title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
The Causality Inference of Public Interest in Restaurants and Bars on COVID-19 Daily Cases in the US: A Google Trends Analysis
The COVID-19 coronavirus pandemic has affected virtually every region of the globe. At the time of conducting this study, the number of daily cases in the United States is more than any other country, and the trend is increasing in most of its states. Google trends provide public interest in various topics during different periods. Analyzing these trends using data mining methods might provide useful insights and observations regarding the COVID-19 outbreak. The objective of this study was to consider the predictive ability of different search terms (i.e., bars and restaurants) with regards to the increase of daily cases in the US. We considered the causation of two different search query trends, namely restaurant and bars, on daily positive cases in top-10 states/territories of the United States with the highest and lowest daily new positive cases. In addition, to measure the linear relation of different trends, we used Pearson correlation. Our results showed for states/territories with higher numbers of daily cases, the historical trends in search queries related to bars and restaurants, which mainly happened after re-opening, significantly affect the daily new cases, on average. California, for example, had most searches for restaurants on June 7th, 2020, which affected the number of new cases within two weeks after the peak with the P-value of .004 for Granger's causality test. Although a limited number of search queries were considered, Google search trends for restaurants and bars showed a significant effect on daily new cases for regions with higher numbers of daily new cases in the United States. We showed that such influential search trends could be used as additional information for prediction tasks in new cases of each region. This prediction can help healthcare leaders manage and control the impact of COVID-19 outbreaks on society and be prepared for the outcomes.
stat
Signal Processing on the Permutahedron: Tight Spectral Frames for Ranked Data Analysis
Ranked data sets, where m judges/voters specify a preference ranking of n objects/candidates, are increasingly prevalent in contexts such as political elections, computer vision, recommender systems, and bioinformatics. The vote counts for each ranking can be viewed as an n! data vector lying on the permutahedron, which is a Cayley graph of the symmetric group with vertices labeled by permutations and an edge when two permutations differ by an adjacent transposition. Leveraging combinatorial representation theory and recent progress in signal processing on graphs, we investigate a novel, scalable transform method to interpret and exploit structure in ranked data. We represent data on the permutahedron using an overcomplete dictionary of atoms, each of which captures both smoothness information about the data (typically the focus of spectral graph decomposition methods in graph signal processing) and structural information about the data (typically the focus of symmetry decomposition methods from representation theory). These atoms have a more naturally interpretable structure than any known basis for signals on the permutahedron, and they form a Parseval frame, ensuring beneficial numerical properties such as energy preservation. We develop specialized algorithms and open software that take advantage of the symmetry and structure of the permutahedron to improve the scalability of the proposed method, making it more applicable to the high-dimensional ranked data found in applications.
stat
Interpretability of Epidemiological Models : The Curse of Non-Identifiability
Interpretability of epidemiological models is a key consideration, especially when these models are used in a public health setting. Interpretability is strongly linked to the identifiability of the underlying model parameters, i.e., the ability to estimate parameter values with high confidence given observations. In this paper, we define three separate notions of identifiability that explore the different roles played by the model definition, the loss function, the fitting methodology, and the quality and quantity of data. We define an epidemiological compartmental model framework in which we highlight these non-identifiability issues and their mitigation.
stat
Data-fusion using factor analysis and low-rank matrix completion
Data-fusion involves the integration of multiple related datasets. The statistical file-matching problem is a canonical data-fusion problem in multivariate analysis, where the objective is to characterise the joint distribution of a set of variables when only strict subsets of marginal distributions have been observed. Estimation of the covariance matrix of the full set of variables is challenging given the missing-data pattern. Factor analysis models use lower-dimensional latent variables in the data-generating process, and this introduces low-rank components in the complete-data matrix and the population covariance matrix. The low-rank structure of the factor analysis model can be exploited to estimate the full covariance matrix from incomplete data via low-rank matrix completion. We prove the identifiability of the factor analysis model in the statistical file-matching problem under conditions on the number of factors and the number of shared variables over the observed marginal subsets. Additionally, we provide an EM algorithm for parameter estimation. On several real datasets, the factor model gives smaller reconstruction errors in file-matching problems than the common approaches for low-rank matrix completion.
stat
Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data
A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for the local inferences; these weakened priors may not provide enough regularization for each separate computation, thus eliminating one of the key advantages of Bayesian methods. To resolve this dilemma while still retaining the generalizability of the underlying local inference method, we apply the idea of expectation propagation (EP) as a framework for distributed Bayesian inference. The central idea is to iteratively update approximations to the local likelihoods given the state of the other approximations and the prior. The present paper has two roles: we review the steps that are needed to keep EP algorithms numerically stable, and we suggest a general approach, inspired by EP, for approaching data partitioning problems in a way that achieves the computational benefits of parallelism while allowing each local update to make use of relevant information from the other sites. In addition, we demonstrate how the method can be applied in a hierarchical context to make use of partitioning of both data and parameters. The paper describes a general algorithmic framework, rather than a specific algorithm, and presents an example implementation for it.
stat
Data Analysis Recipes: Products of multivariate Gaussians in Bayesian inferences
A product of two Gaussians (or normal distributions) is another Gaussian. That's a valuable and useful fact! Here we use it to derive a refactoring of a common product of multivariate Gaussians: The product of a Gaussian likelihood times a Gaussian prior, where some or all of those parameters enter the likelihood only in the mean and only linearly. That is, a linear, Gaussian, Bayesian model. This product of a likelihood times a prior pdf can be refactored into a product of a marginalized likelihood (or a Bayesian evidence) times a posterior pdf, where (in this case) both of these are also Gaussian. The means and variance tensors of the refactored Gaussians are straightforward to obtain as closed-form expressions; here we deliver these expressions, with discussion. The closed-form expressions can be used to speed up and improve the precision of inferences that contain linear parameters with Gaussian priors. We connect these methods to inferences that arise frequently in physics and astronomy. If all you want is the answer, the question is posed and answered at the beginning of Section 3. We show two toy examples, in the form of worked exercises, in Section 4. The solutions, discussion, and exercises in this Note are aimed at someone who is already familiar with the basic ideas of Bayesian inference and probability.
stat
Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel
Spectral clustering is a popular method for community detection in networks under the assumption of the standard stochastic blockmodel. Taking a matrix representation of the graph such as the adjacency matrix, the nodes are clustered on a low dimensional projection obtained from a truncated spectral decomposition of the matrix. Estimating the number of communities and the dimension of the reduced latent space well is crucial for good performance of spectral clustering algorithms. Real-world networks, such as computer networks studied in cyber-security applications, often present heterogeneous within-community degree distributions which are better addressed by the degree-corrected stochastic blockmodel. A novel, model-based method is proposed in this article for simultaneous and automated selection of the number of communities and latent dimension for spectral clustering under the degree-corrected stochastic blockmodel. The method is based on a transformation to spherical coordinates of the spectral embedding, and on a novel modelling assumption in the transformed space, which is then embedded into an existing model selection framework for estimating the number of communities and the latent dimension. Results show improved performance over competing methods on simulated and real-world computer network data.
stat
Residual Networks Behave Like Boosting Algorithms
We show that Residual Networks (ResNet) is equivalent to boosting feature representation, without any modification to the underlying ResNet training algorithm. A regret bound based on Online Gradient Boosting theory is proved and suggests that ResNet could achieve Online Gradient Boosting regret bounds through neural network architectural changes with the addition of a shrinkage parameter in the identity skip-connections and using residual modules with max-norm bounds. Through this relation between ResNet and Online Boosting, novel feature representation boosting algorithms can be constructed based on altering residual modules. We demonstrate this through proposing decision tree residual modules to construct a new boosted decision tree algorithm and demonstrating generalization error bounds for both approaches; relaxing constraints within BoostResNet algorithm to allow it to be trained in an out-of-core manner. We evaluate convolution ResNet with and without shrinkage modifications to demonstrate its efficacy, and demonstrate that our online boosted decision tree algorithm is comparable to state-of-the-art offline boosted decision tree algorithms without the drawback of offline approaches.
stat
Soft Tensor Regression
Statistical methods relating tensor predictors to scalar outcomes in a regression model generally vectorize the tensor predictor and estimate the coefficients of its entries employing some form of regularization, use summaries of the tensor covariate, or use a low dimensional approximation of the coefficient tensor. However, low rank approximations of the coefficient tensor can suffer if the true rank is not small. We propose a tensor regression framework which assumes a soft version of the parallel factors (PARAFAC) approximation. In contrast to classic PARAFAC, where each entry of the coefficient tensor is the sum of products of row-specific contributions across the tensor modes, the soft tensor regression (Softer) framework allows the row-specific contributions to vary around an overall mean. We follow a Bayesian approach to inference, and show that softening the PARAFAC increases model flexibility, leads to more precise predictions, improved estimation of coefficient tensors, and more accurate identification of important predictor entries, even for a low approximation rank. From a theoretical perspective, we show that the posterior distribution of the coefficient tensor based on Softer is weakly consistent irrespective of the true tensor or approximation rank. In the context of our motivating application, we adapt Softer to symmetric and semi-symmetric tensor predictors and analyze the relationship between brain network characteristics and human traits.
stat
Efficient Manifold and Subspace Approximations with Spherelets
Data lying in a high dimensional ambient space are commonly thought to have a much lower intrinsic dimension. In particular, the data may be concentrated near a lower-dimensional subspace or manifold. There is an immense literature focused on approximating the unknown subspace, and in exploiting such approximations in clustering, data compression, and building of predictive models. Most of the literature relies on approximating subspaces using a locally linear, and potentially multiscale, dictionary. In this article, we propose a simple and general alternative, which instead uses pieces of spheres, or spherelets, to locally approximate the unknown subspace. Theory is developed showing that spherelets can produce lower covering numbers and MSEs for many manifolds. We develop spherical principal components analysis (SPCA). Results relative to state-of-the-art competitors show gains in ability to accurately approximate the subspace with fewer components. In addition, unlike most competitors, our approach can be used for data denoising and can efficiently embed new data without retraining. The methods are illustrated with standard toy manifold learning examples, and applications to multiple real data sets.
stat
Token Manipulation Generative Adversarial Network for Text Generation
MaskGAN opens the query for the conditional language model by filling in the blanks between the given tokens. In this paper, we focus on addressing the limitations caused by having to specify blanks to be filled. We decompose conditional text generation problem into two tasks, make-a-blank and fill-in-the-blank, and extend the former to handle more complex manipulations on the given tokens. We cast these tasks as a hierarchical multi agent RL problem and introduce a conditional adversarial learning that allows the agents to reach a goal, producing realistic texts, in cooperative setting. We show that the proposed model not only addresses the limitations but also provides good results without compromising the performance in terms of quality and diversity.
stat
Mixture of Finite Mixtures Model for Basket Trial
With the recent paradigm shift from cytotoxic drugs to new generation of target therapy and immuno-oncology therapy during oncology drug developments, patients with various cancer (sub)types may be eligible to participate in a basket trial if they have the same molecular target. Bayesian hierarchical modeling (BHM) are widely used in basket trial data analysis, where they adaptively borrow information among different cohorts (subtypes) rather than fully pool the data together or doing stratified analysis based on each cohort. Those approaches, however, may have the risk of over shrinkage estimation because of the invalidated exchangeable assumption. We propose a two-step procedure to find the balance between pooled and stratified analysis. In the first step, we treat it as a clustering problem by grouping cohorts into clusters that share the similar treatment effect. In the second step, we use shrinkage estimator from BHM to estimate treatment effects for cohorts within each cluster under exchangeable assumption. For clustering part, we adapt the mixture of finite mixtures (MFM) approach to have consistent estimate of the number of clusters. We investigate the performance of our proposed method in simulation studies and apply this method to Vemurafenib basket trial data analysis.
stat
FunMC: A functional API for building Markov Chains
Constant-memory algorithms, also loosely called Markov chains, power the vast majority of probabilistic inference and machine learning applications today. A lot of progress has been made in constructing user-friendly APIs around these algorithms. Such APIs, however, rarely make it easy to research new algorithms of this type. In this work we present FunMC, a minimal Python library for doing methodological research into algorithms based on Markov chains. FunMC is not targeted toward data scientists or others who wish to use MCMC or optimization as a black box, but rather towards researchers implementing new Markovian algorithms from scratch.
stat
Equalized odds postprocessing under imperfect group information
Most approaches aiming to ensure a model's fairness with respect to a protected attribute (such as gender or race) assume to know the true value of the attribute for every data point. In this paper, we ask to what extent fairness interventions can be effective even when only imperfect information about the protected attribute is available. In particular, we study the prominent equalized odds postprocessing method of Hardt et al. (2016) under a perturbation of the attribute. We identify conditions on the perturbation that guarantee that the bias of a classifier is reduced even by running equalized odds with the perturbed attribute. We also study the error of the resulting classifier. We empirically observe that under our identified conditions most often the error does not suffer from a perturbation of the protected attribute. For a special case, we formally prove this observation to be true.
stat
Lecture notes on ridge regression
The linear regression model cannot be fitted to high-dimensional data, as the high-dimensionality brings about empirical non-identifiability. Penalized regression overcomes this non-identifiability by augmentation of the loss function by a penalty (i.e. a function of regression coefficients). The ridge penalty is the sum of squared regression coefficients, giving rise to ridge regression. Here many aspect of ridge regression are reviewed e.g. moments, mean squared error, its equivalence to constrained estimation, and its relation to Bayesian regression. Finally, its behaviour and use are illustrated in simulation and on omics data. Subsequently, ridge regression is generalized to allow for a more general penalty. The ridge penalization framework is then translated to logistic regression and its properties are shown to carry over. To contrast ridge penalized estimation, the final chapter introduces its lasso counterpart.
stat
Multicarving for high-dimensional post-selection inference
We consider post-selection inference for high-dimensional (generalized) linear models. Data carving (Fithian et al., 2014) is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence, may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.
stat
Hierarchical Bayes Modeling for Large-Scale Inference
Bayesian modeling is now ubiquitous in problems of large-scale inference even when frequentist criteria are in mind for evaluating the performance of a procedure. By far most popular in the statistical literature of the past decade and a half are empirical Bayes methods, that have shown in practice to improve significantly over strictly-frequentist competitors in many different problems. As an alternative to empirical Bayes methods, in this paper we propose hierarchical Bayes modeling for large-scale problems, and address two separate points that, in our opinion, deserve more attention. The first is nonparametric "deconvolution" methods that are applicable also outside the sequence model. The second point is the adequacy of Bayesian modeling for situations where the parameters are by assumption deterministic. We provide partial answers to both: first, we demonstrate how our methodology applies in the analysis of a logistic regression model. Second, we appeal to Robbins's compound decision theory and provide an extension, to give formal justification for the Bayesian approach in the sequence case.
stat
Gender-based homophily in collaborations across a heterogeneous scholarly landscape
Using the corpus of JSTOR articles, we investigate the role of gender in collaboration patterns across the scholarly landscape by analyzing gender-based homophily--the tendency for researchers to co-author with individuals of the same gender. For a nuanced analysis of gender homophily, we develop methodology necessitated by the fact that the data comprises heterogeneous sub-disciplines and that not all authorships are exchangeable. In particular, we distinguish three components of gender homophily in collaborations: a structural component that is due to demographics and non-gendered authorship norms of a scholarly community, a compositional component which is driven by varying gender representation across sub-disciplines, and a behavioral component which we define as the remainder of observed homophily after its structural and compositional components have been taken into account. Using minimal modeling assumptions, we measure and test for behavioral homophily. We find that significant behavioral homophily can be detected across the JSTOR corpus and show that this finding is robust to missing gender indicators in our data. In a secondary analysis, we show that the proportion of female representation in a field is positively associated with significant behavioral homophily.
stat
Accelerated Algorithms for Convex and Non-Convex Optimization on Manifolds
We propose a general scheme for solving convex and non-convex optimization problems on manifolds. The central idea is that, by adding a multiple of the squared retraction distance to the objective function in question, we "convexify" the objective function and solve a series of convex sub-problems in the optimization procedure. One of the key challenges for optimization on manifolds is the difficulty of verifying the complexity of the objective function, e.g., whether the objective function is convex or non-convex, and the degree of non-convexity. Our proposed algorithm adapts to the level of complexity in the objective function. We show that when the objective function is convex, the algorithm provably converges to the optimum and leads to accelerated convergence. When the objective function is non-convex, the algorithm will converge to a stationary point. Our proposed method unifies insights from Nesterov's original idea for accelerating gradient descent algorithms with recent developments in optimization algorithms in Euclidean space. We demonstrate the utility of our algorithms on several manifold optimization tasks such as estimating intrinsic and extrinsic Fr\'echet means on spheres and low-rank matrix factorization with Grassmann manifolds applied to the Netflix rating data set.
stat
Predictive Collective Variable Discovery with Deep Bayesian Models
Extending spatio-temporal scale limitations of models for complex atomistic systems considered in biochemistry and materials science necessitates the development of enhanced sampling methods. The potential acceleration in exploring the configurational space by enhanced sampling methods depends on the choice of collective variables (CVs). In this work, we formulate the discovery of CVs as a Bayesian inference problem and consider the CVs as hidden generators of the full-atomistic trajectory. The ability to generate samples of the fine-scale atomistic configurations using limited training data allows us to compute estimates of observables as well as our probabilistic confidence on them. The methodology is based on emerging methodological advances in machine learning and variational inference. The discovered CVs are related to physicochemical properties which are essential for understanding mechanisms especially in unexplored complex systems. We provide a quantitative assessment of the CVs in terms of their predictive ability for alanine dipeptide (ALA-2) and ALA-15 peptide.
stat
Exact posterior distributions of wide Bayesian neural networks
Recent work has shown that the prior over functions induced by a deep Bayesian neural network (BNN) behaves as a Gaussian process (GP) as the width of all layers becomes large. However, many BNN applications are concerned with the BNN function space posterior. While some empirical evidence of the posterior convergence was provided in the original works of Neal (1996) and Matthews et al. (2018), it is limited to small datasets or architectures due to the notorious difficulty of obtaining and verifying exactness of BNN posterior approximations. We provide the missing theoretical proof that the exact BNN posterior converges (weakly) to the one induced by the GP limit of the prior. For empirical validation, we show how to generate exact samples from a finite BNN on a small dataset via rejection sampling.
stat
Approximate Bayesian Computation with the Sliced-Wasserstein Distance
Approximate Bayesian Computation (ABC) is a popular method for approximate inference in generative models with intractable but easy-to-sample likelihood. It constructs an approximate posterior distribution by finding parameters for which the simulated data are close to the observations in terms of summary statistics. These statistics are defined beforehand and might induce a loss of information, which has been shown to deteriorate the quality of the approximation. To overcome this problem, Wasserstein-ABC has been recently proposed, and compares the datasets via the Wasserstein distance between their empirical distributions, but does not scale well to the dimension or the number of samples. We propose a new ABC technique, called Sliced-Wasserstein ABC and based on the Sliced-Wasserstein distance, which has better computational and statistical properties. We derive two theoretical results showing the asymptotical consistency of our approach, and we illustrate its advantages on synthetic data and an image denoising task.
stat
Impact of predictor measurement heterogeneity across settings on performance of prediction models: a measurement error perspective
It is widely acknowledged that the predictive performance of clinical prediction models should be studied in patients that were not part of the data in which the model was derived. Out-of-sample performance can be hampered when predictors are measured differently at derivation and external validation. This may occur, for instance, when predictors are measured using different measurement protocols or when tests are produced by different manufacturers. Although such heterogeneity in predictor measurement between deriviation and validation data is common, the impact on the out-of-sample performance is not well studied. Using analytical and simulation approaches, we examined out-of-sample performance of prediction models under various scenarios of heterogeneous predictor measurement. These scenarios were defined and clarified using an established taxonomy of measurement error models. The results of our simulations indicate that predictor measurement heterogeneity can induce miscalibration of prediction and affects discrimination and overall predictive accuracy, to extents that the prediction model may no longer be considered clinically useful. The measurement error taxonomy was found to be helpful in identifying and predicting effects of heterogeneous predictor measurements between settings of prediction model derivation and validation. Our work indicates that homogeneity of measurement strategies across settings is of paramount importance in prediction research.
stat
Distance weighted discrimination of face images for gender classification
We illustrate the advantages of distance weighted discrimination for classification and feature extraction in a High Dimension Low Sample Size (HDLSS) situation. The HDLSS context is a gender classification problem of face images in which the dimension of the data is several orders of magnitude larger than the sample size. We compare distance weighted discrimination with Fisher's linear discriminant, support vector machines, and principal component analysis by exploring their classification interpretation through insightful visuanimations and by examining the classifiers' discriminant errors. This analysis enables us to make new contributions to the understanding of the drivers of human discrimination between males and females.
stat
Causal Mediation Analysis Leveraging Multiple Types of Summary Statistics Data
Summary statistics of genome-wide association studies (GWAS) teach causal relationship between millions of genetic markers and tens and thousands of phenotypes. However, underlying biological mechanisms are yet to be elucidated. We can achieve necessary interpretation of GWAS in a causal mediation framework, looking to establish a sparse set of mediators between genetic and downstream variables, but there are several challenges. Unlike existing methods rely on strong and unrealistic assumptions, we tackle practical challenges within a principled summary-based causal inference framework. We analyzed the proposed methods in extensive simulations generated from real-world genetic data. We demonstrated only our approach can accurately redeem causal genes, even without knowing actual individual-level data, despite the presence of competing non-causal trails.
stat
Asymptotic Freeness of Layerwise Jacobians Caused by Invariance of Multilayer Perceptron: The Haar Orthogonal Case
Free Probability Theory (FPT) provides rich knowledge for handling mathematical difficulties caused by random matrices that appear in research related to deep neural networks (DNNs), such as the dynamical isometry, Fisher information matrix, and training dynamics. FPT suits these researches because the DNN's parameter-Jacobian and input-Jacobian are polynomials of layerwise Jacobians. However, the critical assumption of asymptotic freenss of the layerwise Jacobian has not been proven completely so far. The asymptotic freeness assumption plays a fundamental role when propagating spectral distributions through the layers. Haar distributed orthogonal matrices are essential for achieving dynamical isometry. In this work, we prove asymptotic freeness of layerwise Jacobian of multilayer perceptrons in this case.
stat
A comparative tour through the simulation algorithms for max-stable processes
Being the max-analogue of $\alpha$-stable stochastic processes, max-stable processes form one of the fundamental classes of stochastic processes. With the arrival of sufficient computational capabilities, they have become a benchmark in the analysis of spatio-temporal extreme events. Simulation is often a necessary part of inference of certain characteristics, in particular for future spatial risk assessment. In this article we give an overview over existing procedures for this task, put them into perspective of one another and use some new theoretical results to make comparisons with respect to their properties.
stat
Fine-Gray competing risks model with high-dimensional covariates: estimation and Inference
The purpose of this paper is to construct confidence intervals for the regression coefficients in the Fine-Gray model for competing risks data with random censoring, where the number of covariates can be larger than the sample size. Despite strong motivation from biomedical applications, a high-dimensional Fine-Gray model has attracted relatively little attention among the methodological or theoretical literature. We fill in this gap by developing confidence intervals based on a one-step bias-correction for a regularized estimation. We develop a theoretical framework for the partial likelihood, which does not have independent and identically distributed entries and therefore presents many technical challenges. We also study the approximation error from the weighting scheme under random censoring for competing risks and establish new concentration results for time-dependent processes. In addition to the theoretical results and algorithms, we present extensive numerical experiments and an application to a study of non-cancer mortality among prostate cancer patients using the linked Medicare-SEER data.
stat
The Integrated nested Laplace approximation for fitting models with multivariate response
This paper introduces a Laplace approximation to Bayesian inference in regression models for multivariate response variables. We focus on Dirichlet regression models, which can be used to analyze a set of variables on a simplex exhibiting skewness and heteroscedasticity, without having to transform the data. These data, which mainly consist of proportions or percentages of disjoint categories, are widely known as compositional data and are common in areas such as ecology, geology, and psychology. We provide both the theoretical foundations and a description of how this Laplace approximation can be implemented in the case of Dirichlet regression. The paper also introduces the package dirinla in the R-language that extends the INLA package, which can not deal directly with multivariate likelihoods like the Dirichlet likelihood. Simulation studies are presented to validate the good behaviour of the proposed method, while a real data case-study is used to show how this approach can be applied.
stat
Challenges in Obtaining Valid Causal Effect Estimates with Machine Learning Algorithms
Unlike parametric regression, machine learning (ML) methods do not generally require precise knowledge of the true data generating mechanisms. As such, numerous authors have advocated for ML methods to estimate causal effects. Unfortunately, ML algorithms can perform worse than parametric regression. We demonstrate the performance of ML-based single- and double-robust estimators. We use 100 Monte Carlo samples with sample sizes of 200, 1200, and 5000 to investigate bias and confidence interval coverage under several scenarios. In a simple confounding scenario, confounders were related to the treatment and the outcome via parametric models. In a complex confounding scenario, the simple confounders were transformed to induce complicated nonlinear relationships. In the simple scenario, when ML algorithms were used, double-robust estimators were superior to single-robust estimators. In the complex scenario, single-robust estimators with ML algorithms were at least as biased as estimators using misspecified parametric models. Double-robust estimators were less biased, but coverage was well below nominal. The use of sample splitting, inclusion of confounder interactions, reliance on a richly specified ML algorithm, and use of doubly robust estimators was the only explored approach that yielded negligible bias and nominal coverage. Our results suggest that ML based singly robust methods should be avoided.
stat
Anomaly Detection in Energy Usage Patterns
Energy usage monitoring on higher education campuses is an important step for providing satisfactory service, lowering costs and supporting the move to green energy. We present a collaboration between the Department of Statistics and Facilities Operations at an R1 research university to develop statistically based approaches for monitoring monthly energy usage and proportional yearly usage for several hundred utility accounts on campus. We compare the interpretability and power of model-free and model-based methods for detection of anomalous energy usage patterns in statistically similar groups of accounts. Ongoing conversation between the academic and operations teams enhances the practical utility of the project and enables implementation for the university. Our work highlights an application of thoughtful and continuing collaborative analysis using easy-to-understand statistical principles for real-world deployment.
stat
Identifying Interpretable Discrete Latent Structures from Discrete Data
High dimensional categorical data are routinely collected in biomedical and social sciences. It is of great importance to build interpretable models that perform dimension reduction and uncover meaningful latent structures from such discrete data. Identifiability is a fundamental requirement for valid modeling and inference in such scenarios, yet is challenging to address when there are complex latent structures. In this article, we propose a class of interpretable discrete latent structure models for discrete data and develop a general identifiability theory. Our theory is applicable to various types of latent structures, ranging from a single latent variable to deep layers of latent variables organized in a sparse graph (termed a Bayesian pyramid). The proposed identifiability conditions can ensure Bayesian posterior consistency under suitable priors. As an illustration, we consider the two-latent-layer model and propose a Bayesian shrinkage estimation approach. Simulation results for this model corroborate identifiability and estimability of the model parameters. Applications of the methodology to DNA nucleotide sequence data uncover discrete latent features that are both interpretable and highly predictive of sequence types. The proposed framework provides a recipe for interpretable unsupervised learning of discrete data, and can be a useful alternative to popular machine learning methods.
stat
Robust compressed sensing of generative models
The goal of compressed sensing is to estimate a high dimensional vector from an underdetermined system of noisy linear equations. In analogy to classical compressed sensing, here we assume a generative model as a prior, that is, we assume the vector is represented by a deep generative model $G: \mathbb{R}^k \rightarrow \mathbb{R}^n$. Classical recovery approaches such as empirical risk minimization (ERM) are guaranteed to succeed when the measurement matrix is sub-Gaussian. However, when the measurement matrix and measurements are heavy-tailed or have outliers, recovery may fail dramatically. In this paper we propose an algorithm inspired by the Median-of-Means (MOM). Our algorithm guarantees recovery for heavy-tailed data, even in the presence of outliers. Theoretically, our results show our novel MOM-based algorithm enjoys the same sample complexity guarantees as ERM under sub-Gaussian assumptions. Our experiments validate both aspects of our claims: other algorithms are indeed fragile and fail under heavy-tailed and/or corrupted data, while our approach exhibits the predicted robustness.
stat
Approximating intractable short ratemodel distribution with neural network
We propose an algorithm which predicts each subsequent time step relative to the previous timestep of intractable short rate model (when adjusted for drift and overall distribution of previous percentile result) and show that the method achieves superior outcomes to the unbiased estimate both on the trained dataset and different validation data.
stat
Causal Mosaic: Cause-Effect Inference via Nonlinear ICA and Ensemble Method
We address the problem of distinguishing cause from effect in bivariate setting. Based on recent developments in nonlinear independent component analysis (ICA), we train nonparametrically general nonlinear causal models that allow non-additive noise. Further, we build an ensemble framework, namely Causal Mosaic, which models a causal pair by a mixture of nonlinear models. We compare this method with other recent methods on artificial and real world benchmark datasets, and our method shows state-of-the-art performance.
stat
ProgPermute: Progressive permutation for a dynamic representation of the robustness of microbiome discoveries
Identification of features is a critical task in microbiome studies that is complicated by the fact that microbial data are high dimensional and heterogeneous. Masked by the complexity of the data, the problem of separating signals from noise becomes challenging and troublesome. For instance, when performing differential abundance tests, multiple testing adjustments tend to be overconservative, as the probability of a type I error (false positive) increases dramatically with the large numbers of hypotheses. Moreover, the grouping effect of interest can be obscured by heterogeneity. These factors can incorrectly lead to the conclusion that there are no differences in the microbiome compositions. We translate and represent the problem of identifying differential features as a dynamic layout of separating the signal from its random background. We propose progressive permutation as a method to achieve this process and show converging patterns. More specifically, we progressively permute the grouping factor labels of the microbiome samples and perform multiple differential abundance tests in each scenario. We then compare the signal strength of the top features from the original data with their performance in permutations, and observe an apparent decreasing trend if these top features are true positives identified from the data. We have developed this into a user-friendly RShiny tool and R package, which consist of functions that can convey the overall association between the microbiome and the grouping factor, rank the robustness of the discovered microbes, and list the discoveries, their effect sizes, and individual abundances.
stat
Laplacian P-splines for Bayesian inference in the mixture cure model
The mixture cure model for analyzing survival data is characterized by the assumption that the population under study is divided into a group of subjects who will experience the event of interest over some finite time horizon and another group of cured subjects who will never experience the event irrespective of the duration of follow-up. When using the Bayesian paradigm for inference in survival models with a cure fraction, it is common practice to rely on Markov chain Monte Carlo (MCMC) methods to sample from posterior distributions. Although computationally feasible, the iterative nature of MCMC often implies long sampling times to explore the target space with chains that may suffer from slow convergence and poor mixing. Furthermore, extra efforts have to be invested in diagnostic checks to monitor the reliability of the generated posterior samples. An alternative strategy for fast and flexible sampling-free Bayesian inference in the mixture cure model is suggested in this paper by combining Laplace approximations and penalized B-splines. A logistic regression model is assumed for the cure proportion and a Cox proportional hazards model with a P-spline approximated baseline hazard is used to specify the conditional survival function of susceptible subjects. Laplace approximations to the conditional latent vector are based on analytical formulas for the gradient and Hessian of the log-likelihood, resulting in a substantial speed-up in approximating posterior distributions. Results show that LPSMC is an appealing alternative to classic MCMC for approximate Bayesian inference in standard mixture cure models.
stat
Supplemental Studies for Simultaneous Goodness-of-Fit Testing
Testing to see whether a given data set comes from some specified distribution is among the oldest types of problems in Statistics. Many such tests have been developed and their performance studied. The general result has been that while a certain test might perform well, aka have good power, in one situation it will fail badly in others. This is not a surprise given the great many ways in which a distribution can differ from the one specified in the null hypothesis. It is therefore very difficult to decide a priori which test to use. The obvious solution is not to rely on any one test but to run several of them. This however leads to the problem of simultaneous inference, that is, if several tests are done even if the null hypothesis were true, one of them is likely to reject it anyway just by random chance. In this paper we present a method that yields a p value that is uniform under the null hypothesis no matter how many tests are run. This is achieved by adjusting the p value via simulation. While this adjustment method is not new, it has not previously been used in the context of goodness-of-fit testing. We present a number of simulation studies that show the uniformity of the p value and others that show that this test is superior to any one test if the power is averaged over a large number of cases.
stat
Optimal Projected Variance Group-Sparse Block PCA
We address the problem of defining a group sparse formulation for Principal Components Analysis (PCA) - or its equivalent formulations as Low Rank approximation or Dictionary Learning problems - which achieves a compromise between maximizing the variance explained by the components and promoting sparsity of the loadings. So we propose first a new definition of the variance explained by non necessarily orthogonal components, which is optimal in some aspect and compatible with the principal components situation. Then we use a specific regularization of this variance by the group-$\ell_{1}$ norm to define a Group Sparse Maximum Variance (GSMV) formulation of PCA. The GSMV formulation achieves our objective by construction, and has the nice property that the inner non smooth optimization problem can be solved analytically, thus reducing GSMV to the maximization of a smooth and convex function under unit norm and orthogonality constraints, which generalizes Journee et al. (2010) to group sparsity. Numerical comparison with deflation on synthetic data shows that GSMV produces steadily slightly better and more robust results for the retrieval of hidden sparse structures, and is about three times faster on these examples. Application to real data shows the interest of group sparsity for variables selection in PCA of mixed data (categorical/numerical) .
stat
Information-Theoretic Understanding of Population Risk Improvement with Model Compression
We show that model compression can improve the population risk of a pre-trained model, by studying the tradeoff between the decrease in the generalization error and the increase in the empirical risk with model compression. We first prove that model compression reduces an information-theoretic bound on the generalization error; this allows for an interpretation of model compression as a regularization technique to avoid overfitting. We then characterize the increase in empirical risk with model compression using rate distortion theory. These results imply that the population risk could be improved by model compression if the decrease in generalization error exceeds the increase in empirical risk. We show through a linear regression example that such a decrease in population risk due to model compression is indeed possible. Our theoretical results further suggest that the Hessian-weighted $K$-means clustering compression approach can be improved by regularizing the distance between the clustering centers. We provide experiments with neural networks to support our theoretical assertions.
stat
Two-Phase Data Synthesis for Income: An Application to the NHIS
We propose a two-phase synthesis process for synthesizing income, a sensitive variable which is usually highly-skewed and has a number of reported zeros. We consider two forms of a continuous income variable: a binary form, which is modeled and synthesized in phase 1; and a non-negative continuous form, which is modeled and synthesized in phase 2. Bayesian synthesis models are proposed for the two-phase synthesis process, and other synthesis models are readily implementable. We demonstrate our methods with applications to a sample from the National Health Interview Survey (NHIS). Utility and risk profiles of generated synthetic datasets are evaluated and compared to results from a single-phase synthesis process.
stat
Generic Conditions for Forecast Dominance
Recent studies have analyzed whether one forecast method dominates another under a class of consistent scoring functions. While the existing literature focuses on empirical tests of forecast dominance, little is known about the theoretical conditions under which one forecast dominates another. To address this question, we derive a new characterization of dominance among forecasts of the mean functional. We present various scenarios under which dominance occurs. Unlike existing results, our results allow for the case that the forecasts' underlying information sets are not nested, and allow for uncalibrated forecasts that suffer, e.g., from model misspecification or parameter estimation error. We illustrate the empirical relevance of our results via data examples from finance and economics.
stat
Multilevel latent class (MLC) modelling of healthcare provider causal effects on patient outcomes: Evaluation via simulation
Where performance comparison of healthcare providers is of interest, characteristics of both patients and the health condition of interest must be balanced across providers for a fair comparison. This is unlikely to be feasible within observational data, as patient population characteristics may vary geographically and patient care may vary by characteristics of the health condition. We simulated data for patients and providers, based on a previously utilized real-world dataset, and separately considered both binary and continuous covariate-effects at the upper level. Multilevel latent class (MLC) modelling is proposed to partition a prediction focus at the patient level (accommodating casemix) and a causal inference focus at the provider level. The MLC model recovered a range of simulated Trust-level effects. Median recovered values were almost identical to simulated values for the binary Trust-level covariate, and we observed successful recovery of the continuous Trust-level covariate with at least 3 latent Trust classes. Credible intervals widen as the error variance increases. The MLC approach successfully partitioned modelling for prediction and for causal inference, addressing the potential conflict between these two distinct analytical strategies. This improves upon strategies which only adjust for differential selection. Patient-level variation and measurement uncertainty are accommodated within the latent classes.
stat
Outliers Detection in Networks with Missing Links
Outliers arise in networks due to different reasons such as fraudulent behavior of malicious users or default in measurement instruments and can significantly impair network analyses. In addition, real-life networks are likely to be incompletely observed, with missing links due to individual non-response or machine failures. Identifying outliers in the presence of missing links is therefore a crucial problem in network analysis. In this work, we introduce a new algorithm to detect outliers in a network that simultaneously predicts the missing links. The proposed method is statistically sound: we prove that, under fairly general assumptions, our algorithm exactly detects the outliers, and achieves the best known error for the prediction of missing links with polynomial computation cost. It is also computationally efficient: we prove sub-linear convergence of our algorithm. We provide a simulation study which demonstrates the good behavior of the algorithm in terms of outliers detection and prediction of the missing links. We also illustrate the method with an application in epidemiology, and with the analysis of a political Twitter network. The method is freely available as an R package on the Comprehensive R Archive Network.
stat
On the Evaluation of Surrogate Markers in Real World Data Settings
Shortcomings of randomized clinical trials are pronounced in urgent health crises, when rapid identification of effective treatments is critical. Leveraging short-term surrogates in real-world data (RWD) can guide policymakers evaluating new treatments. In this paper, we develop novel estimators for the proportion of treatment effect (PTE) on the true outcome explained by a surrogate in RWD settings. We propose inverse probability weighted and doubly robust (DR) estimators of an optimal transformation of the surrogate and PTE by semi-nonparametrically modeling the relationship between the true outcome and surrogate given baseline covariates. We show that our estimators are consistent and asymptotically normal, and the DR estimator is consistent when either the propensity score model or outcome regression model is correctly specified. We compare our proposed estimators to existing estimators and show a reduction in bias and gains in efficiency through simulations. We illustrate the utility of our method in obtaining an interpretable PTE by conducting a cross-trial comparison of two biologic therapies for ulcerative colitis.
stat
Accelerated Sampling on Discrete Spaces with Non-Reversible Markov Processes
We consider the task of MCMC sampling from a distribution defined on a discrete space. Building on recent insights provided in [Zan19], we devise a class of efficient continuous-time, non-reversible algorithms which make active use of the structure of the underlying space. Particular emphasis is placed on how symmetries and other group-theoretic notions can be used to improve exploration of the space. We test our algorithms on a range of examples from statistics, computational physics, machine learning, and cryptography, which show improvement on alternative algorithms. We provide practical recommendations on how to design and implement these algorithms, and close with remarks on the outlook for both discrete sampling and continuous-time Monte Carlo more broadly.
stat
Approval policies for modifications to Machine Learning-Based Software as a Medical Device: A study of bio-creep
Successful deployment of machine learning algorithms in healthcare requires careful assessments of their performance and safety. To date, the FDA approves locked algorithms prior to marketing and requires future updates to undergo separate premarket reviews. However, this negates a key feature of machine learning--the ability to learn from a growing dataset and improve over time. This paper frames the design of an approval policy, which we refer to as an automatic algorithmic change protocol (aACP), as an online hypothesis testing problem. As this process has obvious analogy with noninferiority testing of new drugs, we investigate how repeated testing and adoption of modifications might lead to gradual deterioration in prediction accuracy, also known as ``biocreep'' in the drug development literature. We consider simple policies that one might consider but do not necessarily offer any error-rate guarantees, as well as policies that do provide error-rate control. For the latter, we define two online error-rates appropriate for this context: Bad Approval Count (BAC) and Bad Approval and Benchmark Ratios (BABR). We control these rates in the simple setting of a constant population and data source using policies aACP-BAC and aACP-BABR, which combine alpha-investing, group-sequential, and gate-keeping methods. In simulation studies, bio-creep regularly occurred when using policies with no error-rate guarantees, whereas aACP-BAC and -BABR controlled the rate of bio-creep without substantially impacting our ability to approve beneficial modifications.
stat
A general framework for ensemble distribution distillation
Ensembles of neural networks have been shown to give better performance than single networks, both in terms of predictions and uncertainty estimation. Additionally, ensembles allow the uncertainty to be decomposed into aleatoric (data) and epistemic (model) components, giving a more complete picture of the predictive uncertainty. Ensemble distillation is the process of compressing an ensemble into a single model, often resulting in a leaner model that still outperforms the individual ensemble members. Unfortunately, standard distillation erases the natural uncertainty decomposition of the ensemble. We present a general framework for distilling both regression and classification ensembles in a way that preserves the decomposition. We demonstrate the desired behaviour of our framework and show that its predictive performance is on par with standard distillation.
stat
Stable behaviour of infinitely wide deep neural networks
We consider fully connected feed-forward deep neural networks (NNs) where weights and biases are independent and identically distributed as symmetric centered stable distributions. Then, we show that the infinite wide limit of the NN, under suitable scaling on the weights, is a stochastic process whose finite-dimensional distributions are multivariate stable distributions. The limiting process is referred to as the stable process, and it generalizes the class of Gaussian processes recently obtained as infinite wide limits of NNs (Matthews at al., 2018b). Parameters of the stable process can be computed via an explicit recursion over the layers of the network. Our result contributes to the theory of fully connected feed-forward deep NNs, and it paves the way to expand recent lines of research that rely on Gaussian infinite wide limits.
stat
Importance Sampling-based Transport Map Hamiltonian Monte Carlo for Bayesian Hierarchical Models
We propose an importance sampling (IS)-based transport map Hamiltonian Monte Carlo procedure for performing full Bayesian analysis in general nonlinear high-dimensional hierarchical models. Using IS techniques to construct a transport map, the proposed method transforms the typically highly challenging target distribution of a hierarchical model into a target which is easily sampled using standard Hamiltonian Monte Carlo. Conventional applications of high-dimensional IS, where infinite variance of IS weights can be a serious problem, require computationally costly high-fidelity IS distributions. An appealing property of our method is that the IS distributions employed can be of rather low fidelity, making it computationally cheap. We illustrate our algorithm in applications to challenging dynamic state-space models, where it exhibits very high simulation efficiency compared to relevant benchmarks, even for variants of the proposed method implemented using a few dozen lines of code in the Stan statistical software.
stat
Data Integration by combining big data and survey sample data for finite population inference
The statistical challenges in using big data for making valid statistical inference in the finite population have been well documented in literature. These challenges are due primarily to statistical bias arising from under-coverage in the big data source to represent the population of interest and measurement errors in the variables available in the data set. By stratifying the population into a big data stratum and a missing data stratum, we can estimate the missing data stratum by using a fully responding probability sample, and hence the population as a whole by using a data integration estimator. By expressing the data integration estimator as a regression estimator, we can handle measurement errors in the variables in big data and also in the probability sample. We also propose a fully nonparametric classification method for identifying the overlapping units and develop a bias-corrected data integration estimator under misclassification errors. Finally, we develop a two-step regression data integration estimator to deal with measurement errors in the probability sample. An advantage of the approach advocated in this paper is that we do not have to make unrealistic missing-at-random assumptions for the methods to work. The proposed method is applied to the real data example using 2015-16 Australian Agricultural Census data.
stat
Estimation of Personalized Heterogeneous Treatment Effects Using Concatenation and Augmentation of Feature Vectors
A new meta-algorithm for estimating the conditional average treatment effects is proposed in the paper. The main idea underlying the algorithm is to consider a new dataset consisting of feature vectors produced by means of concatenation of examples from control and treatment groups, which are close to each other. Outcomes of new data are defined as the difference between outcomes of the corresponding examples comprising new feature vectors. The second idea is based on the assumption that the number of controls is rather large and the control outcome function is precisely determined. This assumption allows us to augment treatments by generating feature vectors which are closed to available treatments. The outcome regression function constructed on the augmented set of concatenated feature vectors can be viewed as an estimator of the conditional average treatment effects. A simple modification of the Co-learner based on the random subspace method or the feature bagging is also proposed. Various numerical simulation experiments illustrate the proposed algorithm and show its outperformance in comparison with the well-known T-learner and X-learner for several types of the control and treatment outcome functions.
stat
Health-behaviors associated with the growing risk of adolescent suicide attempts: A data-driven cross-sectional study
Purpose: Identify and examine the associations between health behaviors and increased risk of adolescent suicide attempts, while controlling for socioeconomic and demographic differences. Design: A data-driven analysis using cross-sectional data. Setting: Communities in the state of Montana from 1999 to 2017. Subjects: Selected 22,447 adolescents of whom 1,631 adolescents attempted suicide at least once. Measures: Overall 29 variables (predictors) accounting for psychological behaviors, illegal substances consumption, daily activities at schools and demographic backgrounds, were considered. Analysis: A library of machine learning algorithms along with the traditionally-used logistic regression were used to model and predict suicide attempt risk. Model performances (goodness-of-fit and predictive accuracy) were measured using accuracy, precision, recall and F-score metrics. Results: The non-parametric Bayesian tree ensemble model outperformed all other models, with 80.0% accuracy in goodness-of-fit (F-score:0.802) and 78.2% in predictive accuracy (F-score:0.785). Key health-behaviors identified include: being sad/hopeless, followed by safety concerns at school, physical fighting, inhalant usage, illegal drugs consumption at school, current cigarette usage, and having first sex at an early age (below 15 years of age). Additionally, the minority groups (American Indian/Alaska Natives, Hispanics/Latinos), and females are also found to be highly vulnerable to attempting suicides. Conclusion: Significant contribution of this work is understanding the key health-behaviors and health disparities that lead to higher frequency of suicide attempts among adolescents, while accounting for the non-linearity and complex interactions among the outcome and the exposure variables.
stat
Crash Themes in Automated Vehicles: A Topic Modeling Analysis of the California Department of Motor Vehicles Automated Vehicle Crash Database
Automated vehicle technology promises to reduce the societal impact of traffic crashes. Early investigations of this technology suggest that significant safety issues remain during control transfers between the automation and human drivers and automation interactions with the transportation system. In order to address these issues, it is critical to understand both the behavior of human drivers during these events and the environments where they occur. This article analyzes automated vehicle crash narratives from the California Department of Motor Vehicles automated vehicle crash database to identify safety concerns and gaps between crash types and current areas of focus in the current research. The database was analyzed using probabilistic topic modeling of open-ended crash narratives. Topic modeling analysis identified five themes in the database: driver-initiated transition crashes, sideswipe crashes during left-side overtakes, and rear-end collisions while the vehicle was stopped at an intersection, in a turn lane, and when the crash involved oncoming traffic. Many crashes represented by the driver-initiated transitions topic were also associated with the side-swipe collisions. A substantial portion of the side-swipe collisions also involved motorcycles. These findings highlight previously raised safety concerns with transitions of control and interactions between vehicles in automated mode and the transportation social network. In response to these findings, future empirical work should focus on driver-initiated transitions, overtakes, silent failures, complex traffic situations, and adverse driving environments. Beyond this future work, the topic modeling analysis method may be used as a tool to monitor emergent safety issues.
stat
Quasi-Bernoulli Stick-breaking: Infinite Mixture with Cluster Consistency
In mixture modeling and clustering application, the number of components is often not known. The stick-breaking model is an appealing construction that assumes infinitely many components, while shrinking most of the redundant weights to near zero. However, it has been discovered that such a shrinkage is unsatisfactory: even when the component distribution is correctly specified, small and spurious weights will appear and give an inconsistent estimate on the cluster number. In this article, we propose a simple solution that gains stronger control on the redundant weights -- when breaking each stick into two pieces, we adjust the length of the second piece by multiplying it to a quasi-Bernoulli random variable, supported at one and a positive constant close to zero. This substantially increases the chance of shrinking {\em all} the redundant weights to almost zero, leading to a consistent estimator on the cluster number; at the same time, it avoids the singularity due to assigning an exactly zero weight, and maintains a support in the infinite-dimensional space. As a stick-breaking model, its posterior computation can be carried out efficiently via the classic blocked Gibbs sampler, allowing straightforward extension of using non-Gaussian components. Compared to existing methods, our model demonstrates much superior performances in the simulations and data application, showing a substantial reduction in the number of clusters.
stat
Learning Neural Causal Models from Unknown Interventions
Promising results have driven a recent surge of interest in continuous optimization methods for Bayesian network structure learning from observational data. However, there are theoretical limitations on the identifiability of underlying structures obtained from observational data alone. Interventional data provides much richer information about the underlying data-generating process. However, the extension and application of methods designed for observational data to include interventions is not straightforward and remains an open problem. In this paper we provide a general framework based on continuous optimization and neural networks to create models for the combination of observational and interventional data. The proposed method is even applicable in the challenging and realistic case that the identity of the intervened upon variable is unknown. We examine the proposed method in the setting of graph recovery both de novo and from a partially-known edge set. We establish strong benchmark results on several structure learning tasks, including structure recovery of both synthetic graphs as well as standard graphs from the Bayesian Network Repository.
stat
Nonreversible MCMC from conditional invertible transforms: a complete recipe with convergence guarantees
Markov Chain Monte Carlo (MCMC) is a class of algorithms to sample complex and high-dimensional probability distributions. The Metropolis-Hastings (MH) algorithm, the workhorse of MCMC, provides a simple recipe to construct reversible Markov kernels. Reversibility is a tractable property that implies a less tractable but essential property here, invariance. Reversibility is however not necessarily desirable when considering performance. This has prompted recent interest in designing kernels breaking this property. At the same time, an active stream of research has focused on the design of novel versions of the MH kernel, some nonreversible, relying on the use of complex invertible deterministic transforms. While standard implementations of the MH kernel are well understood, the aforementioned developments have not received the same systematic treatment to ensure their validity. This paper fills the gap by developing general tools to ensure that a class of nonreversible Markov kernels, possibly relying on complex transforms, has the desired invariance property and leads to convergent algorithms. This leads to a set of simple and practically verifiable conditions.
stat
Does imputation matter? Benchmark for predictive models
Incomplete data are common in practical applications. Most predictive machine learning models do not handle missing values so they require some preprocessing. Although many algorithms are used for data imputation, we do not understand the impact of the different methods on the predictive models' performance. This paper is first that systematically evaluates the empirical effectiveness of data imputation algorithms for predictive models. The main contributions are (1) the recommendation of a general method for empirical benchmarking based on real-life classification tasks and the (2) comparative analysis of different imputation methods for a collection of data sets and a collection of ML algorithms.
stat
Bayesian imputation of COVID-19 positive test counts for nowcasting under reporting lag
Obtaining up to date information on the number of UK COVID-19 regional infections is hampered by the reporting lag in positive test results for people with COVID-19 symptoms. In the UK, for "Pillar 2" swab tests for those showing symptoms, it can take up to five days for results to be collated. We make use of the stability of the under reporting process over time to motivate a statistical temporal model that infers the final total count given the partial count information as it arrives. We adopt a Bayesian approach that provides for subjective priors on parameters and a hierarchical structure for an underlying latent intensity process for the infection counts. This results in a smoothed time-series representation now-casting the expected number of daily counts of positive tests with uncertainty bands that can be used to aid decision making. Inference is performed using sequential Monte Carlo.
stat
Outreach Strategies for Vaccine Distribution: A Multi-Period Stochastic Modeling Approach
Vaccination has been proven to be the most effective method to prevent infectious diseases. However, in many low and middle-income countries with geographically dispersed and nomadic populations, last-mile vaccine delivery can be extremely complex. Because newborns in remote population centers often do not have direct access to clinics and hospitals, they face significant risk from diseases and infections. An approach known as outreach is typically utilized to raise immunization rates in these situations. A set of these remote locations is chosen, and over an appropriate planning period, teams of clinicians and support personnel are sent from a depot to set up mobile clinics at these locations to vaccinate people there and in the immediate surrounding area. In this paper, we model the problem of optimally designing outreach efforts as a mixed integer program that is a combination of a set covering problem and a vehicle routing problem. In addition, because elements relevant to outreach (such as populations and road conditions) are often unstable and unpredictable, we address uncertainty and determine the worst-case solutions. This is done using a multi-period stochastic modeling approach that considers updated model parameter estimates and revised plans for subsequent planning periods. We also conduct numerical experiments to provide insights on how demographic characteristics affect outreach planning and where outreach planners should focus their attention when gathering data.
stat
Sequential Pattern mining of Longitudinal Adverse Events After Left Ventricular Assist Device Implant
Left ventricular assist devices (LVADs) are an increasingly common therapy for patients with advanced heart failure. However, implantation of the LVAD increases the risk of stroke, infection, bleeding, and other serious adverse events (AEs). Most post-LVAD AEs studies have focused on individual AEs in isolation, neglecting the possible interrelation, or causality between AEs. This study is the first to conduct an exploratory analysis to discover common sequential chains of AEs following LVAD implantation that are correlated with important clinical outcomes. This analysis was derived from 58,575 recorded AEs for 13,192 patients in International Registry for Mechanical Circulatory Support (INTERMACS) who received a continuousflow LVAD between 2006 and 2015. The pattern mining procedure involved three main steps: (1) creating a bank of AE sequences by converting the AEs for each patient into a single, chronologically sequenced record, (2) grouping patients with similar AE sequences using hierarchical clustering, and (3) extracting temporal chains of AEs for each group of patients using Markov modeling. The mined results indicate the existence of seven groups of sequential chains of AEs, characterized by common types of AEs that occurred in a unique order. The groups were identified as: GRP1: Recurrent bleeding, GRP2: Trajectory of device malfunction & explant, GRP3: Infection, GRP4: Trajectories to transplant, GRP5: Cardiac arrhythmia, GRP6: Trajectory of neurological dysfunction & death, and GRP7: Trajectory of respiratory failure, renal dysfunction & death. These patterns of sequential post-LVAD AEs disclose potential interdependence between AEs and may aid prediction, and prevention, of subsequent AEs in future studies.
stat
Optimal scaling of random walk Metropolis algorithms using Bayesian large-sample asymptotics
High-dimensional limit theorems have been shown to be useful to derive tuning rules for finding the optimal scaling in random walk Metropolis algorithms. The assumptions under which weak convergence results are proved are however restrictive; the target density is typically assumed to be of a product form. Users may thus doubt the validity of such tuning rules in practical applications. In this paper, we shed some light on optimal scaling problems from a different perspective, namely a large-sample one. This allows to prove weak convergence results under realistic assumptions and to propose novel parameter-dimension-dependent tuning guidelines. The proposed guidelines are consistent with previous ones when the target density is close to having a product form, but significantly different otherwise.
stat
QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules
The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets.
stat
Von Mises-Fisher Elliptical Distribution
A large class of modern probabilistic learning systems assumes symmetric distributions, however, real-world data tend to obey skewed distributions and are thus not always adequately modelled through symmetric distributions. To address this issue, elliptical distributions are increasingly used to generalise symmetric distributions, and further improvements to skewed elliptical distributions have recently attracted much attention. However, existing approaches are either hard to estimate or have complicated and abstract representations. To this end, we propose to employ the von-Mises-Fisher (vMF) distribution to obtain an explicit and simple probability representation of the skewed elliptical distribution. This is shown not only to allow us to deal with non-symmetric learning systems, but also to provide a physically meaningful way of generalising skewed distributions. For rigour, our extension is proved to share important and desirable properties with its symmetric counterpart. We also demonstrate that the proposed vMF distribution is both easy to generate and stable to estimate, both theoretically and through examples.
stat
A generalization of Ramos-Louzada distribution: Properties and estimation
In this paper, a new two-parameter model called generalized Ramos-Louzada (GRL) distribution is proposed. The new model provides more flexibility in modeling data with increasing, decreasing, j shaped and reversed-J shaped hazard rate function. Several statistical and reliability properties of the GRL model are also presented in this paper. The unknown parameters of the GRL distribution are discussed using eight frequentist estimation approaches. These approaches are important to develop a guideline to choose the best method of estimation for the GRL parameters, that would be of great interest to practitioners and applied statisticians. A detailed numerical simulation study is carried out to examine the bias and the mean square error of the proposed estimators. We illustrate the performance of the GRL distribution using two real data sets from the fields of medicine and geology and both data sets show that the new model is more appropriate as compared to the gamma, Marshall-Olkin exponential, exponentiated exponential, beta exponential, generalized Lindley, Poisson-Lomax, Lindley geometric and Lindley distributions, among others.
stat
mvlearn: Multiview Machine Learning in Python
As data are generated more and more from multiple disparate sources, multiview data sets, where each sample has features in distinct views, have ballooned in recent years. However, no comprehensive package exists that enables non-specialists to use these methods easily. mvlearn is a Python library which implements the leading multiview machine learning methods. Its simple API closely follows that of scikit-learn for increased ease-of-use. The package can be installed from Python Package Index (PyPI) and the conda package manager and is released under the MIT open-source license. The documentation, detailed examples, and all releases are available at https://mvlearn.github.io/.
stat
Efficient Importance Sampling for Large Sums of Independent and Identically Distributed Random Variables
We aim to estimate the probability that the sum of nonnegative independent and identically distributed random variables falls below a given threshold, i.e., $\mathbb{P}(\sum_{i=1}^{N}{X_i} \leq \gamma)$, via importance sampling (IS). We are particularly interested in the rare event regime when $N$ is large and/or $\gamma$ is small. The exponential twisting is a popular technique that, in most of the cases, compares favorably to existing estimators. However, it has several limitations: i) it assumes the knowledge of the moment generating function of $X_i$ and ii) sampling under the new measure is not straightforward and might be expensive. The aim of this work is to propose an alternative change of measure that yields, in the rare event regime corresponding to large $N$ and/or small $\gamma$, at least the same performance as the exponential twisting technique and, at the same time, does not introduce serious limitations. For distributions whose probability density functions (PDFs) are $\mathcal{O}(x^{d})$, as $x \rightarrow 0$ and $d>-1$, we prove that the Gamma IS PDF with appropriately chosen parameters retrieves asymptotically, in the rare event regime, the same performance of the estimator based on the use of the exponential twisting technique. Moreover, in the Log-normal setting, where the PDF at zero vanishes faster than any polynomial, we numerically show that a Gamma IS PDF with optimized parameters clearly outperforms the exponential twisting change of measure. Numerical experiments validate the efficiency of the proposed estimator in delivering a highly accurate estimate in the regime of large $N$ and/or small $\gamma$.
stat
Confident Learning: Estimating Uncertainty in Dataset Labels
Learning exists in the context of data, yet notions of confidence typically focus on model predictions, not label quality. Confident learning (CL) is an alternative approach which focuses instead on label quality by characterizing and identifying label errors in datasets, based on the principles of pruning noisy data, counting with probabilistic thresholds to estimate noise, and ranking examples to train with confidence. Whereas numerous studies have developed these principles independently, here, we combine them, building on the assumption of a class-conditional noise process to directly estimate the joint distribution between noisy (given) labels and uncorrupted (unknown) labels. This results in a generalized CL which is provably consistent and experimentally performant. We present sufficient conditions where CL exactly finds label errors, and show CL performance exceeding seven recent competitive approaches for learning with noisy labels on the CIFAR dataset. Uniquely, the CL framework is not coupled to a specific data modality or model (e.g., we use CL to find several label errors in the presumed error-free MNIST dataset and improve sentiment classification on text data in Amazon Reviews). We also employ CL on ImageNet to quantify ontological class overlap (e.g., estimating 645 "missile" images are mislabeled as their parent class "projectile"), and moderately increase model accuracy (e.g., for ResNet) by cleaning data prior to training. These results are replicable using the open-source cleanlab release.
stat
Multi-Domain Adversarial Learning
Multi-domain learning (MDL) aims at obtaining a model with minimal average risk across multiple domains. Our empirical motivation is automated microscopy data, where cultured cells are imaged after being exposed to known and unknown chemical perturbations, and each dataset displays significant experimental bias. This paper presents a multi-domain adversarial learning approach, MuLANN, to leverage multiple datasets with overlapping but distinct class sets, in a semi-supervised setting. Our contributions include: i) a bound on the average- and worst-domain risk in MDL, obtained using the H-divergence; ii) a new loss to accommodate semi-supervised multi-domain learning and domain adaptation; iii) the experimental validation of the approach, improving on the state of the art on two standard image benchmarks, and a novel bioimage dataset, Cell.
stat
Fuel Economy Gaps Within & Across Garages: A Bivariate Random Parameters Seemingly Unrelated Regression Approach
The key objective of this study is to investigate the interrelationship between fuel economy gaps and to quantify the differential effects of several factors on fuel economy gaps of vehicles operated by the same garage. By using a unique fuel economy database (fueleconomy.gov), users self-reported fuel economy estimates and government fuel economy ratings are analyzed for more than 7000 garages across the U.S. The empirical analysis, nonetheless, is complicated owing to the presence of important methodological concerns including potential interrelationship between vehicles within the same garage and unobserved heterogeneity. To address these concerns, bivariate seemingly unrelated fixed and random parameter models are presented. With government test cycle ratings tending to over-estimate the actual on-road fuel economy, a significant variation is observed in the fuel economy gaps for the two vehicles across garages. A wide variety of factors such as driving style, fuel economy calculation method, and several vehicle specific characteristics are considered. Drivers who drive for maximum gas mileage or drives with the traffic flow have greater on-road fuel economy relative to the government official ratings. Contrarily, volatile drivers have smaller on-road fuel economy relative to the official ratings. Compared to the previous findings, our analysis suggests that the relationship between fuel type and fuel economy gaps is complex and not unidirectional. Regarding several vehicle and manufacturer related variables, the effects do not just significantly vary in magnitude but also in the direction, underscoring the importance of accounting for within-garage correlation and unobserved heterogeneity for making reliable inferences.
stat
The Expected Jacobian Outerproduct: Theory and Empirics
The expected gradient outerproduct (EGOP) of an unknown regression function is an operator that arises in the theory of multi-index regression, and is known to recover those directions that are most relevant to predicting the output. However, work on the EGOP, including that on its cheap estimators, is restricted to the regression setting. In this work, we adapt this operator to the multi-class setting, which we dub the expected Jacobian outerproduct (EJOP). Moreover, we propose a simple rough estimator of the EJOP and show that somewhat surprisingly, it remains statistically consistent under mild assumptions. Furthermore, we show that the eigenvalues and eigenspaces also remain consistent. Finally, we show that the estimated EJOP can be used as a metric to yield improvements in real-world non-parametric classification tasks: both by its use as a metric, and also as cheap initialization in metric learning tasks.
stat
Streamlined Computing for Variational Inference with Higher Level Random Effects
We derive and present explicit algorithms to facilitate streamlined computing for variational inference for models containing higher level random effects. Existing literature, such as Lee and Wand (2016), is such that streamlined variational inference is restricted to mean field variational Bayes algorithms for two-level random effects models. Here we provide the following extensions: (1) explicit Gaussian response mean field variational Bayes algorithms for three-level models, (2) explicit algorithms for the alternative variational message passing approach in the case of two-level and three-level models, and (3) an explanation of how arbitrarily high levels of nesting can be handled based on the recently published matrix algebraic results of the authors. A pay-off from (2) is simple extension to non-Gaussian response models. In summary, we remove barriers for streamlining variational inference algorithms based on either the mean field variational Bayes approach or the variational message passing approach when higher level random effects are present.
stat
A clustered Gaussian process model for computer experiments
A Gaussian process has been one of the important approaches for emulating computer simulations. However, the stationarity assumption for a Gaussian process and the intractability for large-scale dataset limit its availability in practice. In this article, we propose a clustered Gaussian process model which segments the input data into multiple clusters, in each of which a Gaussian process model is performed. The stochastic expectation-maximization is employed to efficiently fit the model. In our simulations as well as a real application to solar irradiance emulation, our proposed method had smaller mean square errors than its main competitors, with competitive computation time, and provides valuable insights from data by discovering the clusters. An R package for the proposed methodology is provided in an open repository.
stat
Identifying group contributions in NBA lineups with spectral analysis
We address the question of how to quantify the contributions of groups of players to team success. Our approach is based on spectral analysis, a technique from algebraic signal processing, which has several appealing features. First, our analysis decomposes the team success signal into components that are naturally understood as the contributions of player groups of a given size: individuals, pairs, triples, fours, and full five-player lineups. Secondly, the decomposition is orthogonal so that contributions of a player group can be thought of as pure: Contributions attributed to a group of three, for example, have been separated from the lower-order contributions of constituent pairs and individuals. We present detailed a spectral analysis using NBA play-by-play data and show how this can be a practical tool in understanding lineup composition and utilization.
stat
Parameter estimation with a class of outer probability measures
We explore the interplay between random and deterministic phenomena using a representation of uncertainty based on the measure-theoretic concept of outer measure. The meaning of the analogues of different probabilistic concepts is investigated and examples of application are given. The novelty of this article lies mainly in the suitability of the tools introduced for jointly representing random and deterministic uncertainty. These tools are shown to yield intuitive results in simple situations and to generalise easily to more complex cases. Connections with Dempster-Shafer theory, the empirical Bayes methods and generalised Bayesian inference are also highlighted.
stat
Supervised Robust Profile Clustering
In many studies, dimension reduction methods are used to profile participant characteristics. For example, nutrition epidemiologists often use latent class models to characterize dietary patterns. One challenge with such approaches is understanding subtle variations in patterns across subpopulations. Robust Profile Clustering (RPC) provides a dual flexible clustering model, where participants may cluster at two levels: (1) globally, where participants are clustered according to behaviors shared across an overall population, and (2) locally, where individual behaviors can deviate and cluster in subpopulations. We link clusters to a health outcome using a joint model. This model is used to derive dietary patterns in the United States and evaluate case proportion of orofacial clefts. Using dietary consumption data from the 1997-2009 National Birth Defects Prevention Study, a population-based case-control study, we determine how maternal dietary profiles are associated with an orofacial cleft among offspring. Results indicated that mothers who consumed a high proportion of fruits and vegetables compared to meats, such as chicken and beef, had lower odds delivering a child with an orofacial cleft defect.
stat
Training GANs with predictive projection centripetal acceleration
Although remarkable successful in practice, training generative adversarial networks(GANs) is still quite difficult and iteratively prone to cyclic behaviors, as GANs need to solve a non-convex non-concave min-max game using a gradient descent ascent (GDA) method. Motivated by the ideas of simultaneous centripetal acceleration (SCA) and modified predictive methods (MPM), we propose a novel predictive projection centripetal acceleration (PPCA) methods to alleviate the cyclic behaviors. Besides, under suitable assumptions, we show that the difference between the signed vector of partial derivatives at t + 1 and t is orthogonal to the signed vector of partial derivatives at t for GDA, and the last-iterate exponential convergence on the bilinear game. Finally, numerical simulations are conducted by PPCA in GANs setting, and the results illustrate the effectiveness of our approach.
stat
The Probabilistic Final Standing Calculator: a fair stochastic tool to handle abruptly stopped football seasons
The COVID-19 pandemic has left its marks in the sports world, forcing the full-stop of all sports-related activities in the first half of 2020. Football leagues were suddenly stopped and each country was hesitating between a relaunch of the competition and a premature ending. Some opted for the latter option, and took as the final standing of the season the ranking from the moment the competition got interrupted. This decision has been perceived as unfair, especially by those teams who had remaining matches against easier opponents. In this paper, we introduce a tool to calculate in a fairer way the final standings of domestic leagues that have to stop prematurely: our Probabilistic Final Standing Calculator (PFSC). It is based on a stochastic model taking into account the results of the matches played and simulating the remaining matches, yielding the probabilities for the various possible final rankings. We have compared our PFSC with state-of-the-art prediction models, using previous seasons which we pretend to stop at different points in time. We illustrate our PFSC by showing how a probabilistic ranking of the French Ligue 1 in the stopped 2019-2020 season could have led to alternative, potentially fairer, decisions on the final standing.
stat
Initializing LSTM internal states via manifold learning
We present an approach, based on learning an intrinsic data manifold, for the initialization of the internal state values of LSTM recurrent neural networks, ensuring consistency with the initial observed input data. Exploiting the generalized synchronization concept, we argue that the converged, "mature" internal states constitute a function on this learned manifold. The dimension of this manifold then dictates the length of observed input time series data required for consistent initialization. We illustrate our approach through a partially observed chemical model system, where initializing the internal LSTM states in this fashion yields visibly improved performance. Finally, we show that learning this data manifold enables the transformation of partially observed dynamics into fully observed ones, facilitating alternative identification paths for nonlinear dynamical systems.
stat
Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks
We propose Absum, which is a regularization method for improving adversarial robustness of convolutional neural networks (CNNs). Although CNNs can accurately recognize images, recent studies have shown that the convolution operations in CNNs commonly have structural sensitivity to specific noise composed of Fourier basis functions. By exploiting this sensitivity, they proposed a simple black-box adversarial attack: Single Fourier attack. To reduce structural sensitivity, we can use regularization of convolution filter weights since the sensitivity of linear transform can be assessed by the norm of the weights. However, standard regularization methods can prevent minimization of the loss function because they impose a tight constraint for obtaining high robustness. To solve this problem, Absum imposes a loose constraint; it penalizes the absolute values of the summation of the parameters in the convolution layers. Absum can improve robustness against single Fourier attack while being as simple and efficient as standard regularization methods (e.g., weight decay and L1 regularization). Our experiments demonstrate that Absum improves robustness against single Fourier attack more than standard regularization methods. Furthermore, we reveal that robust CNNs with Absum are more robust against transferred attacks due to decreasing the common sensitivity and against high-frequency noise than standard regularization methods. We also reveal that Absum can improve robustness against gradient-based attacks (projected gradient descent) when used with adversarial training.
stat
Entropic regularization of Wasserstein distance between infinite-dimensional Gaussian measures and Gaussian processes
This work studies the entropic regularization formulation of the 2-Wasserstein distance on an infinite-dimensional Hilbert space, in particular for the Gaussian setting. We first present the Minimum Mutual Information property, namely the joint measures of two Gaussian measures on Hilbert space with the smallest mutual information are joint Gaussian measures. This is the infinite-dimensional generalization of the Maximum Entropy property of Gaussian densities on Euclidean space. We then give closed form formulas for the optimal entropic transport plan, entropic 2-Wasserstein distance, and Sinkhorn divergence between two Gaussian measures on a Hilbert space, along with the fixed point equations for the barycenter of a set of Gaussian measures. Our formulations fully exploit the regularization aspect of the entropic formulation and are valid both in singular and nonsingular settings. In the infinite-dimensional setting, both the entropic 2-Wasserstein distance and Sinkhorn divergence are Fr\'echet differentiable, in contrast to the exact 2-Wasserstein distance, which is not differentiable. Our Sinkhorn barycenter equation is new and always has a unique solution. In contrast, the finite-dimensional barycenter equation for the entropic 2-Wasserstein distance fails to generalize to the Hilbert space setting. In the setting of reproducing kernel Hilbert spaces (RKHS), our distance formulas are given explicitly in terms of the corresponding kernel Gram matrices, providing an interpolation between the kernel Maximum Mean Discrepancy (MMD) and the kernel 2-Wasserstein distance.
stat
What are the most important statistical ideas of the past 50 years?
We argue that the most important statistical ideas of the past half century are: counterfactual causal inference, bootstrapping and simulation-based inference, overparameterized models and regularization, multilevel models, generic computation algorithms, adaptive decision analysis, robust inference, and exploratory data analysis. We discuss common features of these ideas, how they relate to modern computing and big data, and how they might be developed and extended in future decades. The goal of this article is to provoke thought and discussion regarding the larger themes of research in statistics and data science.
stat
Tuning-Free Disentanglement via Projection
In representation learning and non-linear dimension reduction, there is a huge interest to learn the 'disentangled' latent variables, where each sub-coordinate almost uniquely controls a facet of the observed data. While many regularization approaches have been proposed on variational autoencoders, heuristic tuning is required to balance between disentanglement and loss in reconstruction accuracy -- due to the unsupervised nature, there is no principled way to find an optimal weight for regularization. Motivated to completely bypass regularization, we consider a projection strategy: modifying the canonical Gaussian encoder, we add a layer of scaling and rotation to the Gaussian mean, such that the marginal correlations among latent sub-coordinates become exactly zero. This achieves a theoretically maximal disentanglement, as guaranteed by zero cross-correlation between one latent sub-coordinate and the observed varying with the rest. Unlike regularizations, the extra projection layer does not impact the flexibility of the previous encoder layers, leading to almost no loss in expressiveness. This approach is simple to implement in practice. Our numerical experiments demonstrate very good performance, with no tuning required.
stat
EM based smooth Graphon Estimation using Bayesian and Spline based Approaches
The paper proposes the estimation of a smooth graphon function for network data analysis using principles of the EM algorithm. The approach considers both, variability with respect to ordering the nodes of a network and smooth estimation of the graphon function by nonparametric regression. To do so, (linear) B-splines are used, which allow for smooth estimation of the graphon, conditional on the ordering of the nodes. This provides the M-step. The true ordering of the nodes resulting from the graphon model remains unobserved and Bayesian ideas are employed to obtain posterior samples, given the network data. This yields the E-step. Combining both steps gives an EM based approach for smooth graphon estimation. The proposed graphon estimate allows to explore both the degree distribution and the ordering of the nodes with respect to their connectivity behavior. Variability and uncertainty is taken into account using MCMC techniques. Examples and a simulation study support the applicability of the approach.
stat
Bayesian decision-theoretic design of experiments under an alternative model
Traditionally Bayesian decision-theoretic design of experiments proceeds by choosing a design to minimize expectation of a loss function over the space of all designs. The loss represents the aim of the experiment and expectation is taken with respect to the joint distribution of all unknown quantities implied by the statistical model that will be fitted to observed responses. An extended framework is proposed whereby expectation of the loss is taken with respect to a joint distribution implied by an alternative statistical model. The framework can be employed to promote robustness, to ensure computational feasibility or to allow realistic prior specification. An asymptotic approximation to the resulting expected loss is developed to aid in exploring the framework and, in particular, on the implications of the choice of loss function. The framework is demonstrated on a linear regression versus full-treatment model scenario, and on estimating parameters of a non-linear model under differing model discrepancies.
stat
Learning with minibatch Wasserstein : asymptotic and gradient properties
Optimal transport distances are powerful tools to compare probability distributions and have found many applications in machine learning. Yet their algorithmic complexity prevents their direct use on large scale datasets. To overcome this challenge, practitioners compute these distances on minibatches {\em i.e.} they average the outcome of several smaller optimal transport problems. We propose in this paper an analysis of this practice, which effects are not well understood so far. We notably argue that it is equivalent to an implicit regularization of the original problem, with appealing properties such as unbiased estimators, gradients and a concentration bound around the expectation, but also with defects such as loss of distance property. Along with this theoretical analysis, we also conduct empirical experiments on gradient flows, GANs or color transfer that highlight the practical interest of this strategy.
stat
Adaptive semiparametric Bayesian differential equations via sequential Monte Carlo
Nonlinear differential equations (DEs) are used in a wide range of scientific problems to model complex dynamic systems. The differential equations often contain unknown parameters that are of scientific interest, which have to be estimated from noisy measurements of the dynamic system. Generally, there is no closed-form solution for nonlinear DEs, and the likelihood surface for the parameter of interest is multi-modal and very sensitive to different parameter values. We propose a fully Bayesian framework for nonlinear DEs system. A flexible nonparametric function is used to represent the dynamic process such that expensive numerical solvers can be avoided. A sequential Monte Carlo in the annealing framework is proposed to conduct Bayesian inference for parameters in DEs. In our numerical experiments, we use examples of ordinary differential equations and delay differential equations to demonstrate the effectiveness of the proposed algorithm. We developed an R package that is available at \url{https://github.com/shijiaw/smcDE}.
stat
Robust Regression with Compositional Covariates
Many biological high-throughput data sets, such as targeted amplicon-based and metagenomic sequencing data, are compositional in nature. A common exploratory data analysis task is to infer statistical associations between the high-dimensional microbial compositions and habitat- or host-related covariates. We propose a general robust statistical regression framework, RobRegCC (Robust Regression with Compositional Covariates), which extends the linear log-contrast model by a mean shift formulation for capturing outliers. RobRegCC includes sparsity-promoting convex and non-convex penalties for parsimonious model estimation, a data-driven robust initialization procedure, and a novel robust cross-validation model selection scheme. We show RobRegCC's ability to perform simultaneous sparse log-contrast regression and outlier detection over a wide range of simulation settings and provide theoretical non-asymptotic guarantees for the underlying estimators. To demonstrate the seamless applicability of the workflow on real data, we consider a gut microbiome data set from HIV patients and infer robust associations between a sparse set of microbial species and host immune response from soluble CD14 measurements. All experiments are fully reproducible and available on GitHub at https://github.com/amishra-stats/robregcc.
stat
Kernel Mean Embedding of Distributions: A Review and Beyond
A Hilbert space embedding of a distribution---in short, a kernel mean embedding---has recently emerged as a powerful tool for machine learning and inference. The basic idea behind this framework is to map distributions into a reproducing kernel Hilbert space (RKHS) in which the whole arsenal of kernel methods can be extended to probability measures. It can be viewed as a generalization of the original "feature map" common to support vector machines (SVMs) and other kernel methods. While initially closely associated with the latter, it has meanwhile found application in fields ranging from kernel machines and probabilistic modeling to statistical inference, causal discovery, and deep learning. The goal of this survey is to give a comprehensive review of existing work and recent advances in this research area, and to discuss the most challenging issues and open problems that could lead to new research directions. The survey begins with a brief introduction to the RKHS and positive definite kernels which forms the backbone of this survey, followed by a thorough discussion of the Hilbert space embedding of marginal distributions, theoretical guarantees, and a review of its applications. The embedding of distributions enables us to apply RKHS methods to probability measures which prompts a wide range of applications such as kernel two-sample testing, independent testing, and learning on distributional data. Next, we discuss the Hilbert space embedding for conditional distributions, give theoretical insights, and review some applications. The conditional mean embedding enables us to perform sum, product, and Bayes' rules---which are ubiquitous in graphical model, probabilistic inference, and reinforcement learning---in a non-parametric way. We then discuss relationships between this framework and other related areas. Lastly, we give some suggestions on future research directions.
stat
Assessing method agreement for paired repeated binary measurements administered by multiple raters
Method comparison studies are essential for development in medical and clinical fields. These studies often compare a cheaper, faster, or less invasive measuring method with a widely used one to see if they have sufficient agreement for interchangeable use. In the clinical and medical context, the response measurement is usually impacted not only by the measuring method but by the rater as well. This paper proposes a model-based approach to assess agreement of two measuring methods for paired repeated binary measurements under the scenario when the agreement between two measuring methods and the agreement among raters are required to be studied in a unified framework. Based upon the generalized linear mixed models (GLMM), the decision on the adequacy of interchangeable use is made by testing the equality of fixed effects of methods. Approaches for assessing method agreement, such as the Bland-Altman diagram and Cohen's kappa, are also developed for repeated binary measurements based upon the latent variables in GLMMs. We assess our novel model-based approach by simulation studies and a real clinical research application, in which patients are evaluated repeatedly for delirium with two validated screening methods: the Confusion Assessment Method and the 3-Minute Diagnostic Interview for Confusion Assessment Method. Both the simulation studies and the real data analyses demonstrate that our new approach can effectively assess method agreement.
stat
Effect of right censoring bias on survival analysis
Kaplan-Meier survival analysis represents the most objective measure of treatment efficacy in oncology, though subjected to potential bias, which is worrisome in an era of precision medicine. Independent of the bias inherent to the design and execution of clinical trials, bias may be the result of patient censoring, or incomplete observation. Unlike disease/progression free survival, overall survival is based on a well defined time point and thus avoids interval censoring, but right-censoring, due to incomplete follow-up, may still be a source of bias. We study three mechanisms of right-censoring and find that one of them, surrogate of patient lost to follow-up, is able to impact Kaplan-Meier survival, improving significantly the estimation of survival in comparison with complete follow-up datasets, as measured by the hazard ratio. We also present two bias indexes able to signal datasets with right-censoring associated overestimation of survival. These bias indexes can detect bias in public available datasets
stat
Clustered Gaussian Graphical Model via Symmetric Convex Clustering
Knowledge of functional groupings of neurons can shed light on structures of neural circuits and is valuable in many types of neuroimaging studies. However, accurately determining which neurons carry out similar neurological tasks via controlled experiments is both labor-intensive and prohibitively expensive on a large scale. Thus, it is of great interest to cluster neurons that have similar connectivity profiles into functionally coherent groups in a data-driven manner. In this work, we propose the clustered Gaussian graphical model (GGM) and a novel symmetric convex clustering penalty in an unified convex optimization framework for inferring functional clusters among neurons from neural activity data. A parallelizable multi-block Alternating Direction Method of Multipliers (ADMM) algorithm is used to solve the corresponding convex optimization problem. In addition, we establish convergence guarantees for the proposed ADMM algorithm. Experimental results on both synthetic data and real-world neuroscientific data demonstrate the effectiveness of our approach.
stat
Vector operations for accelerating expensive Bayesian computations -- a tutorial guide
Many applications in Bayesian statistics are extremely computationally intensive. However, they are often inherently parallel, making them prime targets for modern massively parallel processors. Multi-core and distributed computing is widely applied in the Bayesian community, however, very little attention has been given to fine-grain parallelisation using single instruction multiple data (SIMD) operations that are available on most modern commodity CPUs and is the basis of GPGPU computing. In this work, we practically demonstrate, using standard programming libraries, the utility of the SIMD approach for several topical Bayesian applications. We show that SIMD can improve the floating point arithmetic performance resulting in up to $6\times$ improvement in serial algorithm performance. Importantly, these improvements are multiplicative to any gains achieved through multi-core processing. We illustrate the potential of SIMD for accelerating Bayesian computations and provide the reader with techniques for exploiting modern massively parallel processing environments using standard tools.
stat
Approximate Bayesian inference for analysis of spatio-temporal flood frequency data
Extreme floods cause casualties, and widespread damage to property and vital civil infrastructure. We here propose a Bayesian approach for predicting extreme floods using the generalized extreme-value (GEV) distribution within gauged and ungauged catchments. A major methodological challenge is to find a suitable parametrization for the GEV distribution when covariates or latent spatial effects are involved. Other challenges involve balancing model complexity and parsimony using an appropriate model selection procedure, and making inference using a reliable and computationally efficient approach. Our approach relies on a latent Gaussian modeling framework with a novel multivariate link function designed to separate the interpretation of the parameters at the latent level and to avoid unreasonable estimates of the shape and time trend parameters. Structured additive regression models are proposed for the four parameters at the latent level. For computational efficiency with large datasets and richly parametrized models, we exploit an accurate and fast approximate Bayesian inference approach. We applied our proposed methodology to annual peak river flow data from 554 catchments across the United Kingdom (UK). Our model performed well in terms of flood predictions for both gauged and ungauged catchments. The results show that the spatial model components for the transformed location and scale parameters, and the time trend, are all important. Posterior estimates of the time trend parameters correspond to an average increase of about $1.5\%$ per decade and reveal a spatial structure across the UK. To estimate return levels for spatial aggregates, we further develop a novel copula-based post-processing approach of posterior predictive samples, in order to mitigate the effect of the conditional independence assumption at the data level, and we show that our approach provides accurate results.
stat
Spatio-temporal evolution of global surface temperature distributions
Climate is known for being characterised by strong non-linearity and chaotic behaviour. Nevertheless, few studies in climate science adopt statistical methods specifically designed for non-stationary or non-linear systems. Here we show how the use of statistical methods from Information Theory can describe the non-stationary behaviour of climate fields, unveiling spatial and temporal patterns that may otherwise be difficult to recognize. We study the maximum temperature at two meters above ground using the NCEP CDAS1 daily reanalysis data, with a spatial resolution of 2.5 by 2.5 degree and covering the time period from 1 January 1948 to 30 November 2018. The spatial and temporal evolution of the temperature time series are retrieved using the Fisher Information Measure, which quantifies the information in a signal, and the Shannon Entropy Power, which is a measure of its uncertainty -- or unpredictability. The results describe the temporal behaviour of the analysed variable. Our findings suggest that tropical and temperate zones are now characterized by higher levels of entropy. Finally, Fisher-Shannon Complexity is introduced and applied to study the evolution of the daily maximum surface temperature distributions.
stat
Identifying important predictors in large data bases -- multiple testing and model selection
This is a chapter of the forthcoming Handbook of Multiple Testing. We consider a variety of model selection strategies in a high-dimensional setting, where the number of potential predictors p is large compared to the number of available observations n. In particular modifications of information criteria which are suitable in case of p > n are introduced and compared with a variety of penalized likelihood methods, in particular SLOPE and SLOBE. The focus is on methods which control the FDR in terms of model identification. Theoretical results are provided both with respect to model identification and prediction and various simulation results are presented which illustrate the performance of the different methods in different situations.
stat
Survival analysis for AdVerse events with VarYing follow-up times (SAVVY) -- comparison of adverse event risks in randomized controlled trials
Analyses of adverse events (AEs) are an important aspect of benefit-risk and health-technology assessments of therapies. The SAVVY project aims to improve the analyses of AE data in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). In an empirical study including randomized clinical trials (RCT) from several sponsor organisations the effect of varying follow-up times and CEs on comparisons of two treatment arms with respect to AE risks is investigated. CEs definition does not only include death before AE but also end of follow-up for AEs due to events possibly related to the disease course or safety of the treatment. The comparisons of relative risks (RRs) of standard probability-based estimators to the gold-standard Aalen-Johansen estimator (AJE) or hazard-based estimators to an estimated hazard ratio (HR) from Cox regression are done descriptively, with graphical displays, and using a random effects meta-analysis. The influence of different factors on the size of the bias is investigated in a meta-regression. Ten sponsors provided 17 RCTs including 186 types of AEs. We confirm for estimation of the RR concerns regarding incidence densities: the probability transform incidence density ignoring CEs performed worst. However, accounting for CEs in an analysis that parametrically mimicked the non-parametric AJE performed better than both one minus Kaplan-Meier and AJE that only considered death as a CE. The analysis based on hazards revealed that the incidence density underestimates the HR of AE and CE of death hazard compared to the gold-standard Cox regression. Both the choice of the estimator of the AE probability and a careful definition of CEs are crucial in estimation of RRs. For RRs based on hazards, the HR based on Cox regression has better properties than the ratio of incidence densities.
stat
Treatment effects beyond the mean using GAMLSS
This paper introduces distributional regression, also known as generalized additive models for location, scale and shape (GAMLSS), as a modeling framework for analyzing treatment effects beyond the mean. By relating each parameter of the response distribution to explanatory variables, GAMLSS model the treatment effect on the whole conditional distribution. Additionally, any nonnormal outcome and nonlinear effects of explanatory variables can be incorporated. We elaborate on the combination of GAMLSS with program evaluation methods in economics and provide practical guidance on the usage of GAMLSS by reanalyzing data from the Mexican \textit{Progresa} program. Contrary to expectations, no significant effects of a cash transfer on the conditional inequality level between treatment and control group are found.
stat
Semi-Supervised Learning, Causality and the Conditional Cluster Assumption
While the success of semi-supervised learning (SSL) is still not fully understood, Sch\"olkopf et al. (2012) have established a link to the principle of independent causal mechanisms. They conclude that SSL should be impossible when predicting a target variable from its causes, but possible when predicting it from its effects. Since both these cases are somewhat restrictive, we extend their work by considering classification using cause and effect features at the same time, such as predicting disease from both risk factors and symptoms. While standard SSL exploits information contained in the marginal distribution of all inputs (to improve the estimate of the conditional distribution of the target given inputs), we argue that in our more general setting we should use information in the conditional distribution of effect features given causal features. We explore how this insight generalises the previous understanding, and how it relates to and can be exploited algorithmically for SSL.
stat
Portfolio optimization with mixture vector autoregressive models
Obtaining reliable estimates of conditional covariance matrices is an important task of heteroskedastic multivariate time series. In portfolio optimization and financial risk management, it is crucial to provide measures of uncertainty and risk as accurately as possible. We propose using mixture vector autoregressive (MVAR) models for portfolio optimization. Combining a mixture of distributions that depend on the recent history of the process, MVAR models can accommodate asymmetry, multimodality, heteroskedasticity and cross-correlation in multivariate time series data. For mixtures of Normal components, we exploit a property of the multivariate Normal distribution to obtain explicit formulas of conditional predictive distributions of returns on a portfolio of assets. After showing how the method works, we perform a comparison with other relevant multivariate time series models on real stock return data.
stat