simeq t^\alpha$ has a diffusive-like behavior at low noise $\eta$ (dynamic exponent $\alpha \approx 1/2$), while it is sub-diffusive at high values of external noise ($\alpha \approx 1/4$). We observe the order-disorder transition in the VM with both boundary conditions, but the application of a desired direction condition inhibits the existence of disorder as expected. For the SFM+VM case we find a susceptibility maximum which increases with system size as a function of noise strength indicative of a order-disorder transition in the whole range of densities and speeds studied. From our results we conclude that the new SFM+VM model is a well-suited model to describe non-panic evacuation with diverse degrees of disorder.
stat
Conditional separable effects
Researchers are often interested in treatment effects on outcomes that are only defined conditional on a post-treatment event status. For example, in a study of the effect of different cancer treatments on quality of life at end of follow-up, the quality of life of individuals who die during the study is undefined. In these settings, a naive contrast of outcomes conditional on the post-treatment variable is not an average causal effect, even in a randomized experiment. Therefore the effect in the principal stratum of those who would have the same value of the post-treatment variable regardless of treatment, such as the always survivors in a truncation by death setting, is often advocated for causal inference. While this principal stratum effect is a well defined causal contrast, it is often hard to justify that it is relevant to scientists, patients or policy makers, and it cannot be identified without relying on unfalsifiable assumptions. Here we formulate alternative estimands, the conditional separable effects, that have a natural causal interpretation under assumptions that can be falsified in a randomized experiment. We provide identification results and introduce different estimators, including a doubly robust estimator derived from the nonparametric influence function. As an illustration, we estimate a conditional separable effect of chemotherapies on quality of life in patients with prostate cancer, using data from a randomized clinical trial.
stat
Robust Inference for Partially Observed Functional Response Data
Irregular functional data in which densely sampled curves are observed over different ranges pose a challenge for modeling and inference, and sensitivity to outlier curves is a concern in applications. Motivated by applications in quantitative ultrasound signal analysis, this paper investigates a class of robust M-estimators for partially observed functional data including functional location and quantile estimators. Consistency of the estimators is established under general conditions on the partial observation process. Under smoothness conditions on the class of M-estimators, asymptotic Gaussian process approximations are established and used for large sample inference. The large sample approximations justify a bootstrap approximation for robust inferences about the functional response process. The performance is demonstrated in simulations and in the analysis of irregular functional data from quantitative ultrasound analysis.
stat
DeepHazard: neural network for time-varying risks
Prognostic models in survival analysis are aimed at understanding the relationship between patients' covariates and the distribution of survival time. Traditionally, semi-parametric models, such as the Cox model, have been assumed. These often rely on strong proportionality assumptions of the hazard that might be violated in practice. Moreover, they do not often include covariate information updated over time. We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks. Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time. A flexible implementation, allowing different optimization methods, along with any norm penalty, is developed. Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric. The same is revealed on the popular real datasets as METABRIC, GBSG, and ACTG.
stat
The Estimation of Causal Effects of Multiple Treatments in Observational Studies Using Bayesian Additive Regression Trees
There is currently a dearth of appropriate methods to estimate the causal effects of multiple treatments when the outcome is binary. For such settings, we propose the use of nonparametric Bayesian modeling, Bayesian Additive Regression Trees (BART). We conduct an extensive simulation study to compare BART to several existing, propensity score-based methods and to identify its operating characteristics when estimating average treatment effects on the treated. BART consistently demonstrates low bias and mean-squared errors. We illustrate the use of BART through a comparative effectiveness analysis of a large dataset, drawn from the latest SEER-Medicare linkage, on patients who were operated via robotic-assisted surgery, video-assisted thoratic surgery or open thoracotomy.
stat
Heavy-tailed distribution for combining dependent $p$-values with asymptotic robustness
The issue of combining individual $p$-values to aggregate multiple small effects is prevalent in many scientific investigations and is a long-standing statistical topic. Many classical methods are designed for combining independent and frequent signals in a traditional meta-analysis sense using the sum of transformed $p$-values with the transformation of light-tailed distributions, in which Fisher's method and Stouffer's method are the most well-known. Since the early 2000, advances in big data promoted methods to aggregate independent, sparse and weak signals, such as the renowned higher criticism and Berk-Jones tests. Recently, Liu and Xie(2020) and Wilson(2019) independently proposed Cauchy and harmonic mean combination tests to robustly combine $p$-values under "arbitrary" dependency structure, where a notable application is to combine $p$-values from a set of often correlated SNPs in genome-wide association studies. The proposed tests are the transformation of heavy-tailed distributions for improved power with the sparse signal. It calls for a natural question to investigate heavy-tailed distribution transformation, to understand the connection among existing methods, and to explore the conditions for a method to possess robustness to dependency. In this paper, we investigate the regularly varying distribution, which is a rich family of heavy-tailed distribution and includes Pareto distribution as a special case. We show that only an equivalent class of Cauchy and harmonic mean tests have sufficient robustness to dependency in a practical sense. We also show an issue caused by large negative penalty in the Cauchy method and propose a simple, yet practical modification. Finally, we present simulations and apply to a neuroticism GWAS application to verify the discovered theoretical insights and provide practical guidance.
stat
Causal coupling inference from multivariate time series based on ordinal partition transition networks
Identifying causal relationships is a challenging yet a crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partition transition networks (OPTNs) allow to infer the coupling direction between two dynamical systems. In this work, we generalize this concept to the interaction between multiple dynamical systems and propose a new method to detect causality in multivariate observational data. We demonstrate that our approach can reliably identify the direction of interaction and the corresponding delays with numerical simulations using linear stochastic systems as well as nonlinear dynamical systems such as a network of neural mass models. Finally, we apply our method to real-world observational microelectrode array data from rodent brain slices to study the causal effect networks underlying epileptic activity. Our results from simulations as well as real-world data suggest that OPTNs can provide a complementary approach to reliably infer causal effect networks from multivariate observational data.
stat
Double Generative Adversarial Networks for Conditional Independence Testing
In this article, we consider the problem of high-dimensional conditional independence testing, which is a key building block in statistics and machine learning. We propose a double generative adversarial networks (GANs)-based inference procedure. We first introduce a double GANs framework to learn two generators, and integrate the two generators to construct a doubly-robust test statistic. We next consider multiple generalized covariance measures, and take their maximum as our test statistic. Finally, we obtain the empirical distribution of our test statistic through multiplier bootstrap. We show that our test controls type-I error, while the power approaches one asymptotically. More importantly, these theoretical guarantees are obtained under much weaker and practically more feasible conditions compared to existing tests. We demonstrate the efficacy of our test through both synthetic and real datasets.
stat
Matrix completion and extrapolation via kernel regression
Matrix completion and extrapolation (MCEX) are dealt with here over reproducing kernel Hilbert spaces (RKHSs) in order to account for prior information present in the available data. Aiming at a faster and low-complexity solver, the task is formulated as a kernel ridge regression. The resultant MCEX algorithm can also afford online implementation, while the class of kernel functions also encompasses several existing approaches to MC with prior information. Numerical tests on synthetic and real datasets show that the novel approach performs faster than widespread methods such as alternating least squares (ALS) or stochastic gradient descent (SGD), and that the recovery error is reduced, especially when dealing with noisy data.
stat
Efficient Bayesian Modeling of Binary and Categorical Data in R: The UPG Package
We introduce the UPG package for highly efficient Bayesian inference in probit, logit, multinomial logit and binomial logit models. UPG offers a convenient estimation framework for balanced and imbalanced data settings where sampling efficiency is ensured through Markov chain Monte Carlo boosting methods. All sampling algorithms are implemented in C++, allowing for rapid parameter estimation. In addition, UPG provides several methods for fast production of output tables and summary plots that are easily accessible to a broad range of users.
stat
Ordinal Bayesian Optimisation
Bayesian optimisation is a powerful tool to solve expensive black-box problems, but fails when the stationary assumption made on the objective function is strongly violated, which is the case in particular for ill-conditioned or discontinuous objectives. We tackle this problem by proposing a new Bayesian optimisation framework that only considers the ordering of variables, both in the input and output spaces, to fit a Gaussian process in a latent space. By doing so, our approach is agnostic to the original metrics on the original spaces. We propose two algorithms, respectively based on an optimistic strategy and on Thompson sampling. For the optimistic strategy we prove an optimal performance under the measure of regret in the latent space. We illustrate the capability of our framework on several challenging toy problems.
stat
Active learning for enumerating local minima based on Gaussian process derivatives
We study active learning (AL) based on Gaussian Processes (GPs) for efficiently enumerating all of the local minimum solutions of a black-box function. This problem is challenging due to the fact that local solutions are characterized by their zero gradient and positive-definite Hessian properties, but those derivatives cannot be directly observed. We propose a new AL method in which the input points are sequentially selected such that the confidence intervals of the GP derivatives are effectively updated for enumerating local minimum solutions. We theoretically analyze the proposed method and demonstrate its usefulness through numerical experiments.
stat
On the usage of randomized p-values in the Schweder-Spjotvoll estimator
We are concerned with multiple test problems with composite null hypotheses and the estimation of the proportion $\pi_{0}$ of true null hypotheses. The Schweder-Spj\o tvoll estimator $\hat{\pi}_0$ utilizes marginal $p$-values and only works properly if the $p$-values that correspond to the true null hypotheses are uniformly distributed on $[0,1]$ ($\mathrm{Uni}[0,1]$-distributed). In the case of composite null hypotheses, marginal $p$-values are usually computed under least favorable parameter configurations (LFCs). Thus, they are stochastically larger than $\mathrm{Uni}[0,1]$ under non-LFCs in the null hypotheses. When using these LFC-based $p$-values, $\hat{\pi}_0$ tends to overestimate $\pi_{0}$. We introduce a new way of randomizing $p$-values that depends on a tuning parameter $c\in[0,1]$, such that $c=0$ and $c=1$ lead to $\mathrm{Uni}[0,1]$-distributed $p$-values, which are independent of the data, and to the original LFC-based $p$-values, respectively. For a certain value $c=c^{\star}$ the bias of $\hat{\pi}_0$ is minimized when using our randomized $p$-values. This often also entails a smaller mean squared error of the estimator as compared to the usage of the LFC-based $p$-values. We analyze these points theoretically, and we demonstrate them numerically in computer simulations under various standard statistical models.
stat
VCBART: Bayesian trees for varying coefficients
Many studies have reported associations between later-life cognition and socioeconomic position in childhood, young adulthood, and mid-life. However, the vast majority of these studies are unable to quantify how these associations vary over time and with respect to several demographic factors. Varying coefficient (VC) models, which treat the covariate effects in a linear model as nonparametric functions of additional effect modifiers, offer an appealing way to overcome these limitations. Unfortunately, state-of-the-art VC modeling methods require computationally prohibitive parameter tuning or make restrictive assumptions about the functional form of the covariate effects. In response, we propose VCBART, which estimates the covariate effects in a VC model using Bayesian Additive Regression Trees. With simple default hyperparameter settings, VCBART outperforms existing methods in terms of covariate effect estimation and prediction. Using VCBART, we predict the cognitive trajectories of 4,167 subjects from the Health and Retirement Study using multiple measures of socioeconomic position and physical health. We find that socioeconomic position in childhood and young adulthood have small effects that do not vary with age. In contrast, the effects of measures of mid-life physical health tend to vary with respect to age, race, and marital status. An R package implementing VC-BART is available at https://github.com/skdeshpande91/VCBART
stat
Effects of Aggregation Methodology on Uncertain Spatiotemporal Data
Large spatiotemporal demand datasets can prove intractable for location optimization problems, motivating the need to aggregate such data. However, demand aggregation introduces error which impacts the results of the location study. We introduce and apply a framework for comparing both deterministic and stochastic aggregation methods using distance-based and volume-based aggregation error metrics. In addition we introduce and apply weighted versions of these metrics to account for the reality that demand events are non-homogeneous. These metrics are applied to a large, highly variable, spatiotemporal demand dataset of search and rescue events in the Pacific ocean. Comparisons with these metrics between six quadrat aggregations of varying scales and two zonal distribution models using hierarchical clustering is conducted. We show that as quadrat fidelity increases the distance-based aggregation error decreases, while the two deliberate zonal approaches further reduce this error while utilizing fewer zones. However, the higher fidelity aggregations have a detrimental effect on volume error. In addition, by splitting the search and rescue dataset into a training and test set we show that stochastic aggregation of this highly variable spatiotemporal demand appears to be effective at simulating actual future demands.
stat
Fundamental Issues Regarding Uncertainties in Artificial Neural Networks
Artificial Neural Networks (ANNs) implement a specific form of multi-variate extrapolation and will generate an output for any input pattern, even when there is no similar training pattern. Extrapolations are not necessarily to be trusted, and in order to support safety critical systems, we require such systems to give an indication of the training sample related uncertainty associated with their output. Some readers may think that this is a well known issue which is already covered by the basic principles of pattern recognition. We will explain below how this is not the case and how the conventional (Likelihood estimate of) conditional probability of classification does not correctly assess this uncertainty. We provide a discussion of the standard interpretations of this problem and show how a quantitative approach based upon long standing methods can be practically applied. The methods are illustrated on the task of early diagnosis of dementing diseases using Magnetic Resonance Imaging.
stat
OPENMENDEL: A Cooperative Programming Project for Statistical Genetics
Statistical methods for genomewide association studies (GWAS) continue to improve. However, the increasing volume and variety of genetic and genomic data make computational speed and ease of data manipulation mandatory in future software. In our view, a collaborative effort of statistical geneticists is required to develop open source software targeted to genetic epidemiology. Our attempt to meet this need is called the OPENMENDELproject (https://openmendel.github.io). It aims to (1) enable interactive and reproducible analyses with informative intermediate results, (2) scale to big data analytics, (3) embrace parallel and distributed computing, (4) adapt to rapid hardware evolution, (5) allow cloud computing, (6) allow integration of varied genetic data types, and (7) foster easy communication between clinicians, geneticists, statisticians, and computer scientists. This article reviews and makes recommendations to the genetic epidemiology community in the context of the OPENMENDEL project.
stat
Flexible Bivariate INGARCH Process With a Broad Range of Contemporaneous Correlation
We propose a novel flexible bivariate conditional Poisson (BCP) INteger-valued Generalized AutoRegressive Conditional Heteroscedastic (INGARCH) model for correlated count time series data. Our proposed BCP-INGARCH model is mathematically tractable and has as the main advantage over existing bivariate INGARCH models its ability to capture a broad range (both negative and positive) of contemporaneous cross-correlation which is a non-trivial advancement. Properties of stationarity and ergodicity for the BCP-INGARCH process are developed. Estimation of the parameters is performed through conditional maximum likelihood (CML) and finite sample behavior of the estimators are investigated through simulation studies. Asymptotic properties of the CML estimators are derived. Additional simulation studies compare and contrast methods of obtaining standard errors of the parameter estimates, where a bootstrap option is demonstrated to be advantageous. Hypothesis testing methods for the presence of contemporaneous correlation between the time series are presented and evaluated. We apply our methodology to monthly counts of hepatitis cases at two nearby Brazilian cities, which are highly cross-correlated. The data analysis demonstrates the importance of considering a bivariate model allowing for a wide range of contemporaneous correlation in real-life applications.
stat
On continual single index learning
In this paper, we generalize the problem of single index model to the context of continual learning in which a learner is challenged with a sequence of tasks one by one and the dataset of each task is revealed in an online fashion. We propose a strategy that is able to learn a common single index for all tasks and a specific link function for each task. The common single index allows to transfer the informaton gained from the previous tasks to a new one. We provide a theoretical analysis of our proposed strategy by proving some regret bounds. Moreover, as a by-product from our work to provide an example of a within-task algorithm, we develop a novel online algorithm for learning single index model in an online setting and provide its regret bound.
stat
Reconstruction of stochastic 3-D signals with symmetric statistics from 2-D projection images motivated by cryo-electron microscopy
Cryo-electron microscopy provides 2-D projection images of the 3-D electron scattering intensity of many instances of the particle under study (e.g., a virus). Both symmetry (rotational point groups) and heterogeneity are important aspects of biological particles and both aspects can be combined by describing the electron scattering intensity of the particle as a stochastic process with a symmetric probability law and therefore symmetric moments. A maximum likelihood estimator implemented by an expectation-maximization algorithm is described which estimates the unknown statistics of the electron scattering intensity stochastic process from images of instances of the particle. The algorithm is demonstrated on the bacteriophage HK97 and the virus N$\omega$V. The results are contrasted with existing algorithms which assume that each instance of the particle has the symmetry rather than the less restrictive assumption that the probability law has the symmetry.
stat
Kernelized Complete Conditional Stein Discrepancy
Much of machine learning relies on comparing distributions with discrepancy measures. Stein's method creates discrepancy measures between two distributions that require only the unnormalized density of one and samples from the other. Stein discrepancies can be combined with kernels to define kernelized Stein discrepancies (KSDs). While kernels make Stein discrepancies tractable, they pose several challenges in high dimensions. We introduce kernelized complete conditional Stein discrepancies (KCC-SDs). Complete conditionals turn a multivariate distribution into multiple univariate distributions. We show that KCC-SDs distinguish distributions. To show the efficacy of KCC-SDs in distinguishing distributions, we introduce a goodness-of-fit test using KCC-SDs. We empirically show that KCC-SDs have higher power over baselines and use KCC-SDs to assess sample quality in Markov chain Monte Carlo.
stat
When Do Neural Networks Outperform Kernel Methods?
For a certain scaling of the initialization of stochastic gradient descent (SGD), wide neural networks (NN) have been shown to be well approximated by reproducing kernel Hilbert space (RKHS) methods. Recent empirical work showed that, for some classification tasks, RKHS methods can replace NNs without a large loss in performance. On the other hand, two-layers NNs are known to encode richer smoothness classes than RKHS and we know of special examples for which SGD-trained NN provably outperform RKHS. This is true even in the wide network limit, for a different scaling of the initialization. How can we reconcile the above claims? For which tasks do NNs outperform RKHS? If feature vectors are nearly isotropic, RKHS methods suffer from the curse of dimensionality, while NNs can overcome it by learning the best low-dimensional representation. Here we show that this curse of dimensionality becomes milder if the feature vectors display the same low-dimensional structure as the target function, and we precisely characterize this tradeoff. Building on these results, we present a model that can capture in a unified framework both behaviors observed in earlier work. We hypothesize that such a latent low-dimensional structure is present in image classification. We test numerically this hypothesis by showing that specific perturbations of the training distribution degrade the performances of RKHS methods much more significantly than NNs.
stat
Cosine Series Representation
This short paper is based on Chung et al. (2010), where the cosine series representation (CSR) is used in modeling the shape of white matter fiber tracts in diffusion tensor imaging(DTI) and Wang et al. (2018), where the method is used to denoise EEG. The proposed explicit analytic approach offers far superior flexibility in statistical modeling compared to the usual implicit Fourier transform methods such as the discrete cosine transforms often used in signal processing. The MATLAB codes and sample data can be obtained from http://brainimaging.waisman.wisc.edu/~chung/tracts.
stat
Bayesian hierarchical space-time models to improve multispecies assessment by combining observations from disparate fish surveys
Many wild species affected by human activities require multiple surveys with differing designs to capture behavioural response to wide ranging habitat conditions and map and quantify them. While data from for example intersecting but disparate fish surveys using different gear, are widely available, differences in design and methodology often limit their integration. Novel statistical approaches which can draw on observations from diverse sources could enhance our understanding of multiple species distributions simultaneously and thus provide vital evidence needed to conserve their populations and biodiversity at large. Using a novel Bayesian hierarchical binomial-lognormal hurdle modelling approach within the INLA-SPDE framework, we combined and analysed acoustic and bottom trawl survey data for herring, sprat and northeast Atlantic mackerel in the North Sea. These models were implemented using INLA-SPDE techniques. By accounting for gear-specific efficiencies across surveys in addition to increased spatial coverage, we gained larger statistical power with greatly minimised uncertainties in estimation. Our statistical approach provides a methodological development to improve the evidence base for multispecies assessment and marine ecosystem-based management. And on a broader scale, it could be readily applied where disparate biological surveys and sampling methods intersect, e.g. to provide information on biodiversity patterns using global datasets of species distributions.
stat
Minimal Dispersion Approximately Balancing Weights: Asymptotic Properties and Practical Considerations
Weighting methods are widely used to adjust for covariates in observational studies, sample surveys, and regression settings. In this paper, we study a class of recently proposed weighting methods which find the weights of minimum dispersion that approximately balance the covariates. We call these weights "minimal weights" and study them under a common optimization framework. The key observation is the connection between approximate covariate balance and shrinkage estimation of the propensity score. This connection leads to both theoretical and practical developments. From a theoretical standpoint, we characterize the asymptotic properties of minimal weights and show that, under standard smoothness conditions on the propensity score function, minimal weights are consistent estimates of the true inverse probability weights. Also, we show that the resulting weighting estimator is consistent, asymptotically normal, and semiparametrically efficient. From a practical standpoint, we present a finite sample oracle inequality that bounds the loss incurred by balancing more functions of the covariates than strictly needed. This inequality shows that minimal weights implicitly bound the number of active covariate balance constraints. We finally provide a tuning algorithm for choosing the degree of approximate balance in minimal weights. We conclude the paper with four empirical studies that suggest approximate balance is preferable to exact balance, especially when there is limited overlap in covariate distributions. In these studies, we show that the root mean squared error of the weighting estimator can be reduced by as much as a half with approximate balance.
stat
Joint, Partially-joint, and Individual Independent Component Analysis in Multi-Subject fMRI Data
Objective: Joint analysis of multi-subject brain imaging datasets has wide applications in biomedical engineering. In these datasets, some sources belong to all subjects (joint), a subset of subjects (partially-joint), or a single subject (individual). In this paper, this source model is referred to as joint/partially-joint/individual multiple datasets multidimensional (JpJI-MDM), and accordingly, a source extraction method is developed. Method: We present a deflation-based algorithm utilizing higher order cumulants to analyze the JpJI-MDM source model. The algorithm maximizes a cost function which leads to an eigenvalue problem solved with thin-SVD (singular value decomposition) factorization. Furthermore, we introduce the JpJI-feature which indicates the spatial shape of each source and the amount of its jointness with other subjects. We use this feature to determine the type of sources. Results: We evaluate our algorithm by analyzing simulated data and two real functional magnetic resonance imaging (fMRI) datasets. In our simulation study, we will show that the proposed algorithm determines the type of sources with the accuracy of 95% and 100% for 2-class and 3-class clustering scenarios, respectively. Furthermore, our algorithm extracts meaningful joint and partially-joint sources from the two real datasets, which are consistent with the existing neuroscience studies. Conclusion: Our results in analyzing the real datasets reveal that both datasets follow the JpJI-MDM source model. This source model improves the accuracy of source extraction methods developed for multi-subject datasets. Significance: The proposed joint blind source separation algorithm is robust and avoids parameters which are difficult to fine-tune.
stat
Shrinking the eigenvalues of M-estimators of covariance matrix
A highly popular regularized (shrinkage) covariance matrix estimator is the shrinkage sample covariance matrix (SCM) which shares the same set of eigenvectors as the SCM but shrinks its eigenvalues toward the grand mean of the eigenvalues of the SCM. In this paper, a more general approach is considered in which the SCM is replaced by an M-estimator of scatter matrix and a fully automatic data adaptive method to compute the optimal shrinkage parameter with minimum mean squared error is proposed. Our approach permits the use of any weight function such as Gaussian, Huber's, Tyler's, or t-weight functions, all of which are commonly used in M-estimation framework. Our simulation examples illustrate that shrinkage M-estimators based on the proposed optimal tuning combined with robust weight function do not loose in performance to shrinkage SCM estimator when the data is Gaussian, but provide significantly improved performance when the data is sampled from an unspecified heavy-tailed elliptically symmetric distribution. Also, real-world and synthetic stock market data validate the performance of the proposed method in practical applications.
stat
Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions
A recent flurry of research activity has attempted to quantitatively define "fairness" for decisions based on statistical and machine learning (ML) predictions. The rapid growth of this new field has led to wildly inconsistent terminology and notation, presenting a serious challenge for cataloguing and comparing definitions. This paper attempts to bring much-needed order. First, we explicate the various choices and assumptions made---often implicitly---to justify the use of prediction-based decisions. Next, we show how such choices and assumptions can raise concerns about fairness and we present a notationally consistent catalogue of fairness definitions from the ML literature. In doing so, we offer a concise reference for thinking through the choices, assumptions, and fairness considerations of prediction-based decision systems.
stat
Decision tool and Sample Size Calculator for Composite Endpoints
Summary points: - This article considers the combination of two binary or two time-to-event endpoints to form the primary composite endpoint for leading a trial. - It discusses the relative efficiency of choosing a composite endpoint over one of its components in terms of: the frequencies of observing each component; the relative treatment effect of the tested therapy; and the association between both components. - We highlight the very important role of the association between components in choosing the most efficient endpoint to use as primary. - For better grounded future trials, we recommend trialists to always reporting the association between components of the composite endpoint. - Common fallacies to note when using composite endpoints: i) composite endpoints always imply higher power; ii) treatment effect on the composite endpoint is similar to the average effects of its components; and iii) the probability of observing the primary endpoint increases significantly.
stat
Dynamical systems theory for causal inference with application to synthetic control methods
In this paper, we adopt results in nonlinear time series analysis for causal inference in dynamical settings.~Our motivation is policy analysis with panel data, particularly through the use of "synthetic control" methods. These methods regress pre-intervention outcomes of the treated unit to outcomes from a pool of control units, and then use the fitted regression model to estimate causal effects post-intervention. In this setting, we propose to screen out control units that have a weak dynamical relationship to the treated unit. In simulations, we show that this method can mitigate bias from "cherry-picking" of control units, which is usually an important concern. We illustrate on real-world applications, including the tobacco legislation example of \citet{Abadie2010}, and Brexit.
stat
Modelling Career Trajectories of Cricket Players Using Gaussian Processes
In the sport of cricket, variations in a player's batting ability can usually be measured on one of two scales. Short-term changes in ability that are observed during a single innings, and long-term changes that are witnessed between matches, over entire playing careers. To measure long-term variations, we derive a Bayesian parametric model that uses a Gaussian process to measure and predict how the batting abilities of international cricketers fluctuate between innings. The model is fitted using nested sampling given its high dimensionality and for ease of model comparison. Generally speaking, the results support an anecdotal description of a typical sporting career. Young players tend to begin their careers with some raw ability, which improves over time as a result of coaching, experience and other external circumstances. Eventually, players reach the peak of their career, after which ability tends to decline. The model provides more accurate quantifications of current and future player batting abilities than traditional cricketing statistics, such as the batting average. The results allow us to identify which players are improving or deteriorating in terms of batting ability, which has practical implications in terms of player comparison, talent identification and team selection policy.
stat
Bayesian Hierarchical Bernoulli-Weibull Mixture Model for Extremely Rare Events
Estimating the duration of user behavior is a central concern for most internet companies. Survival analysis is a promising method for analyzing the expected duration of events and usually assumes the same survival function for all subjects and the event will occur in the long run. However, such assumptions are inappropriate when the users behave differently or some events never occur for some users, i.e., the conversion period on web services of the light users with no intention of behaving actively on the service. Especially, if the proportion of inactive users is high, this assumption can lead to undesirable results. To address these challenges, this paper proposes a mixture model that separately addresses active and inactive individuals with a latent variable. First, we define this specific problem setting and show the limitations of conventional survival analysis in addressing this problem. We demonstrate how naturally our Bernoulli-Weibull model can accommodate the challenge. The proposed model was extended further to a Bayesian hierarchical model to incorporate each subject's parameter, offering substantial improvements over conventional, non-hierarchical models in terms of WAIC and WBIC. Second, an experiment and extensive analysis were conducted using real-world data from the Japanese job search website, CareerTrek, offered by BizReach, Inc. In the analysis, some research questions are raised, such as the difference in activation rate and conversion rate between user categories, and how instantaneously the rate of event occurrence changes as time passes. Quantitative answers and interpretations are assigned to them. Furthermore, the model is inferred in a Bayesian manner, which enables us to represent the uncertainty with a credible interval of the parameters and predictive quantities.
stat
Pairwise likelihood estimation of latent autoregressive count models
Latent autoregressive models are useful time series models for the analysis of infectious disease data. Evaluation of the likelihood function of latent autoregressive models is intractable and its approximation through simulation-based methods appears as a standard practice. Although simulation methods may make the inferential problem feasible, they are often computationally intensive and the quality of the numerical approximation may be difficult to assess. We consider instead a weighted pairwise likelihood approach and explore several computational and methodological aspects including estimation of robust standard errors and the role of numerical integration. The suggested approach is illustrated using monthly data on invasive meningococcal disease infection in Greece and Italy.
stat
A Bayesian Functional Data Model for Surveys Collected under Informative Sampling with Application to Mortality Estimation using NHANES
Functional data are often extremely high-dimensional and exhibit strong dependence structures but can often prove valuable for both prediction and inference. The literature on functional data analysis is well developed; however, there has been very little work involving functional data in complex survey settings. Motivated by physical activity monitor data from the National Health and Nutrition Examination Survey (NHANES), we develop a Bayesian model for functional covariates that can properly account for the survey design. Our approach is intended for non-Gaussian data and can be applied in multivariate settings. In addition, we make use of a variety of Bayesian modeling techniques to ensure that the model is fit in a computationally efficient manner. We illustrate the value of our approach through an empirical simulation study as well as an example of mortality estimation using NHANES data.
stat
Multi-output Bus Travel Time Prediction with Convolutional LSTM Neural Network
Accurate and reliable travel time predictions in public transport networks are essential for delivering an attractive service that is able to compete with other modes of transport in urban areas. The traditional application of this information, where arrival and departure predictions are displayed on digital boards, is highly visible in the city landscape of most modern metropolises. More recently, the same information has become critical as input for smart-phone trip planners in order to alert passengers about unreachable connections, alternative route choices and prolonged travel times. More sophisticated Intelligent Transport Systems (ITS) include the predictions of connection assurance, i.e. to hold back services in case a connecting service is delayed. In order to operate such systems, and to ensure the confidence of passengers in the systems, the information provided must be accurate and reliable. Traditional methods have trouble with this as congestion, and thus travel time variability, increases in cities, consequently making travel time predictions in urban areas a non-trivial task. This paper presents a system for bus travel time prediction that leverages the non-static spatio-temporal correlations present in urban bus networks, allowing the discovery of complex patterns not captured by traditional methods. The underlying model is a multi-output, multi-time-step, deep neural network that uses a combination of convolutional and long short-term memory (LSTM) layers. The method is empirically evaluated and compared to other popular approaches for link travel time prediction and currently available services, including the currently deployed model in Copenhagen, Denmark. We find that the proposed model significantly outperforms all the other methods we compare with, and is able to detect small irregular peaks in bus travel times very quickly.
stat
Hierarchical Multimodel Ensemble Estimates of Soil Water Retention with Global Coverage
A correct quantification of mass and energy exchange processes among land surface and atmosphere requires an accurate description of unsaturated soil hydraulic properties. Soil pedotransfer functions (PTFs) have been widely used to predict soil hydraulic parameters. Here, 13 PTFs were grouped according to input data requirements and evaluated against a well-documented soil database with global coverage. Weighted ensembles (calibrated by four groups and the full 13-member set of PTFs) were shown to have improved performance over individual PTFs in terms of root mean square error and other model selection criteria. Global maps of soil water retention data from the ensemble models as well as their uncertainty were provided. These maps demonstrate that five PTF ensembles tend to have different estimates, especially in middle and high latitudes in the Northern Hemisphere. Our full 13-member ensemble model provides more accurate estimates than PTFs that are currently being used in earth system models.
stat
Bayesian Uncertainty Estimation Under Complex Sampling
Social and economic studies are often implemented as complex survey designs. For example, multistage, unequal probability sampling designs utilized by federal statistical agencies are typically constructed to maximize the efficiency of the target domain level estimator (e.g., indexed by geographic area) within cost constraints for survey administration. Such designs may induce dependence between the sampled units; for example, with employment of a sampling step that selects geographically-indexed clusters of units. A sampling-weighted pseudo-posterior distribution may be used to estimate the population model on the observed sample. The dependence induced between co-clustered units inflates the scale of the resulting pseudo-posterior covariance matrix that has been shown to induce under coverage of the credibility sets. By bridging results across Bayesian model mispecification and survey sampling, we demonstrate that the scale and shape of the asymptotic distributions are different between each of the pseudo-MLE, the pseudo-posterior and the MLE under simple random sampling. Through insights from survey sampling variance estimation and recent advances in computational methods, we devise a correction applied as a simple and fast post-processing step to MCMC draws of the pseudo-posterior distribution. This adjustment projects the pseudo-posterior covariance matrix such that the nominal coverage is approximately achieved. We make an application to the National Survey on Drug Use and Health as a motivating example and we demonstrate the efficacy of our scale and shape projection procedure on synthetic data on several common archetypes of survey designs.
stat
Estimating Average Treatment Effects with Support Vector Machines
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature. We demonstrate that SVM can be used to balance covariates and estimate average causal effects under the unconfoundedness assumption. Specifically, we adapt the SVM classifier as a kernel-based weighting procedure that minimizes the maximum mean discrepancy between the treatment and control groups while simultaneously maximizing effective sample size. We also show that SVM is a continuous relaxation of the quadratic integer program for computing the largest balanced subset, establishing its direct relation to the cardinality matching method. Another important feature of SVM is that the regularization parameter controls the trade-off between covariate balance and effective sample size. As a result, the existing SVM path algorithm can be used to compute the balance-sample size frontier. We characterize the bias of causal effect estimation arising from this trade-off, connecting the proposed SVM procedure to the existing kernel balancing methods. Finally, we conduct simulation and empirical studies to evaluate the performance of the proposed methodology and find that SVM is competitive with the state-of-the-art covariate balancing methods.
stat
HIV-prevalence mapping using Small Area Estimation in Kenya, Tanzania, and Mozambique at the first sub-national level
Local estimates of HIV-prevalence provide information that can be used to target interventions and consequently increase the efficiency of the resources. This closer-to-optimal allocation can lead to better health outcomes, including the control of the disease spread, and for more people. Producing reliable estimates at smaller geographical levels can be challenging and careful consideration of the nature of the data and the epidemiologic rational is needed. In this paper, we use the DHS data phase V to estimate HIV prevalence at the first-subnational level in Kenya, Tanzania, and Mozambique. We fit the data to a spatial random effect intrinsic conditional autoregressive (ICAR) model to smooth the outcome. We also use a sampling specification from a multistage cluster design. We found that Nyanza (P=14.2%) and Nairobi (P=7.8%) in Kenya, Iringa (P=16.2%) and Dar es Salaam (P=10.1%) in Tanzania, and Gaza (P=13.7%) and Maputo City (P=12.7%) in Mozambique are the regions with the highest prevalence of HIV, within country. Our results are based on statistically rigorous methods that allowed us to obtain an accurate visual representation of the HIV prevalence in the subset of African countries we chose. These results can help in identification and targeting of high-prevalent regions to increase the supply of healthcare services to reduce the spread of the disease and increase the health quality of people living with HIV.
stat
Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators
A collection of robust Mahalanobis distances for multivariate outlier detection is proposed, based on the notion of shrinkage. Robust intensity and scaling factors are optimally estimated to define the shrinkage. Some properties are investigated, such as affine equivariance and breakdown value. The performance of the proposal is illustrated through the comparison to other techniques from the literature, in a simulation study and with a real dataset. The behavior when the underlying distribution is heavy-tailed or skewed, shows the appropriateness of the method when we deviate from the common assumption of normality. The resulting high correct detection rates and low false detection rates in the vast majority of cases, as well as the significantly smaller computation time shows the advantages of our proposal.
stat
Monitoring dynamic networks: a simulation-based strategy for comparing monitoring methods and a comparative study
Recently there has been a lot of interest in monitoring and identifying changes in dynamic networks, which has led to the development of a variety of monitoring methods. Unfortunately, these methods have not been systematically compared; moreover, new methods are often designed for a specialized use case. In light of this, we propose the use of simulation to compare the performance of network monitoring methods over a variety of dynamic network changes. Using our family of simulated dynamic networks, we compare the performance of several state-of-the-art social network monitoring methods in the literature. We compare their performance over a variety of types of change; we consider both increases in communication levels, node propensity change as well as changes in community structure. We show that there does not exist one method that is uniformly superior to the others; the best method depends on the context and the type of change one wishes to detect. As such, we conclude that a variety of methods is needed for network monitoring and that it is important to understand in which scenarios a given method is appropriate.
stat
Cohort State-Transition Models in R: A Tutorial
Decision models can synthesize evidence from different sources to simulate long-term consequences of different strategies in the presence of uncertainty. Cohort state-transition models (cSTM) are decision models commonly used in medical decision making to simulate hypothetical cohorts' transitions across various health states over time. This tutorial shows how to implement cSTMs in R, an open-source mathematical and statistical programming language. As an example, we use a previously published cSTM-based cost-effectiveness analysis. With this example, we illustrate both time-independent cSTMs, where transition probabilities are constant over time, and time-dependent cSTMs, where transition probabilities vary by age and are dependent on time spent in a health state (state residence). We also illustrate how to compute various epidemiological outcomes of interest, such as survival and prevalence. We demonstrate how to calculate economic outcomes and conducting a cost-effectiveness analysis of multiple strategies using the example model, and provide additional resources to conduct probabilistic sensitivity analyses. We provide a link to a public repository with all the R code described in this tutorial that can be used to replicate the example or be adapted for various decision modeling applications.
stat
Distilling with Performance Enhanced Students
The task of accelerating large neural networks on general purpose hardware has, in recent years, prompted the use of channel pruning to reduce network size. However, the efficacy of pruning based approaches has since been called into question. In this paper, we turn to distillation for model compression---specifically, attention transfer---and develop a simple method for discovering performance enhanced student networks. We combine channel saliency metrics with empirical observations of runtime performance to design more accurate networks for a given latency budget. We apply our methodology to residual and densely-connected networks, and show that we are able to find resource-efficient student networks on different hardware platforms while maintaining very high accuracy. These performance-enhanced student networks achieve up to 10% boosts in top-1 ImageNet accuracy over their channel-pruned counterparts for the same inference time.
stat
Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models
Estimation of patient-specific model parameters is important for personalized modeling, although sparse and noisy clinical data can introduce significant uncertainty in the estimated parameter values. This importance source of uncertainty, if left unquantified, will lead to unknown variability in model outputs that hinder their reliable adoptions. Probabilistic estimation model parameters, however, remains an unresolved challenge because standard Markov Chain Monte Carlo sampling requires repeated model simulations that are computationally infeasible. A common solution is to replace the simulation model with a computationally-efficient surrogate for a faster sampling. However, by sampling from an approximation of the exact posterior probability density function (pdf) of the parameters, the efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling into Metropolis Hasting (MH) sampling of the exact posterior pdfs to improve its acceptance rate. It is done by first quickly constructing a Gaussian process (GP) surrogate of the exact posterior pdfs using deterministic optimization. This efficient surrogate is then used to modify commonly-used proposal distributions in MH sampling such that only proposals accepted by the surrogate will be tested by the exact posterior pdf for acceptance/rejection, reducing unnecessary model simulations at unlikely candidates. Synthetic and real-data experiments using the presented method show a significant gain in computational efficiency without compromising the accuracy. In addition, insights into the non-identifiability and heterogeneity of tissue properties can be gained from the obtained posterior distributions.
stat
Interpretable Stein Goodness-of-fit Tests on Riemannian Manifolds
In many applications, we encounter data on Riemannian manifolds such as torus and rotation groups. Standard statistical procedures for multivariate data are not applicable to such data. In this study, we develop goodness-of-fit testing and interpretable model criticism methods for general distributions on Riemannian manifolds, including those with an intractable normalization constant. The proposed methods are based on extensions of kernel Stein discrepancy, which are derived from Stein operators on Riemannian manifolds. We discuss the connections between the proposed tests with existing ones and provide a theoretical analysis of their asymptotic Bahadur efficiency. Simulation results and real data applications show the validity of the proposed methods.
stat
B-CONCORD -- A scalable Bayesian high-dimensional precision matrix estimation procedure
Sparse estimation of the precision matrix under high-dimensional scaling constitutes a canonical problem in statistics and machine learning. Numerous regression and likelihood based approaches, many frequentist and some Bayesian in nature have been developed. Bayesian methods provide direct uncertainty quantification of the model parameters through the posterior distribution and thus do not require a second round of computations for obtaining debiased estimates of the model parameters and their confidence intervals. However, they are computationally expensive for settings involving more than 500 variables. To that end, we develop B-CONCORD for the problem at hand, a Bayesian analogue of the CONvex CORrelation selection methoD (CONCORD) introduced by Khare et al. (2015). B-CONCORD leverages the CONCORD generalized likelihood function together with a spike-and-slab prior distribution to induce sparsity in the precision matrix parameters. We establish model selection and estimation consistency under high-dimensional scaling; further, we develop a procedure that refits only the non-zero parameters of the precision matrix, leading to significant improvements in the estimates in finite samples. Extensive numerical work illustrates the computational scalability of the proposed approach vis-a-vis competing Bayesian methods, as well as its accuracy.
stat
Empirical Bayes Matrix Factorization
Matrix factorization methods - including Factor analysis (FA), and Principal Components Analysis (PCA) - are widely used for inferring and summarizing structure in multivariate data. Many matrix factorization methods exist, corresponding to different assumptions on the elements of the underlying matrix factors. For example, many recent methods use a penalty or prior distribution to achieve sparse representations ("Sparse FA/PCA"). Here we introduce a general Empirical Bayes approach to matrix factorization (EBMF), whose key feature is that it uses the observed data to estimate prior distributions on matrix elements. We derive a correspondingly-general variational fitting algorithm, which reduces fitting EBMF to solving a simpler problem - the so-called "normal means" problem. We implement this general algorithm, but focus particular attention on the use of sparsity-inducing priors that are uni-modal at 0. This yields a sparse EBMF approach - essentially a version of sparse FA/PCA - that automatically adapts the amount of sparsity to the data. We demonstrate the benefits of our approach through both numerical comparisons with competing methods and through analysis of data from the GTEx (Genotype Tissue Expression) project on genetic associations across 44 human tissues. In numerical comparisons EBMF often provides more accurate inferences than other methods. In the GTEx data, EBMF identifies interpretable structure that concords with known relationships among human tissues. Software implementing our approach is available at https://github.com/stephenslab/flashr
stat
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
Recent studies on the adversarial vulnerability of neural networks have shown that models trained to be more robust to adversarial attacks exhibit more interpretable saliency maps than their non-robust counterparts. We aim to quantify this behavior by considering the alignment between input image and saliency map. We hypothesize that as the distance to the decision boundary grows,so does the alignment. This connection is strictly true in the case of linear models. We confirm these theoretical findings with experiments based on models trained with a local Lipschitz regularization and identify where the non-linear nature of neural networks weakens the relation.
stat
Statistical Analysis of Behavioral Intention Towards Private Umbilical Cord Blood Banking
In this paper, we propose a conceptual framework to identify the key dimensions affecting behavioral intention to bank umbilical cord blood in Iran. We examine the impact of awareness, reference group, usability, disease history, and price on perceived risk and behavioral intention to use umbilical cord blood banking service. To evaluate the proposed model of umbilical cord blood banking behavioral intention and to test our hypotheses, we apply field exploratory research. We use a five-point Likert scale to form a questionnaire to collect the data. The model is estimated with a sample of 242 Royan cord blood bank customers in Tehran. We use Pearson correlation and structural equation modeling to analyze the structural relationships between research variables, perceived risk, and behavioral intention. This research gives novelty on the determinants of behavioral intention in private umbilical cord blood banking, which adds value to literature and future managerial practices. Results show that usability is the primary determinant in cord blood banking.
stat
Error Correcting Algorithms for Sparsely Correlated Regressors
Autonomy and adaptation of machines requires that they be able to measure their own errors. We consider the advantages and limitations of such an approach when a machine has to measure the error in a regression task. How can a machine measure the error of regression sub-components when it does not have the ground truth for the correct predictions? A compressed sensing approach applied to the error signal of the regressors can recover their precision error without any ground truth. It allows for some regressors to be \emph{strongly correlated} as long as not too many are so related. Its solutions, however, are not unique - a property of ground truth inference solutions. Adding $\ell_1$--minimization as a condition can recover the correct solution in settings where error correction is possible. We briefly discuss the similarity of the mathematics of ground truth inference for regressors to that for classifiers.
stat
A distribution-free smoothed combination method of biomarkers to improve diagnostic accuracy in multi-category classification
Results from multiple diagnostic tests are usually combined to improve the overall diagnostic accuracy. For binary classification, maximization of the empirical estimate of the area under the receiver operating characteristic (ROC) curve is widely adopted to produce the optimal linear combination of multiple biomarkers. In the presence of large number of biomarkers, this method proves to be computationally expensive and difficult to implement since it involves maximization of a discontinuous, non-smooth function for which gradient-based methods cannot be used directly. Complexity of this problem increases when the classification problem becomes multi-category. In this article, we develop a linear combination method that maximizes a smooth approximation of the empirical Hypervolume Under Manifolds (HUM) for multi-category outcome. We approximate HUM by replacing the indicator function with the sigmoid function or normal cumulative distribution function (CDF). With the above smooth approximations, efficient gradient-based algorithms can be employed to obtain better solution with less computing time. We show that under some regularity conditions, the proposed method yields consistent estimates of the coefficient parameters. We also derive the asymptotic normality of the coefficient estimates. We conduct extensive simulations to examine our methods. Under different simulation scenarios, the proposed methods are compared with other existing methods and are shown to outperform them in terms of diagnostic accuracy. The proposed method is illustrated using two real medical data sets.
stat
Discrete distributions from a Markov chain
A discrete-time stochastic process derived from a model of basketball is used to generalize any discrete distribution. The generalized distributions can have one or two more parameters than the parent distribution. Those derived from binomial, Poisson and negative binomial distributions can be underdispersed or overdispersed. The mean can be simply expressed in terms of model parameters, thus making inference for the mean straightforward. Probabilities can be quickly computed, enabling likelihood-based inference. Random number generation is also straightforward. The properties of some of the new distributions are described and their use is illustrated with examples.
stat
Modeling Weather-induced Home Insurance Risks with Support Vector Machine Regression
Insurance industry is one of the most vulnerable sectors to climate change. Assessment of future number of claims and incurred losses is critical for disaster preparedness and risk management. In this project, we study the effect of precipitation on a joint dynamics of weather-induced home insurance claims and losses. We discuss utility and limitations of such machine learning procedures as Support Vector Machines and Artificial Neural Networks, in forecasting future claim dynamics and evaluating associated uncertainties. We illustrate our approach by application to attribution analysis and forecasting of weather-induced home insurance claims in a middle-sized city in the Canadian Prairies.
stat
Using Multiple Imputation to Classify Potential Outcomes Subgroups
With medical tests becoming increasingly available, concerns about over-testing and over-treatment dramatically increase. Hence, it is important to understand the influence of testing on treatment selection in general practice. Most statistical methods focus on average effects of testing on treatment decisions. However, this may be ill-advised, particularly for patient subgroups that tend not to benefit from such tests. Furthermore, missing data are common, representing large and often unaddressed threats to the validity of statistical methods. Finally, it is desirable to conduct analyses that can be interpreted causally. We propose to classify patients into four potential outcomes subgroups, defined by whether or not a patient's treatment selection is changed by the test result and by the direction of how the test result changes treatment selection. This subgroup classification naturally captures the differential influence of medical testing on treatment selections for different patients, which can suggest targets to improve the utilization of medical tests. We can then examine patient characteristics associated with patient potential outcomes subgroup memberships. We used multiple imputation methods to simultaneously impute the missing potential outcomes as well as regular missing values. This approach can also provide estimates of many traditional causal quantities. We find that explicitly incorporating causal inference assumptions into the multiple imputation process can improve the precision for some causal estimates of interest. We also find that bias can occur when the potential outcomes conditional independence assumption is violated; sensitivity analyses are proposed to assess the impact of this violation. We applied the proposed methods to examine the influence of 21-gene assay, the most commonly used genomic test, on chemotherapy selection among breast cancer patients.
stat
Spatial methods and their applications to environmental and climate data
Environmental and climate processes are often distributed over large space-time domains. Their complexity and the amount of available data make modelling and analysis a challenging task. Statistical modelling of environment and climate data can have several different motivations including interpretation or characterisation of the data. Results from statistical analysis are often used as a integral part of larger environmental studies. Spatial statistics is an active and modern statistical field, concerned with the quantitative analysis of spatial data; their dependencies and uncertainties. Spatio-temporal statistics extends spatial statistics through the addition of time to the, two or three, spatial dimensions. The focus of this introductory paper is to provide an overview of spatial methods and their application to environmental and climate data. This paper also gives an overview of several important topics including large data sets and non-stationary covariance structures. Further, it is discussed how Bayesian hierarchical models can provide a flexible way of constructing models. Hierarchical models may seem to be a good solution, but they have challenges of their own such as, parameter estimation. Finally, the application of spatio-temporal models to the LANDCLIM data (LAND cover - CLIMate interactions in NW Europe during the Holocene) will be discussed.
stat
A Vecchia Approximation for High-Dimensional Gaussian Cumulative Distribution Functions Arising from Spatial Data
We introduce an approach to quickly and accurately approximate the cumulative distribution function of multivariate Gaussian distributions arising from spatial Gaussian processes. This approximation is trivially parallelizable and simple to implement using standard software. We demonstrate its accuracy and computational efficiency in a series of simulation experiments and apply it to analyzing the joint tail of a large precipitation dataset using a recently-proposed scale mixture model for spatial extremes. This dataset is many times larger than what was previously considered possible to fit using preferred inferential techniques.
stat
Sparse Quantized Spectral Clustering
Given a large data matrix, sparsifying, quantizing, and/or performing other entry-wise nonlinear operations can have numerous benefits, ranging from speeding up iterative algorithms for core numerical linear algebra problems to providing nonlinear filters to design state-of-the-art neural network models. Here, we exploit tools from random matrix theory to make precise statements about how the eigenspectrum of a matrix changes under such nonlinear transformations. In particular, we show that very little change occurs in the informative eigenstructure even under drastic sparsification/quantization, and consequently that very little downstream performance loss occurs with very aggressively sparsified or quantized spectral clustering. We illustrate how these results depend on the nonlinearity, we characterize a phase transition beyond which spectral clustering becomes possible, and we show when such nonlinear transformations can introduce spurious non-informative eigenvectors.
stat
Screening Sinkhorn Algorithm for Regularized Optimal Transport
We introduce in this paper a novel strategy for efficiently approximating the Sinkhorn distance between two discrete measures. After identifying neglectable components of the dual solution of the regularized Sinkhorn problem, we propose to screen those components by directly setting them at that value before entering the Sinkhorn problem. This allows us to solve a smaller Sinkhorn problem while ensuring approximation with provable guarantees. More formally, the approach is based on a new formulation of dual of Sinkhorn divergence problem and on the KKT optimality conditions of this problem, which enable identification of dual components to be screened. This new analysis leads to the Screenkhorn algorithm. We illustrate the efficiency of Screenkhorn on complex tasks such as dimensionality reduction and domain adaptation involving regularized optimal transport.
stat
Testing and estimation of clustered signals
We propose a change-point detection method for large scale multiple testing problems with data having clustered signals. Unlike the classic change-point setup, the signals can vary in size within a cluster. The clustering structure on the signals enables us to effectively delineate the boundaries between signal and non-signal segments. New test statistics are proposed for observations from one and/or multiple realizations. Their asymptotic distributions are derived. We also study the associated variance estimation problem. We allow the variances to be heteroscedastic in the multiple realization case, which substantially expands the applicability of the proposed method. Simulation studies demonstrate that the proposed approach has a favorable performance. Our procedure is applied to {an array based Comparative Genomic Hybridization (aCGH)} dataset.
stat
Tractable structured natural gradient descent using local parameterizations
Natural-gradient descent on structured parameter spaces (e.g., low-rank covariances) is computationally challenging due to complicated inverse Fisher-matrix computations. We address this issue for optimization, inference, and search problems by using \emph{local-parameter coordinates}. Our method generalizes an existing evolutionary-strategy method, recovers Newton and Riemannian-gradient methods as special cases, and also yields new tractable natural-gradient algorithms for learning flexible covariance structures of Gaussian and Wishart-based distributions via \emph{matrix groups}. We show results on a range of applications on deep learning, variational inference, and evolution strategies. Our work opens a new direction for scalable structured geometric methods via local parameterizations.
stat
Calculating the Expected Value of Sample Information in Practice: Considerations from Three Case Studies
Investing efficiently in future research to improve policy decisions is an important goal. Expected Value of Sample Information (EVSI) can be used to select the specific design and sample size of a proposed study by assessing the benefit of a range of different studies. Estimating EVSI with the standard nested Monte Carlo algorithm has a notoriously high computational burden, especially when using a complex decision model or when optimizing over study sample sizes and designs. Therefore, a number of more efficient EVSI approximation methods have been developed. However, these approximation methods have not been compared and therefore their relative advantages and disadvantages are not clear. A consortium of EVSI researchers, including the developers of several approximation methods, compared four EVSI methods using three previously published health economic models. The examples were chosen to represent a range of real-world contexts, including situations with multiple study outcomes, missing data, and data from an observational rather than a randomized study. The computational speed and accuracy of each method were compared, and the relative advantages and implementation challenges of the methods were highlighted. In each example, the approximation methods took minutes or hours to achieve reasonably accurate EVSI estimates, whereas the traditional Monte Carlo method took weeks. Specific methods are particularly suited to problems where we wish to compare multiple proposed sample sizes, when the proposed sample size is large, or when the health economic model is computationally expensive. All the evaluated methods gave estimates similar to those given by traditional Monte Carlo, suggesting that EVSI can now be efficiently computed with confidence in realistic examples.
stat
Non-reversible Markov chain Monte Carlo for sampling of districting maps
Evaluating the degree of partisan districting (Gerrymandering) in a statistical framework typically requires an ensemble of districting plans which are drawn from a prescribed probability distribution that adheres to a realistic and non-partisan criteria. In this article we introduce novel non-reversible Markov chain Monte-Carlo (MCMC) methods for the sampling of such districting plans which have improved mixing properties in comparison to previously used (reversible) MCMC algorithms. In doing so we extend the current framework for construction of non-reversible Markov chains on discrete sampling spaces by considering a generalization of skew detailed balance. We provide a detailed description of the proposed algorithms and evaluate their performance in numerical experiments.
stat
Calibration procedures for approximate Bayesian credible sets
We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior which is not proportional to the product of ideal likelihood and prior. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown ``true'' parameter if the data are a realisation of the user's ideal observation model conditioned on the parameter, and the parameter is a draw from the user's ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling from the approximate posterior, windowing simulated data to fall close to the observed data. We illustrate our methods on four examples.
stat
A two-level Kriging-based approach with active learning for solving time-variant risk optimization problems
Several methods have been proposed in the literature to solve reliability-based optimization problems, where failure probabilities are design constraints. However, few methods address the problem of life-cycle cost or risk optimization, where failure probabilities are part of the objective function. Moreover, few papers in the literature address time-variant reliability problems in life-cycle cost or risk optimization formulations; in particular, because most often computationally expensive Monte Carlo simulation is required. This paper proposes a numerical framework for solving general risk optimization problems involving time-variant reliability analysis. To alleviate the computational burden of Monte Carlo simulation, two adaptive coupled surrogate models are used: the first one to approximate the objective function, and the second one to approximate the quasi-static limit state function. An iterative procedure is implemented for choosing additional support points to increase the accuracy of the surrogate models. Three application problems are used to illustrate the proposed approach. Two examples involve random load and random resistance degradation processes. The third problem is related to load-path dependent failures. This subject had not yet been addressed in the context of risk-based optimization. It is shown herein that accurate solutions are obtained, with extremely limited numbers of objective function and limit state functions calls.
stat
Distributed Feature Screening via Componentwise Debiasing
Feature screening is a powerful tool in the analysis of high dimensional data. When the sample size $N$ and the number of features $p$ are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of "divide-and-conquer", the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments $m$ specified by the problem itself or to be chosen by users. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the classic centralized estimator in terms of the probability convergence bound; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples.
stat
Perturbed factor analysis: Accounting for group differences in exposure profiles
In this article, we investigate group differences in phthalate exposure profiles using NHANES data. Phthalates are a family of industrial chemicals used in plastics and as solvents. There is increasing evidence of adverse health effects of exposure to phthalates on reproduction and neuro-development, and concern about racial disparities in exposure. We would like to identify a single set of low-dimensional factors summarizing exposure to different chemicals, while allowing differences across groups. Improving on current multi-group additive factor models, we propose a class of Perturbed Factor Analysis (PFA) models that assume a common factor structure after perturbing the data via multiplication by a group-specific matrix. Bayesian inference algorithms are defined using a matrix normal hierarchical model for the perturbation matrices. The resulting model is just as flexible as current approaches in allowing arbitrarily large differences across groups but has substantial advantages that we illustrate in simulation studies. Applying PFA to NHANES data, we learn common factors summarizing exposures to phthalates, while showing clear differences across groups.
stat
Bayesian estimation of trend components within Markovian regime-switching models for wholesale electricity prices: an application to the South Australian wholesale electricity market
We discuss and extend methods for estimating Markovian-Regime-Switching (MRS) and trend models for wholesale electricity prices. We argue the existing methods of trend estimation used in the electricity price modelling literature either require an ambiguous definition of an extreme price, or lead to issues when implementing model selection [23]. The first main contribution of this paper is to design and infer a model which has a model-based definition of extreme prices and permits the use of model selection criteria. Due to the complexity of the MRS models inference is not straightforward. In the existing literature an approximate EM algorithm is used [26]. Another contribution of this paper is to implement exact inference in a Bayesian setting. This also allows the use of posterior predictive checks to assess model fit. We demonstrate the methodologies with South Australian electricity market.
stat
Locally Linear Embedding and its Variants: Tutorial and Survey
This is a tutorial and survey paper for Locally Linear Embedding (LLE) and its variants. The idea of LLE is fitting the local structure of manifold in the embedding space. In this paper, we first cover LLE, kernel LLE, inverse LLE, and feature fusion with LLE. Then, we cover out-of-sample embedding using linear reconstruction, eigenfunctions, and kernel mapping. Incremental LLE is explained for embedding streaming data. Landmark LLE methods using the Nystrom approximation and locally linear landmarks are explained for big data embedding. We introduce the methods for parameter selection of number of neighbors using residual variance, Procrustes statistics, preservation neighborhood error, and local neighborhood selection. Afterwards, Supervised LLE (SLLE), enhanced SLLE, SLLE projection, probabilistic SLLE, supervised guided LLE (using Hilbert-Schmidt independence criterion), and semi-supervised LLE are explained for supervised and semi-supervised embedding. Robust LLE methods using least squares problem and penalty functions are also introduced for embedding in the presence of outliers and noise. Then, we introduce fusion of LLE with other manifold learning methods including Isomap (i.e., ISOLLE), principal component analysis, Fisher discriminant analysis, discriminant LLE, and Isotop. Finally, we explain weighted LLE in which the distances, reconstruction weights, or the embeddings are adjusted for better embedding; we cover weighted LLE for deformed distributed data, weighted LLE using probability of occurrence, SLLE by adjusting weights, modified LLE, and iterative LLE.
stat
Latent group structure and regularized regression
Regression models generally assume that the conditional distribution of response Y given features X is the same for all samples. For heterogeneous data with distributional differences among latent groups, standard regression models are ill-equipped, especially in large multivariate problems where hidden heterogeneity can easily pass undetected. To allow for robust and interpretable regression modeling in this setting we propose a class of regularized mixture models that couples together both the multivariate distribution of X and the conditional Y | X. This joint modeling approach offers a novel way to deal with suspected distributional shifts, which allows for automatic control of confounding by latent group structure and delivers scalable, sparse solutions. Estimation is handled via an expectation-maximization algorithm, whose convergence is established theoretically. We illustrate the key ideas via empirical examples.
stat
Measurement Error in Meta-Analysis (MEMA) -- a Bayesian framework for continuous outcome data
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we consider the less than ideal situation in which contributing studies may be compromised by measurement error. Measurement error affects every study design, from randomized controlled trials to retrospective observational studies. We outline a flexible Bayesian framework for continuous outcome data which allows one to obtain appropriate point and interval estimates with varying degrees of prior knowledge about the magnitude of the measurement error. We also demonstrate how, if individual-participant data (IPD) are available, the Bayesian meta-analysis model can adjust for multiple participant-level covariates, measured with or without measurement error.
stat
The Discrete Adjoint Method: Efficient Derivatives for Functions of Discrete Sequences
Gradient-based techniques are becoming increasingly critical in quantitative fields, notably in statistics and computer science. The utility of these techniques, however, ultimately depends on how efficiently we can evaluate the derivatives of the complex mathematical functions that arise in applications. In this paper we introduce a discrete adjoint method that efficiently evaluates derivatives for functions of discrete sequences.
stat
Multidimensional Scaling for Big Data
We present a set of algorithms for Multidimensional Scaling (MDS) to be used with large datasets. MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix of dimensions $n \times n$. When $n$ is large, classical algorithms suffer from computational problems and MDS configuration can not be obtained. In this paper we address these problems by means of three algorithms: Divide and Conquer MDS, Fast MDS and MDS based on Gower interpolation (the first and the last being original proposals). The main ideas of these methods are based on partitioning the dataset into small pieces, where classical MDS methods can work. In order to check the performance of the algorithms as well as to compare them, we do a simulation study. This study points out that Fast MDS and MDS based on Gower interpolation are appropriated to use when $n$ is large. Although Divide and Conquer MDS is not as fast as the other two algorithms, it is the best method that captures the variance of the original data.
stat
Highest CO$_2$ Emissions Scenarios Are Extreme Given Observations and Expert Judgements
Probabilistic projections of baseline future carbon emissions are important for sound climate risk management. Deep uncertainty surrounds many drivers of projected emissions. For example, there is no consensus about estimates of fossil fuel resources. We use a simple integrated assessment model to make probabilistic projections of carbon emissions through 2100. We find that, given current mitigation policies and in the absence of negative emissions technologies, more moderate scenarios used by the Intergovernmental Panel on Climate Change are more likely than the extreme high or low scenarios. This finding is robust to a variety of assumptions about fossil fuel resource constraints and decarbonization rates. However, the most likely range for cumulative CO$_2$ emissions from 2018--2100 across our varying assumptions is 700--1800 GtC. Much more aggressive mitigation will be required to reliably achieve the $2^\circ$C Paris Agreement target.
stat
Modeling the Dynamics of the COVID-19 Population in Australia: A Probabilistic Analysis
The novel Corona Virus COVID-19 arrived on Australian shores around 25 January 2020. This paper presents a novel method of dynamically modeling and forecasting the COVID-19 pandemic in Australia with a high degree of accuracy and in a timely manner using limited data; a valuable resource that can be used to guide government decision-making on societal restrictions on a daily and/or weekly basis. The "partially-observable stochastic process" used in this study predicts not only the future actual values with extremely low error, but also the percentage of unobserved COVID-19 cases in the population. The model can further assist policy makers to assess the effectiveness of several possible alternative scenarios in their decision-making processes.
stat
Accuracy of the Epic Sepsis Prediction Model in a Regional Health System
Interest in an electronic health record-based computational model that can accurately predict a patient's risk of sepsis at a given point in time has grown rapidly in the last several years. Like other EHR vendors, the Epic Systems Corporation has developed a proprietary sepsis prediction model (ESPM). Epic developed the model using data from three health systems and penalized logistic regression. Demographic, comorbidity, vital sign, laboratory, medication, and procedural variables contribute to the model. The objective of this project was to compare the predictive performance of the ESPM with a regional health system's current Early Warning Score-based sepsis detection program.
stat
Simultaneous Inference Under the Vacuous Orientation Assumption
I propose a novel approach to simultaneous inference that alleviates the need to specify a correlational structure among marginal errors. The vacuous orientation assumption retains what the normal i.i.d. assumption implies about the distribution of error configuration, but relaxes the implication that the error orientation is isotropic. When a large number of highly dependent hypotheses are tested simultaneously, the proposed model produces calibrated posterior inference by leveraging the logical relationship among them. This stands in contrast to the conservative performance of the Bonferroni correction, even if neither approaches makes assumptions about error dependence. The proposed model employs the Dempster-Shafer Extended Calculus of Probability, and delivers posterior inference in the form of stochastic three-valued logic.
stat
Bayesian nonparametric panel Markov-switching GARCH models
This paper introduces a new model for panel data with Markov-switching GARCH effects. The model incorporates a series-specific hidden Markov chain process that drives the GARCH parameters. To cope with the high-dimensionality of the parameter space, the paper exploits the cross-sectional clustering of the series by first assuming a soft parameter pooling through a hierarchical prior distribution with two-step procedure, and then introducing clustering effects in the parameter space through a nonparametric prior distribution. The model and the proposed inference are evaluated through a simulation experiment. The results suggest that the inference is able to recover the true value of the parameters and the number of groups in each regime. An empirical application to 78 assets of the SP\&100 index from $6^{th}$ January 2000 to $3^{rd}$ October 2020 is also carried out by using a two-regime Markov switching GARCH model. The findings shows the presence of 2 and 3 clusters among the constituents in the first and second regime, respectively.
stat
Defying the Circadian Rhythm: Clustering Participant Telemetry in the UK Biobank Data
The UK Biobank dataset follows over 500,000 volunteers and contains a diverse set of information related to societal outcomes. Among this vast collection, a large quantity of telemetry collected from wrist-worn accelerometers provides a snapshot of participant activity. Using this data, a population of shift workers, subjected to disrupted circadian rhythms, is analysed using a mixture model-based approach to yield protective effects from physical activity on survival outcomes. In this paper, we develop a scalable, standardized, and unique methodology that efficiently clusters a vast quantity of participant telemetry. By building upon the work of Doherty et al. (2017), we introduce a standardized, low-dimensional feature for clustering purposes. Participants are clustered using a matrix variate mixture model-based approach. Once clustered, survival analysis is performed to demonstrate distinct lifetime outcomes for individuals within each cluster. In summary, we process, cluster, and analyse a subset of UK Biobank participants to show the protective effects from physical activity on circadian disrupted individuals.
stat
A cross-center smoothness prior for variational Bayesian brain tissue segmentation
Suppose one is faced with the challenge of tissue segmentation in MR images, without annotators at their center to provide labeled training data. One option is to go to another medical center for a trained classifier. Sadly, tissue classifiers do not generalize well across centers due to voxel intensity shifts caused by center-specific acquisition protocols. However, certain aspects of segmentations, such as spatial smoothness, remain relatively consistent and can be learned separately. Here we present a smoothness prior that is fit to segmentations produced at another medical center. This informative prior is presented to an unsupervised Bayesian model. The model clusters the voxel intensities, such that it produces segmentations that are similarly smooth to those of the other medical center. In addition, the unsupervised Bayesian model is extended to a semi-supervised variant, which needs no visual interpretation of clusters into tissues.
stat
Score-based Tests for Explaining Upper-Level Heterogeneity in Linear Mixed Models
Cross-level interactions among fixed effects in linear mixed models (also known as multilevel models) are often complicated by the variances stemming from random effects and residuals. When these variances change across clusters, tests of fixed effects (including cross-level interaction terms) are subject to inflated Type I or Type II error. While the impact of variance change/heterogeneity has been noticed in the literature, few methods have been proposed to detect this heterogeneity in a simple, systematic way. In addition, when heterogeneity among clusters is detected, researchers often wish to know which clusters' variances differed from the others. In this study, we utilize a recently-proposed family of score-based tests to distinguish between cross-level interactions and heterogeneity in variance components, also providing information about specific clusters that exhibit heterogeneity. These score-based tests only require estimation of the null model (when variance homogeneity is assumed to hold), and they have been previously applied to psychometric models. We extend the tests to linear mixed models here, detailing their implementation and performance when the data generating model is known. We also include an empirical example illustrating the tests' use in practice.
stat
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
We derive the optimal approximate posterior over the top-layer weights in a Bayesian neural network for regression, and show that it exhibits strong dependencies on the lower-layer weights. We adapt this result to develop a correlated approximate posterior over the weights at all layers in a Bayesian neural network. We extend this approach to deep Gaussian processes, unifying inference in the two model classes. Our approximate posterior uses learned "global" inducing points, which are defined only at the input layer and propagated through the network to obtain inducing inputs at subsequent layers. By contrast, standard, "local", inducing point methods from the deep Gaussian process literature optimize a separate set of inducing inputs at every layer, and thus do not model correlations across layers. Our method gives state-of-the-art performance for a variational Bayesian method, without data augmentation or tempering, on CIFAR-10 of $86.7\%$.
stat
Doubly stochastic distributions of extreme events
The distribution of block maxima of sequences of independent and identically-distributed random variables is used to model extreme values in many disciplines. The traditional extreme value (EV) theory derives a closed-form expression for the distribution of block maxima under asymptotic assumptions, and is generally fitted using annual maxima or excesses over a high threshold, thereby discarding a large fraction of the available observations. The recently-introduced Metastatistical Extreme Value Distribution (MEVD), a non-asymptotic formulation based on doubly stochastic distributions, has been shown to offer several advantages compared to the traditional EV theory. In particular, MEVD explicitly accounts for the variability of the process generating the extreme values, and uses all the available information to perform high-quantile inferences. Here we review the derivation of the MEVD, analyzing its assumptions in detail, and show that its general formulation includes other doubly stochastic approaches to extreme value analysis that have been recently proposed.
stat
Inference in latent factor regression with clusterable features
Regression models, in which the observed features $X \in \R^p$ and the response $Y \in \R$ depend, jointly, on a lower dimensional, unobserved, latent vector $Z \in \R^K$, with $K< p$, are popular in a large array of applications, and mainly used for predicting a response from correlated features. In contrast, methodology and theory for inference on the regression coefficient $\beta$ relating $Y$ to $Z$ are scarce, since typically the un-observable factor $Z$ is hard to interpret. Furthermore, the determination of the asymptotic variance of an estimator of $\beta$ is a long-standing problem, with solutions known only in a few particular cases. To address some of these outstanding questions, we develop inferential tools for $\beta$ in a class of factor regression models in which the observed features are signed mixtures of the latent factors. The model specifications are practically desirable, in a large array of applications, render interpretability to the components of $Z$, and are sufficient for parameter identifiability. Without assuming that the number of latent factors $K$ or the structure of the mixture is known in advance, we construct computationally efficient estimators of $\beta$, along with estimators of other important model parameters. We benchmark the rate of convergence of $\beta$ by first establishing its $\ell_2$-norm minimax lower bound, and show that our proposed estimator is minimax-rate adaptive. Our main contribution is the provision of a unified analysis of the component-wise Gaussian asymptotic distribution of $\wh \beta$ and, especially, the derivation of a closed form expression of its asymptotic variance, together with consistent variance estimators. The resulting inferential tools can be used when both $K$ and $p$ are independent of the sample size $n$, and when both, or either, $p$ and $K$ vary with $n$, while allowing for $p > n$.
stat
On Multi-Armed Bandit Designs for Dose-Finding Clinical Trials
We study the problem of finding the optimal dosage in early stage clinical trials through the multi-armed bandit lens. We advocate the use of the Thompson Sampling principle, a flexible algorithm that can accommodate different types of monotonicity assumptions on the toxicity and efficacy of the doses. For the simplest version of Thompson Sampling, based on a uniform prior distribution for each dose, we provide finite-time upper bounds on the number of sub-optimal dose selections, which is unprecedented for dose-finding algorithms. Through a large simulation study, we then show that variants of Thompson Sampling based on more sophisticated prior distributions outperform state-of-the-art dose identification algorithms in different types of dose-finding studies that occur in phase I or phase I/II trials.
stat
Semi-Supervised Method using Gaussian Random Fields for Boilerplate Removal in Web Browsers
Boilerplate removal refers to the problem of removing noisy content from a webpage such as ads and extracting relevant content that can be used by various services. This can be useful in several features in web browsers such as ad blocking, accessibility tools such as read out loud, translation, summarization etc. In order to create a training dataset to train a model for boilerplate detection and removal, labeling or tagging webpage data manually can be tedious and time consuming. Hence, a semi-supervised model, in which some of the webpage elements are labeled manually and labels for others are inferred based on some parameters, can be useful. In this paper we present a solution for extraction of relevant content from a webpage that relies on semi-supervised learning using Gaussian Random Fields. We first represent the webpage as a graph, with text elements as nodes and the edge weights representing similarity between nodes. After this, we label a few nodes in the graph using heuristics and label the remaining nodes by a weighted measure of similarity to the already labeled nodes. We describe the system architecture and a few preliminary results on a dataset of webpages.
stat
Conditional Super Learner
In this article we consider the Conditional Super Learner (CSL), an algorithm which selects the best model candidate from a library conditional on the covariates. The CSL expands the idea of using cross-validation to select the best model and merges it with meta learning. Here we propose a specific algorithm that finds a local minimum to the problem posed, proof that it converges at a rate faster than $O_p(n^{-1/4})$ and offers extensive empirical evidence that it is an excellent candidate to substitute stacking or for the analysis of Hierarchical problems.
stat
Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections
The downward trend in the amount of Arctic sea ice has a wide range of environmental and economic consequences including important effects on the pace and intensity of global climate change. Based on several decades of satellite data, we provide statistical forecasts of Arctic sea ice extent during the rest of this century. The best fitting statistical model indicates that overall sea ice coverage is declining at an increasing rate. By contrast, average projections from the CMIP5 global climate models foresee a gradual slowing of Arctic sea ice loss even in scenarios with high carbon emissions. Our long-range statistical projections also deliver probability assessments of the timing of an ice-free Arctic. These results indicate almost a 60 percent chance of an effectively ice-free Arctic Ocean sometime during the 2030s -- much earlier than the average projection from the global climate models.
stat
These Unprecedented Times: The Dynamic Pattern Of COVID-19 Deaths Around The World
In this article, we deal with COVID-19 data to study the trend of the epidemic at the global situation. Choosing the mortality rate as an appropriate metric which measures the relative relation between the cumulative confirmed cases and death cases, we utilize the modified kernel estimator for random density function (Petersen and Muller, 2016) to obtain the density of the mortality rate, and apply Frechet change point detection (Dubey and Muller, 2020) to check if there is any significant change on the dynamic pattern of COVID-19 deaths. The analysis shows that the pattern of global COVID-19 mortality rate seems to have an obvious change at 104 days after first day when the reported death cases exceed 30. Then we discuss the reasons of abrupt change of mortality rate trend from aspects both subjective and objective.
stat
Resilient Monotone Sequential Maximization
Applications in machine learning, optimization, and control require the sequential selection of a few system elements, such as sensors, data, or actuators, to optimize the system performance across multiple time steps. However, in failure-prone and adversarial environments, sensors get attacked, data get deleted, and actuators fail. Thence, traditional sequential design paradigms become insufficient and, in contrast, resilient sequential designs that adapt against system-wide attacks, deletions, or failures become important. In general, resilient sequential design problems are computationally hard. Also, even though they often involve objective functions that are monotone and (possibly) submodular, no scalable approximation algorithms are known for their solution. In this paper, we provide the first scalable algorithm, that achieves the following characteristics: system-wide resiliency, i.e., the algorithm is valid for any number of denial-of-service attacks, deletions, or failures; adaptiveness, i.e., at each time step, the algorithm selects system elements based on the history of inflicted attacks, deletions, or failures; and provable approximation performance, i.e., the algorithm guarantees for monotone objective functions a solution close to the optimal. We quantify the algorithm's approximation performance using a notion of curvature for monotone (not necessarily submodular) set functions. Finally, we support our theoretical analyses with simulated experiments, by considering a control-aware sensor scheduling scenario, namely, sensing-constrained robot navigation.
stat
Conditional Expectation Propagation
Expectation propagation (EP) is a powerful approximate inference algorithm. However, a critical barrier in applying EP is that the moment matching in message updates can be intractable. Handcrafting approximations is usually tricky, and lacks generalizability. Importance sampling is very expensive. While Laplace propagation provides a good solution, it has to run numerical optimizations to find Laplace approximations in every update, which is still quite inefficient. To overcome these practical barriers, we propose conditional expectation propagation (CEP) that performs conditional moment matching given the variables outside each message, and then takes expectation w.r.t the approximate posterior of these variables. The conditional moments are often analytical and much easier to derive. In the most general case, we can use (fully) factorized messages to represent the conditional moments by quadrature formulas. We then compute the expectation of the conditional moments via Taylor approximations when necessary. In this way, our algorithm can always conduct efficient, analytical fixed point iterations. Experiments on several popular models for which standard EP is available or unavailable demonstrate the advantages of CEP in both inference quality and computational efficiency.
stat