title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Is it who you are or where you are? Accounting for compositional differences in cross-site treatment variation
Multisite trials, in which treatment is randomized separately in multiple sites, offer a unique opportunity to disentangle treatment effect variation due to "compositional" differences in the distributions of unit-level features from variation due to "contextual" differences in site-level features. In particular, if we can re-weight (or "transport") each site to have a common distribution of unit-level covariates, the remaining effect variation captures contextual differences across sites. In this paper, we develop a framework for transporting effects in multisite trials using approximate balancing weights, where the weights are chosen to directly optimize unit-level covariate balance between each site and the target distribution. We first develop our approach for the general setting of transporting the effect of a single-site trial. We then extend our method to multisite trials, assess its performance via simulation, and use it to analyze a series of multisite trials of welfare-to-work programs. Our method is available in the balancer R package.
stat
Analyzing Car Thefts and Recoveries with Connections to Modeling Origin-Destination Point Patterns
For a given region, we have a dataset composed of car theft locations along with a linked dataset of recovery locations which, due to partial recovery, is a relatively small subset of the set of theft locations. For an investigator seeking to understand the behavior of car thefts and recoveries in the region, several questions are addressed. Viewing the set of theft locations as a point pattern, can we propose useful models to explain the pattern? What types of predictive models can be built to learn about recovery location given theft location? Can the dependence between theft locations and recovery locations be formalized? Can the flow between theft sites and recovery sites be captured? Origin-destination modeling offers a natural framework for such problems. However, here the data is not for areal units but rather is a pair of point patterns, with the recovery point pattern only partially observed. We offer modeling approaches for investigating the questions above and apply the approaches to two datasets. One is small from the state of Neza in Mexico with areal covariate information regarding population features and crime type. A second, much larger one, is from Belo Horizonte in Brazil but lacks covariates.
stat
A Mixture of Linear-Linear Regression Models for Linear-Circular Regression
We introduce a new approach to a linear-circular regression problem that relates multiple linear predictors to a circular response. We follow a modeling approach of a wrapped normal distribution that describes angular variables and angular distributions and advances it for a linear-circular regression analysis. Some previous works model a circular variable as projection of a bivariate Gaussian random vector on the unit square, and the statistical inference of the resulting model involves complicated sampling steps. The proposed model treats circular responses as the result of the modulo operation on unobserved linear responses. The resulting model is a mixture of multiple linear-linear regression models. We present two EM algorithms for maximum likelihood estimation of the mixture model, one for a parametric model and another for a non-parametric model. The estimation algorithms provide a great trade-off between computation and estimation accuracy, which was numerically shown using five numerical examples. The proposed approach was applied to a problem of estimating wind directions that typically exhibit complex patterns with large variation and circularity.
stat
Rao-Blackwellization in the MCMC era
Rao-Blackwellization is a notion often occurring in the MCMC literature, with possibly different meanings and connections with the original Rao--Blackwell theorem (Rao, 1945 and Blackwell,1947), including a reduction of the variance of the resulting Monte Carlo approximations. This survey reviews some of the meanings of the term.
stat
Weighted Empirical Risk Minimization: Sample Selection Bias Correction based on Importance Sampling
We consider statistical learning problems, when the distribution $P'$ of the training observations $Z'_1,\; \ldots,\; Z'_n$ differs from the distribution $P$ involved in the risk one seeks to minimize (referred to as the test distribution) but is still defined on the same measurable space as $P$ and dominates it. In the unrealistic case where the likelihood ratio $\Phi(z)=dP/dP'(z)$ is known, one may straightforwardly extends the Empirical Risk Minimization (ERM) approach to this specific transfer learning setup using the same idea as that behind Importance Sampling, by minimizing a weighted version of the empirical risk functional computed from the 'biased' training data $Z'_i$ with weights $\Phi(Z'_i)$. Although the importance function $\Phi(z)$ is generally unknown in practice, we show that, in various situations frequently encountered in practice, it takes a simple form and can be directly estimated from the $Z'_i$'s and some auxiliary information on the statistical population $P$. By means of linearization techniques, we then prove that the generalization capacity of the approach aforementioned is preserved when plugging the resulting estimates of the $\Phi(Z'_i)$'s into the weighted empirical risk. Beyond these theoretical guarantees, numerical results provide strong empirical evidence of the relevance of the approach promoted in this article.
stat
Causal Interaction Trees: Tree-Based Subgroup Identification for Observational Data
We propose Causal Interaction Trees for identifying subgroups of participants that have enhanced treatment effects using observational data. We extend the Classification and Regression Tree algorithm by using splitting criteria that focus on maximizing between-group treatment effect heterogeneity based on subgroup-specific treatment effect estimators to dictate decision-making in the algorithm. We derive properties of three subgroup-specific treatment effect estimators that account for the observational nature of the data -- inverse probability weighting, g-formula and doubly robust estimators. We study the performance of the proposed algorithms using simulations and implement the algorithms in an observational study that evaluates the effectiveness of right heart catheterization on critically ill patients.
stat
Graphical Gaussian Process Models for Highly Multivariate Spatial Data
For multivariate spatial (Gaussian) process models, common cross-covariance functions do not exploit graphical models to ensure process-level conditional independence among the variables. This is undesirable, especially for highly multivariate settings, where popular cross-covariance functions such as the multivariate Mat\'ern suffer from a "curse of dimensionality" as the number of parameters and floating point operations scale up in quadratic and cubic order, respectively, in the number of variables. We propose a class of multivariate "graphical Gaussian Processes" using a general construction called "stitching" that crafts cross-covariance functions from graphs and ensure process-level conditional independence among variables. For the Mat\'ern family of functions, stitching yields a multivariate GP whose univariate components are exactly Mat\'ern GPs, and conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Mat\'ern GP to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling.
stat
Towards Practical Lipschitz Bandits
Stochastic Lipschitz bandit algorithms balance exploration and exploitation, and have been used for a variety of important task domains. In this paper, we present a framework for Lipschitz bandit methods that adaptively learns partitions of context- and arm-space. Due to this flexibility, the algorithm is able to efficiently optimize rewards and minimize regret, by focusing on the portions of the space that are most relevant. In our analysis, we link tree-based methods to Gaussian processes. In light of our analysis, we design a novel hierarchical Bayesian model for Lipschitz bandit problems. Our experiments show that our algorithms can achieve state-of-the-art performance in challenging real-world tasks such as neural network hyperparameter tuning.
stat
Estimation and Optimization of Composite Outcomes
There is tremendous interest in precision medicine as a means to improve patient outcomes by tailoring treatment to individual characteristics. An individualized treatment rule formalizes precision medicine as a map from patient information to a recommended treatment. A treatment rule is defined to be optimal if it maximizes the mean of a scalar outcome in a population of interest, e.g., symptom reduction. However, clinical and intervention scientists often must balance multiple and possibly competing outcomes, e.g., symptom reduction and the risk of an adverse event. One approach to precision medicine in this setting is to elicit a composite outcome which balances all competing outcomes; unfortunately, eliciting a composite outcome directly from patients is difficult without a high-quality instrument, and an expert-derived composite outcome may not account for heterogeneity in patient preferences. We propose a new paradigm for the study of precision medicine using observational data that relies solely on the assumption that clinicians are approximately (i.e., imperfectly) making decisions to maximize individual patient utility. Estimated composite outcomes are subsequently used to construct an estimator of an individualized treatment rule which maximizes the mean of patient-specific composite outcomes. The estimated composite outcomes and estimated optimal individualized treatment rule provide new insights into patient preference heterogeneity, clinician behavior, and the value of precision medicine in a given domain. We derive inference procedures for the proposed estimators under mild conditions and demonstrate their finite sample performance through a suite of simulation experiments and an illustrative application to data from a study of bipolar depression.
stat
BDgraph: An R Package for Bayesian Structure Learning in Graphical Models
Graphical models provide powerful tools to uncover complicated patterns in multivariate data and are commonly used in Bayesian statistics and machine learning. In this paper, we introduce the R package BDgraph which performs Bayesian structure learning for general undirected graphical models (decomposable and non-decomposable) with continuous, discrete, and mixed variables. The package efficiently implements recent improvements in the Bayesian literature, including that of Mohammadi and Wit (2015) and Dobra and Mohammadi (2018). To speed up computations, the computationally intensive tasks have been implemented in C++ and interfaced with R, and the package has parallel computing capabilities. In addition, the package contains several functions for simulation and visualization, as well as several multivariate datasets taken from the literature and used to describe the package capabilities. The paper includes a brief overview of the statistical methods which have been implemented in the package. The main part of the paper explains how to use the package. Furthermore, we illustrate the package's functionality in both real and artificial examples.
stat
Comparison of Machine Learning Models in Food Authentication Studies
The underlying objective of food authentication studies is to determine whether unknown food samples have been correctly labelled. In this paper we study three near infrared (NIR) spectroscopic datasets from food samples of different types: meat samples (labelled by species), olive oil samples (labelled by their geographic origin) and honey samples (labelled as pure or adulterated by different adulterants). We apply and compare a large number of classification, dimension reduction and variable selection approaches to these datasets. NIR data pose specific challenges to classification and variable selection: the datasets are high - dimensional where the number of cases ($n$) $<<$ number of features ($p$) and the recorded features are highly serially correlated. In this paper we carry out comparative analysis of different approaches and find that partial least squares, a classic tool employed for these types of data, outperforms all the other approaches considered.
stat
How Much Can We See? A Note on Quantifying Explainability of Machine Learning Models
One of the most popular approaches to understanding feature effects of modern black box machine learning models are partial dependence plots (PDP). These plots are easy to understand but only able to visualize low order dependencies. The paper is about the question 'How much can we see?': A framework is developed to quantify the explainability of arbitrary machine learning models, i.e. up to what degree the visualization as given by a PDP is able to explain the predictions of the model. The result allows for a judgement whether an attempt to explain a black box model is sufficient or not.
stat
Large-dimensional Factor Analysis without Moment Constraints
Large-dimensional factor model has drawn much attention in the big-data era, in order to reduce the dimensionality and extract underlying features using a few latent common factors. Conventional methods for estimating the factor model typically requires finite fourth moment of the data, which ignores the effect of heavy-tailedness and thus may result in unrobust or even inconsistent estimation of the factor space and common components. In this paper, we propose to recover the factor space by performing principal component analysis to the spatial Kendall's tau matrix instead of the sample covariance matrix. In a second step, we estimate the factor scores by the ordinary least square (OLS) regression. Theoretically, we show that under the elliptical distribution framework the factor loadings and scores as well as the common components can be estimated consistently without any moment constraint. The convergence rates of the estimated factor loadings, scores and common components are provided. The finite sample performance of the proposed procedure is assessed through thorough simulations. An analysis of a financial data set of asset returns shows the superiority of the proposed method over the classical PCA method.
stat
Non-stationary Gaussian models with physical barriers
The classical tools in spatial statistics are stationary models, like the Mat\'ern field. However, in some applications there are boundaries, holes, or physical barriers in the study area, e.g. a coastline, and stationary models will inappropriately smooth over these features, requiring the use of a non-stationary model. We propose a new model, the Barrier model, which is different from the established methods as it is not based on the shortest distance around the physical barrier, nor on boundary conditions. The Barrier model is based on viewing the Mat\'ern correlation, not as a correlation function on the shortest distance between two points, but as a collection of paths through a Simultaneous Autoregressive (SAR) model. We then manipulate these local dependencies to cut off paths that are crossing the physical barriers. To make the new SAR well behaved, we formulate it as a stochastic partial differential equation (SPDE) that can be discretised to represent the Gaussian field, with a sparse precision matrix that is automatically positive definite. The main advantage with the Barrier model is that the computational cost is the same as for the stationary model. The model is easy to use, and can deal with both sparse data and very complex barriers, as shown in an application in the Finnish Archipelago Sea. Additionally, the Barrier model is better at reconstructing the modified Horseshoe test function than the standard models used in R-INLA.
stat
Quantitative Robustness of Localized Support Vector Machines
The huge amount of available data nowadays is a challenge for kernel-based machine learning algorithms like SVMs with respect to runtime and storage capacities. Local approaches might help to relieve these issues and to improve statistical accuracy. It has already been shown that these local approaches are consistent and robust in a basic sense. This article refines the analysis of robustness properties towards the so-called influence function which expresses the differentiability of the learning method: We show that there is a differentiable dependency of our locally learned predictor on the underlying distribution. The assumptions of the proven theorems can be verified without knowing anything about this distribution. This makes the results interesting also from an applied point of view.
stat
Learning Landmark-Based Ensembles with Random Fourier Features and Gradient Boosting
We propose a Gradient Boosting algorithm for learning an ensemble of kernel functions adapted to the task at hand. Unlike state-of-the-art Multiple Kernel Learning techniques that make use of a pre-computed dictionary of kernel functions to select from, at each iteration we fit a kernel by approximating it as a weighted sum of Random Fourier Features (RFF) and by optimizing their barycenter. This allows us to obtain a more versatile method, easier to setup and likely to have better performance. Our study builds on a recent result showing one can learn a kernel from RFF by computing the minimum of a PAC-Bayesian bound on the kernel alignment generalization loss, which is obtained efficiently from a closed-form solution. We conduct an experimental analysis to highlight the advantages of our method w.r.t. both Boosting-based and kernel-learning state-of-the-art methods.
stat
Subsampling Winner Algorithm for Feature Selection in Large Regression Data
Feature selection from a large number of covariates (aka features) in a regression analysis remains a challenge in data science, especially in terms of its potential of scaling to ever-enlarging data and finding a group of scientifically meaningful features. For example, to develop new, responsive drug targets for ovarian cancer, the actual false discovery rate (FDR) of a practical feature selection procedure must also match the target FDR. The popular approach to feature selection, when true features are sparse, is to use a penalized likelihood or a shrinkage estimation, such as a LASSO, SCAD, Elastic Net, or MCP procedure (call them benchmark procedures). We present a different approach using a new subsampling method, called the Subsampling Winner algorithm (SWA). The central idea of SWA is analogous to that used for the selection of US national merit scholars. SWA uses a "base procedure" to analyze each of the subsamples, computes the scores of all features according to the performance of each feature from all subsample analyses, obtains the "semifinalist" based on the resulting scores, and then determines the "finalists," i.e., the most important features. Due to its subsampling nature, SWA can scale to data of any dimension in principle. The SWA also has the best-controlled actual FDR in comparison with the benchmark procedures and the randomForest, while having a competitive true-feature discovery rate. We also suggest practical add-on strategies to SWA with or without a penalized benchmark procedure to further assure the chance of "true" discovery. Our application of SWA to the ovarian serous cystadenocarcinoma specimens from the Broad Institute revealed functionally important genes and pathways, which we verified by additional genomics tools. This second-stage investigation is essential in the current discussion of the proper use of P-values.
stat
Data-driven discovery of coordinates and governing equations
The discovery of governing equations from scientific data has the potential to transform data-rich fields that lack well-characterized quantitative descriptions. Advances in sparse regression are currently enabling the tractable identification of both the structure and parameters of a nonlinear dynamical system from data. The resulting models have the fewest terms necessary to describe the dynamics, balancing model complexity with descriptive ability, and thus promoting interpretability and generalizability. This provides an algorithmic approach to Occam's razor for model discovery. However, this approach fundamentally relies on an effective coordinate system in which the dynamics have a simple representation. In this work, we design a custom autoencoder to discover a coordinate transformation into a reduced space where the dynamics may be sparsely represented. Thus, we simultaneously learn the governing equations and the associated coordinate system. We demonstrate this approach on several example high-dimensional dynamical systems with low-dimensional behavior. The resulting modeling framework combines the strengths of deep neural networks for flexible representation and sparse identification of nonlinear dynamics (SINDy) for parsimonious models. It is the first method of its kind to place the discovery of coordinates and models on an equal footing.
stat
Evaluating stochastic seeding strategies in networks
When trying to maximize the adoption of a behavior in a population connected by a social network, it is common to strategize about where in the network to seed the behavior, often with an element of randomness. Selecting seeds uniformly at random is a basic but compelling strategy in that it distributes seeds broadly throughout the network. A more sophisticated stochastic strategy, one-hop targeting, is to select random network neighbors of random individuals; this exploits a version of the friendship paradox, whereby the friend of a random individual is expected to have more friends than a random individual, with the hope that seeding a behavior at more connected individuals leads to more adoption. Many seeding strategies have been proposed, but empirical evaluations have demanded large field experiments designed specifically for this purpose and have yielded relatively imprecise comparisons of strategies. Here we show how stochastic seeding strategies can be evaluated more efficiently in such experiments, how they can be evaluated "off-policy" using existing data arising from experiments designed for other purposes, and how to design more efficient experiments. In particular, we consider contrasts between stochastic seeding strategies and analyze nonparametric estimators adapted from policy evaluation and importance sampling. We use simulations on real networks to show that the proposed estimators and designs can increase precision while yielding valid inference. We then apply our proposed estimators to two field experiments, one that assigned households to an intensive marketing intervention and one that assigned students to an anti-bullying intervention.
stat
A Measurement of In-Betweenness and Inference Based on Shape Theories
We propose a statistical framework to investigate whether a given subpopulation lies between two other subpopulations in a multivariate feature space. This methodology is motivated by a biological question from a collaborator: Is a newly discovered cell type between two known types in several given features? We propose two in-betweenness indices (IBI) to quantify the in-betweenness exhibited by a random triangle formed by the summary statistics of the three subpopulations. Statistical inference methods are provided for triangle shape and IBI metrics. The application of our methods is demonstrated in three examples: the classic Iris data set, a study of risk of relapse across three breast cancer subtypes, and the motivating neuronal cell data with measured electrophysiological features.
stat
What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory
We develop a variational framework to understand the properties of functions learned by deep neural networks with ReLU activation functions fit to data. We propose a new function space, which is reminiscent of classical bounded variation spaces, that captures the compositional structure associated with deep neural networks. We derive a representer theorem showing that deep ReLU networks are solutions to regularized data fitting problems in this function space. The function space consists of compositions of functions from the (non-reflexive) Banach spaces of second-order bounded variation in the Radon domain. These are Banach spaces with sparsity-promoting norms, giving insight into the role of sparsity in deep neural networks. The neural network solutions have skip connections and rank bounded weight matrices, providing new theoretical support for these common architectural choices. The variational problem we study can be recast as a finite-dimensional neural network training problem with regularization schemes related to the notions of weight decay and path-norm regularization. Finally, our analysis builds on techniques from variational spline theory, providing new connections between deep neural networks and splines.
stat
On the Regularity of Attention
Attention is a powerful component of modern neural networks across a wide variety of domains. In this paper, we seek to quantify the regularity (i.e. the amount of smoothness) of the attention operation. To accomplish this goal, we propose a new mathematical framework that uses measure theory and integral operators to model attention. We show that this framework is consistent with the usual definition, and that it captures the essential properties of attention. Then we use this framework to prove that, on compact domains, the attention operation is Lipschitz continuous and provide an estimate of its Lipschitz constant. Additionally, by focusing on a specific type of attention, we extend these Lipschitz continuity results to non-compact domains. We also discuss the effects regularity can have on NLP models, and applications to invertible and infinitely-deep networks.
stat
Multivariate Cluster Weighted Models Using Skewed Distributions
Much work has been done in the area of the cluster weighted model (CWM), which extends the finite mixture of regression model to include modelling of the covariates. Although many types of distributions have been considered for both the response and covariates, to our knowledge skewed distributions have not yet been considered in this paradigm. Herein, a family of 24 novel CWMs are considered which allows both the covariates and response variables to be modelled using one of four skewed distributions, or the normal distribution. Parameter estimation is performed using the expectation-maximization algorithm and both simulated and real data are used for illustration.
stat
Particle Smoothing Variational Objectives
A body of recent work has focused on constructing a variational family of filtered distributions using Sequential Monte Carlo (SMC). Inspired by this work, we introduce Particle Smoothing Variational Objectives (SVO), a novel backward simulation technique and smoothed approximate posterior defined through a subsampling process. SVO augments support of the proposal and boosts particle diversity. Recent literature argues that increasing the number of samples K to obtain tighter variational bounds may hurt the proposal learning, due to a signal-to-noise ratio (SNR) of gradient estimators decreasing at the rate $\mathcal{O}(1/\sqrt{K})$. As a second contribution, we develop theoretical and empirical analysis of the SNR in filtering SMC, which motivates our choice of biased gradient estimators. We prove that introducing bias by dropping Categorical terms from the gradient estimate or using Gumbel-Softmax mitigates the adverse effect on the SNR. We apply SVO to three nonlinear latent dynamics tasks and provide statistics to rigorously quantify the predictions of filtered and smoothed objectives. SVO consistently outperforms filtered objectives when given fewer Monte Carlo samples on three nonlinear systems of increasing complexity.
stat
Infrastructure Recovery Curve Estimation Using Gaussian Process Regression on Expert Elicited Data
Infrastructure recovery time estimation is critical to disaster management and planning. Inspired by recent resilience planning initiatives, we consider a situation where experts are asked to estimate the time for different infrastructure systems to recover to certain functionality levels after a scenario hazard event. We propose a methodological framework to use expert-elicited data to estimate the expected recovery time curve of a particular infrastructure system. This framework uses the Gaussian process regression (GPR) to capture the experts' estimation-uncertainty and satisfy known physical constraints of recovery processes. The framework is designed to find a balance between the data collection cost of expert elicitation and the prediction accuracy of GPR. We evaluate the framework on realistically simulated expert-elicited data concerning the two case study events, the 1995 Great Hanshin-Awaji Earthquake and the 2011 Great East Japan Earthquake.
stat
Regression Analysis of Unmeasured Confounding
When studying the causal effect of $x$ on $y$, researchers may conduct regression and report a confidence interval for the slope coefficient $\beta_{x}$. This common confidence interval provides an assessment of uncertainty from sampling error, but it does not assess uncertainty from confounding. An intervention on $x$ may produce a response in $y$ that is unexpected, and our misinterpretation of the slope happens when there are confounding factors $w$. When $w$ are measured we may conduct multiple regression, but when $w$ are unmeasured it is common practice to include a precautionary statement when reporting the confidence interval, warning against unwarranted causal interpretation. If the goal is robust causal interpretation then we can do something more informative. Uncertainty in the specification of three confounding parameters can be propagated through an equation to produce a confounding interval. Here we develop supporting mathematical theory and describe an example application. Our proposed methodology applies well to studies of a continuous response or rare outcome. It is a general method for quantifying error from model uncertainty. Whereas confidence intervals are used to assess uncertainty from unmeasured individuals, confounding intervals can be used to assess uncertainty from unmeasured attributes.
stat
Nonparametric Estimation of Low Rank Matrix Valued Function
Let $A:[0,1]\rightarrow\mathbb{H}_m$ (the space of Hermitian matrices) be a matrix valued function which is low rank with entries in H\"{o}lder class $\Sigma(\beta,L)$. The goal of this paper is to study statistical estimation of $A$ based on the regression model $\mathbb{E}(Y_j|\tau_j,X_j) = \langle A(\tau_j), X_j \rangle,$ where $\tau_j$ are i.i.d. uniformly distributed in $[0,1]$, $X_j$ are i.i.d. matrix completion sampling matrices, $Y_j$ are independent bounded responses. We propose an innovative nuclear norm penalized local polynomial estimator and establish an upper bound on its point-wise risk measured by Frobenius norm. Then we extend this estimator globally and prove an upper bound on its integrated risk measured by $L_2$-norm. We also propose another new estimator based on bias-reducing kernels to study the case when $A$ is not necessarily low rank and establish an upper bound on its risk measured by $L_{\infty}$-norm. We show that the obtained rates are all optimal up to some logarithmic factor in minimax sense. Finally, we propose an adaptive estimation procedure based on Lepskii's method and model selection with data splitting which is computationally efficient and can be easily implemented and parallelized.
stat
Nonparametric sequential change-point detection for multivariate time series based on empirical distribution functions
The aim of sequential change-point detection is to issue an alarm when it is thought that certain probabilistic properties of the monitored observations have changed. This work is concerned with nonparametric, closed-end testing procedures based on differences of empirical distribution functions that are designed to be particularly sensitive to changes in the comtemporary distribution of multivariate time series. The proposed detectors are adaptations of statistics used in a posteriori (offline) change-point testing and involve a weighting allowing to give more importance to recent observations. The resulting sequential change-point detection procedures are carried out by comparing the detectors to threshold functions estimated through resampling such that the probability of false alarm remains approximately constant over the monitoring period. A generic result on the asymptotic validity of such a way of estimating a threshold function is stated. As a corollary, the asymptotic validity of the studied sequential tests based on empirical distribution functions is proven when these are carried out using a dependent multiplier bootstrap for multivariate time series. Large-scale Monte Carlo experiments demonstrate the good finite-sample properties of the resulting procedures. The application of the derived sequential tests is illustrated on financial data.
stat
Functional probabilistic programming for scalable Bayesian modelling
Bayesian inference involves the specification of a statistical model by a statistician or practitioner, with careful thought about what each parameter represents. This results in particularly interpretable models which can be used to explain relationships present in the observed data. Bayesian models are useful when an experiment has only a small number of observations and in applications where transparency of data driven decisions is important. Traditionally, parameter inference in Bayesian statistics has involved constructing bespoke MCMC (Markov chain Monte Carlo) schemes for each newly proposed statistical model. This results in plausible models not being considered since efficient inference schemes are challenging to develop or implement. Probabilistic programming aims to reduce the barrier to performing Bayesian inference by developing a domain specific language (DSL) for model specification which is decoupled from the parameter inference algorithms. This paper introduces functional programming principles which can be used to develop an embedded probabilistic programming language. Model inference can be carried out using any generic inference algorithm. In this paper Hamiltonian Monte Carlo (HMC) is used, an efficient MCMC method requiring the gradient of the un-normalised log-posterior, calculated using automatic differentiation. The concepts are illustrated using the Scala programming language.
stat
Grouping effects of sparse CCA models in variable selection
The sparse canonical correlation analysis (SCCA) is a bi-multivariate association model that finds sparse linear combinations of two sets of variables that are maximally correlated with each other. In addition to the standard SCCA model, a simplified SCCA criterion which maixmizes the cross-covariance between a pair of canonical variables instead of their cross-correlation, is widely used in the literature due to its computational simplicity. However, the behaviors/properties of the solutions of these two models remain unknown in theory. In this paper, we analyze the grouping effect of the standard and simplified SCCA models in variable selection. In high-dimensional settings, the variables often form groups with high within-group correlation and low between-group correlation. Our theoretical analysis shows that for grouped variable selection, the simplified SCCA jointly selects or deselects a group of variables together, while the standard SCCA randomly selects a few dominant variables from each relevant group of correlated variables. Empirical results on synthetic data and real imaging genetics data verify the finding of our theoretical analysis.
stat
Using Experimental Data to Evaluate Methods for Observational Causal Inference
Methods that infer causal dependence from observational data are central to many areas of science, including medicine, economics, and the social sciences. A variety of theoretical properties of these methods have been proven, but empirical evaluation remains a challenge, largely due to the lack of observational data sets for which treatment effect is known. We propose and analyze observational sampling from randomized controlled trials (OSRCT), a method for evaluating causal inference methods using data from randomized controlled trials (RCTs). This method can be used to create constructed observational data sets with corresponding unbiased estimates of treatment effect, substantially increasing the number of data sets available for evaluating causal inference methods. We show that, in expectation, OSRCT creates data sets that are equivalent to those produced by randomly sampling from empirical data sets in which all potential outcomes are available. We analyze several properties of OSRCT theoretically and empirically, and we demonstrate its use by comparing the performance of four causal inference methods using data from eleven RCTs.
stat
The revisited knockoffs method for variable selection in L1-penalised regressions
We consider the problem of variable selection in regression models. In particular, we are interested in selecting explanatory covariates linked with the response variable and we want to determine which covariates are relevant, that is which covariates are involved in the model. In this framework, we deal with L1-penalised regression models. To handle the choice of the penalty parameter to perform variable selection, we develop a new method based on the knockoffs idea. This revisited knockoffs method is general, suitable for a wide range of regressions with various types of response variables. Besides, it also works when the number of observations is smaller than the number of covariates and gives an order of importance of the covariates. Finally, we provide many experimental results to corroborate our method and compare it with other variable selection methods.
stat
Emulating computationally expensive dynamical simulators using Gaussian processes
A Gaussian process (GP)-based methodology is proposed to emulate computationally expensive dynamical computer models or simulators. The method relies on emulating the short-time numerical flow map of the model. The flow map returns the solution of a dynamic system at an arbitrary time for a given initial condition. The prediction of the flow map is performed via a GP whose kernel is estimated using random Fourier features. This gives a distribution over the flow map such that each realisation serves as an approximation to the flow map. A realisation is then employed in an iterative manner to perform one-step ahead predictions and forecast the whole time series. Repeating this procedure with multiple draws from the emulated flow map provides a probability distribution over the time series. The mean and variance of that distribution are used as the model output prediction and a measure of the associated uncertainty, respectively. The proposed method is used to emulate several dynamic non-linear simulators including the well-known Lorenz attractor and van der Pol oscillator. The results show that our approach has a high prediction performance in emulating such systems with an accurate representation of the prediction uncertainty.
stat
Bayesian Nonparametrics for Directional Statistics
We introduce a density basis of the trigonometric polynomials that is suitable to mixture modelling. Statistical and geometric properties are derived, suggesting it as a circular analogue to the Bernstein polynomial densities. Nonparametric priors are constructed using this basis and a simulation study shows that the use of the resulting Bayes estimator may provide gains over comparable circular density estimators previously suggested in the literature. From a theoretical point of view, we propose a general prior specification framework for density estimation on compact metric space using sieve priors. This is tailored to density bases such as the one considered herein and may also be used to exploit their particular shape-preserving properties. Furthermore, strong posterior consistency is shown to hold under notably weak regularity assumptions and adaptative convergence rates are obtained in terms of the approximation properties of positive linear operators generating our models.
stat
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal approach
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models. However, when employing GPs in practice, important considerations must be made, regarding the high computational burden, approximation of the posterior, choice of the covariance function and inference of its hyperparmeters. To address these issues, Hensman et al. (2015) combine variationally sparse GPs with Markov chain Monte Carlo (MCMC) to derive a scalable, flexible and general framework for GP models. Nevertheless, the resulting approach requires intractable likelihood evaluations for many observation models. To bypass this problem, we propose a pseudo-marginal (PM) scheme that offers asymptotically exact inference as well as computational gains through doubly stochastic estimators for the intractable likelihood and large datasets. In complex models, the advantages of the PM scheme are particularly evident, and we demonstrate this on a two-level GP regression model with a nonparametric covariance function to capture non-stationarity.
stat
A Stochastic Covariance Shrinkage Approach in Ensemble Transform Kalman Filtering
The Ensemble Kalman Filters (EnKF) employ a Monte-Carlo approach to represent covariance information, and are affected by sampling errors in operational settings where the number of model realizations is much smaller than the model state dimension. To alleviate the effects of these errors EnKF relies on model-specific heuristics such as covariance localization, which takes advantage of the spatial locality of correlations among the model variables. This work proposes an approach to alleviate sampling errors that utilizes a locally averaged-in-time dynamics of the model, described in terms of a climatological covariance of the dynamical system. We use this covariance as the target matrix in covariance shrinkage methods, and develop a stochastic covariance shrinkage approach where synthetic ensemble members are drawn to enrich both the ensemble subspace and the ensemble transformation.
stat
On Training and Evaluation of Neural Network Approaches for Model Predictive Control
The contribution of this paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks. Recent studies have proposed to use neural networks with differentiable convex optimization layers to implement model predictive controllers. The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers. Such mappings take as the input the state vector and predict the control law as the output. The learning takes place using training data generated from off-line MPC simulations. However, a general framework for characterization of learning approaches in terms of both model validation and efficient training data generation is lacking in literature. In this paper, we take the first steps towards developing such a coherent framework. We discuss how the learning problem has similarities with system identification, in particular input design, model structure selection and model validation. We consider the study of neural network architectures in PyTorch with the explicit MPC constraints implemented as a differentiable optimization layer using CVXPY. We propose an efficient approach of generating MPC input samples subject to the MPC model constraints using a hit-and-run sampler. The corresponding true outputs are generated by solving the MPC offline using OSOP. We propose different metrics to validate the resulting approaches. Our study further aims to explore the advantages of incorporating domain knowledge into the network structure from a training and evaluation perspective. Different model structures are numerically tested using the proposed framework in order to obtain more insights in the properties of constrained neural networks based MPC.
stat
Measurement bias: a structural perspective
The causal structure for measurement bias (MB) remains controversial. Aided by the Directed Acyclic Graph (DAG), this paper proposes a new structure for measuring one singleton variable whose MB arises in the selection of an imperfect I/O device-like measurement system. For effect estimation, however, an extra source of MB arises from any redundant association between a measured exposure and a measured outcome. The misclassification will be bidirectionally differential for a common outcome, unidirectionally differential for a causal relation, and non-differential for a common cause between the measured exposure and the measured outcome or a null effect. The measured exposure can actually affect the measured outcome, or vice versa. Reverse causality is a concept defined at the level of measurement. Our new DAGs have clarified the structures and mechanisms of MB.
stat
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
We propose a general purpose variational inference algorithm that forms a natural counterpart of gradient descent for optimization. Our method iteratively transports a set of particles to match the target distribution, by applying a form of functional gradient descent that minimizes the KL divergence. Empirical studies are performed on various real world models and datasets, on which our method is competitive with existing state-of-the-art methods. The derivation of our method is based on a new theoretical result that connects the derivative of KL divergence under smooth transforms with Stein's identity and a recently proposed kernelized Stein discrepancy, which is of independent interest.
stat
Multi-Objective Counterfactual Explanations
Counterfactual explanations are one of the most popular methods to make predictions of black box machine learning models interpretable by providing explanations in the form of `what-if scenarios'. Most current approaches optimize a collapsed, weighted sum of multiple objectives, which are naturally difficult to balance a-priori. We propose the Multi-Objective Counterfactuals (MOC) method, which translates the counterfactual search into a multi-objective optimization problem. Our approach not only returns a diverse set of counterfactuals with different trade-offs between the proposed objectives, but also maintains diversity in feature space. This enables a more detailed post-hoc analysis to facilitate better understanding and also more options for actionable user responses to change the predicted outcome. Our approach is also model-agnostic and works for numerical and categorical input features. We show the usefulness of MOC in concrete cases and compare our approach with state-of-the-art methods for counterfactual explanations.
stat
Estimating state occupation and transition probabilities in non-Markov multi-state models subject to both random left-truncation and right-censoring
The Aalen-Johansen estimator generalizes the Kaplan-Meier estimator for independently left-truncated and right-censored survival data to estimating the transition probability matrix of a time-inhomogeneous Markov model with finite state space. Such multi-state models have a wide range of applications for modelling complex courses of a disease over the course of time, but the Markov assumption may often be in doubt. If censoring is entirely unrelated to the multi-state data, it has been noted that the Aalen-Johansen estimator, standardized by the initial empirical distribution of the multi-state model, still consistently estimates the state occupation probabilities. Recently, this result has been extended to transition probabilities using landmarking, which is, inter alia, useful for dynamic prediction. We complement these results in three ways. Firstly, delayed study entry is a common phenomenon in observational studies, and we extend the earlier results to multi-state data also subject to left-truncation. Secondly, we present a rigorous proof of consistency of the Aalen-Johansen estimator for state occupation probabilities, on which also correctness of the landmarking approach hinges, correcting, simplifying and extending the earlier result. Thirdly, our rigorous proof motivates wild bootstrap resampling. Our developments for left-truncation are motivated by a prospective observational study on the occurrence and the impact of a multi-resistant infectious organism in patients undergoing surgery. Both the real data example and simulation studies are presented. Studying wild bootstrap is motivated by the fact that, unlike drawing with replacement from the data, it is desirable to have a technique that works both with non-Markov models subject to random left-truncation and right-censoring and with Markov models where left-truncation and right-censoring need not be entirely random.
stat
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
In recent literature, a general two step procedure has been formulated for solving the problem of phase retrieval. First, a spectral technique is used to obtain a constant-error initial estimate, following which, the estimate is refined to arbitrary precision by first-order optimization of a non-convex loss function. Numerical experiments, however, seem to suggest that simply running the iterative schemes from a random initialization may also lead to convergence, albeit at the cost of slightly higher sample complexity. In this paper, we prove that, in fact, constant step size online stochastic gradient descent (SGD) converges from arbitrary initializations for the non-smooth, non-convex amplitude squared loss objective. In this setting, online SGD is also equivalent to the randomized Kaczmarz algorithm from numerical analysis. Our analysis can easily be generalized to other single index models. It also makes use of new ideas from stochastic process theory, including the notion of a summary state space, which we believe will be of use for the broader field of non-convex optimization.
stat
Multi-Goal Prior Selection: A Way to Reconcile Bayesian and Classical Approaches for Random Effects Models
The two-level normal hierarchical model has played an important role in statistical theory and applications. In this paper, we first introduce a general adjusted maximum likelihood method for estimating the unknown variance component of the model and the associated empirical best linear unbiased predictor of the random effects. We then discuss a new idea for selecting prior for the hyperparameters. The prior, called a multi-goal prior, produces Bayesian solutions for hyperparmeters and random effects that match (in the higher order asymptotic sense) the corresponding classical solution in linear mixed model with respect to several properties. Moreover, we establish for the first time an analytical equivalence of the posterior variances under the proposed multi-goal prior and the corresponding parametric bootstrap second-order mean squared error estimates in the context of a random effects model.
stat
Covariate Balancing by Uniform Transformer
In observational studies, it is important to balance covariates in different treatment groups in order to estimate treatment effects. One of the most commonly used methods for such purpose is the weighting method. The performance quality of this method usually depends on either the correct model specification for the propensity score or strong regularity conditions for the underlying model, which might not hold in practice. In this paper, we introduce a new robust and computationally efficient framework of weighting methods for covariate balancing, which allows us to conduct model-free inferences for the sake of robustness and integrate an extra `unlabeled' data set if available. Unlike existing methods, the new framework reduces the weights construction problem to a classical density estimation problem by applying a data-driven transformation to the observed covariates. We characterize the theoretical properties of the new estimators of average treatment effect under a nonparametric setting and show that they are able to work robustly under low regularity conditions. The new framework is also applied to several numerical examples using both simulated and real datasets to demonstrate its practical merits.
stat
Classification with Valid and Adaptive Coverage
Conformal inference, cross-validation+, and the jackknife+ are hold-out methods that can be combined with virtually any machine learning algorithm to construct prediction sets with guaranteed marginal coverage. In this paper, we develop specialized versions of these techniques for categorical and unordered response labels that, in addition to providing marginal coverage, are also fully adaptive to complex data distributions, in the sense that they perform favorably in terms of approximate conditional coverage compared to alternative methods. The heart of our contribution is a novel conformity score, which we explicitly demonstrate to be powerful and intuitive for classification problems, but whose underlying principle is potentially far more general. Experiments on synthetic and real data demonstrate the practical value of our theoretical guarantees, as well as the statistical advantages of the proposed methods over the existing alternatives.
stat
Selective Inference in Propensity Score Analysis
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for model selection tends to show an overestimation, and so the selective inference conditions the event that the model was selected. In this paper, we develop selective inference in propensity score analysis with a semiparametric approach, which has become a standard tool in causal inference. Specifically, for the most basic causal inference model in which the causal effect can be written as a linear sum of confounding variables, we conduct Lasso-type variable selection by adding an $\ell_1$ penalty term to the loss function that gives a semiparametric estimator. Confidence intervals are then given for the coefficients of the selected confounding variables, conditional on the event of variable selection, with asymptotic guarantees. An important property of this method is that it does not require modeling of nonparametric regression functions for the outcome variables, as is usually the case with semiparametric propensity score analysis.
stat
Constrained inference through posterior projections
Bayesian approaches are appealing for constrained inference problems in allowing a probabilistic characterization of uncertainty, while providing a computational machinery for incorporating complex constraints in hierarchical models. However, the usual Bayesian strategy of placing a prior on the constrained space and conducting posterior computation with Markov chain Monte Carlo algorithms is often intractable. An alternative is to conduct inference for a less constrained posterior and project samples to the constrained space through a minimal distance mapping. We formalize and provide a unifying framework for such posterior projections. For theoretical tractability, we initially focus on constrained parameter spaces corresponding to closed and convex subsets of the original space. We then consider non-convex Stiefel manifolds. We provide a general formulation of the projected posterior and show that it can be viewed as an update of a data-dependent prior with the likelihood for particular classes of priors and likelihood functions. We also show that asymptotic properties of the unconstrained posterior are transferred to the projected posterior. Posterior projections are illustrated through multiple examples, both in simulation studies and real data applications.
stat
The Soft Multivariate Truncated Normal Distribution with Applications to Bayesian Constrained Estimation
We propose a new distribution, called the soft tMVN distribution, which provides a smooth approximation to the truncated multivariate normal (tMVN) distribution with linear constraints. An efficient blocked Gibbs sampler is developed to sample from the soft tMVN distribution in high dimensions. We provide theoretical support to the approximation capability of the soft tMVN and provide further empirical evidence thereof. The soft tMVN distribution can be used to approximate simulations from a multivariate truncated normal distribution with linear constraints, or itself as a prior in shape-constrained problems.
stat
MM for Penalized Estimation
Penalized estimation can conduct variable selection and parameter estimation simultaneously. The general framework is to minimize a loss function subject to a penalty designed to generate sparse variable selection. The majorization-minimization (MM) algorithm is a computational scheme for stability and simplicity, and the MM algorithm has been widely applied in penalized estimation. Much of the previous work have focused on convex loss functions such as generalized linear models. When data are contaminated with outliers, robust loss functions can generate more reliable estimates. Recent literature has witnessed a growing impact of nonconvex loss-based methods, which can generate robust estimation for data contaminated with outliers. This article investigates MM algorithm for penalized estimation, provide innovative optimality conditions and establish convergence theory with both convex and nonconvex loss functions. With respect to applications, we focus on several nonconvex loss functions, which were formerly studied in machine learning for regression and classification problems. Performance of the proposed algorithms are evaluated on simulated and real data including healthcare costs and cancer clinical status. Efficient implementations of the algorithms are available in the R package mpath in CRAN.
stat
Nonparametric Analysis of Delayed Treatment Effects using Single-Crossing Constraints
Clinical trials involving novel immuno-oncology (IO) therapies frequently exhibit survival profiles which violate the proportional hazards assumption due to a delay in treatment effect, and in such settings, the survival curves in the two treatment arms may have a crossing before the two curves eventually separate. To flexibly model such scenarios, we describe a nonparametric approach for estimating the treatment arm-specific survival functions which constrains these two survival functions to cross at most once without making any additional assumptions about how the survival curves are related. A main advantage of our approach is that it provides an estimate of a crossing time if such a crossing exists, and moreover, our method generates interpretable measures of treatment benefit including crossing-conditional survival probabilities and crossing-conditional estimates of restricted residual mean life. We demonstrate the use and effectiveness of our approach with a large simulation study and an analysis of reconstructed outcomes from a recent combination-therapy trial.
stat
Few-shot Learning for Time-series Forecasting
Time-series forecasting is important for many applications. Forecasting models are usually trained using time-series data in a specific target task. However, sufficient data in the target task might be unavailable, which leads to performance degradation. In this paper, we propose a few-shot learning method that forecasts a future value of a time-series in a target task given a few time-series in the target task. Our model is trained using time-series data in multiple training tasks that are different from target tasks. Our model uses a few time-series to build a forecasting function based on a recurrent neural network with an attention mechanism. With the attention mechanism, we can retrieve useful patterns in a small number of time-series for the current situation. Our model is trained by minimizing an expected test error of forecasting next timestep values. We demonstrate the effectiveness of the proposed method using 90 time-series datasets.
stat
Adversarial Robust Low Rank Matrix Estimation: Compressed Sensing and Matrix Completion
We consider robust low rank matrix estimation when outputs are contaminated by adversary. Our method covers matrix compressed sensing (including lasso as a partial problem) and matrix completion. We attain fast convergence rates by using convex estimators.
stat
Stochastic Gradient Trees
We present an algorithm for learning decision trees using stochastic gradient information as the source of supervision. In contrast to previous approaches to gradient-based tree learning, our method operates in the incremental learning setting rather than the batch learning setting, and does not make use of soft splits or require the construction of a new tree for every update. We demonstrate how one can apply these decision trees to different problems by changing only the loss function, using classification, regression, and multi-instance learning as example applications. In the experimental evaluation, our method performs similarly to standard incremental classification trees, outperforms state of the art incremental regression trees, and achieves comparable performance with batch multi-instance learning methods.
stat
Neural Approximate Sufficient Statistics for Implicit Models
We consider the fundamental problem of how to automatically construct summary statistics for implicit generative models where the evaluation of the likelihood function is intractable, but sampling data from the model is possible. The idea is to frame the task of constructing sufficient statistics as learning mutual information maximizing representations of the data with the help of deep neural networks. The infomax learning procedure does not need to estimate any density or density ratio. We apply our approach to both traditional approximate Bayesian computation and recent neural likelihood methods, boosting their performance on a range of tasks.
stat
Simultaneous and Temporal Autoregressive Network Models
While logistic regression models are easily accessible to researchers, when applied to network data there are unrealistic assumptions made about the dependence structure of the data. For temporal networks measured in discrete time, recent work has made good advances \citep{almquist2014logistic}, but there is still the assumption that the dyads are conditionally independent given the edge histories. This assumption can be quite strong and is sometimes difficult to justify. If time steps are rather large, one would typically expect not only the existence of temporal dependencies among the dyads across observed time points but also the existence of simultaneous dependencies affecting how the dyads of the network co-evolve. We propose a general observation driven model for dynamic networks which overcomes this problem by modeling both the mean and the covariance structures as functions of the edge histories using a flexible autoregressive approach. This approach can be shown to fit into a generalized linear mixed model framework. We propose a visualization method which provides evidence concerning the existence of simultaneous dependence. We describe a simulation study to determine the method's performance in the presence and absence of simultaneous dependence, and we analyze both a proximity network from conference attendees and a world trade network. We also use this last data set to illustrate how simultaneous dependencies become more prominent as the time intervals become coarser.
stat
Consistency of Anchor-based Spectral Clustering
Anchor-based techniques reduce the computational complexity of spectral clustering algorithms. Although empirical tests have shown promising results, there is currently a lack of theoretical support for the anchoring approach. We define a specific anchor-based algorithm and show that it is amenable to rigorous analysis, as well as being effective in practice. We establish the theoretical consistency of the method in an asymptotic setting where data is sampled from an underlying continuous probability distribution. In particular, we provide sharp asymptotic conditions for the algorithm parameters which ensure that the anchor-based method can recover with high probability disjoint clusters that are mutually separated by a positive distance. We illustrate the performance of the algorithm on synthetic data and explain how the theoretical convergence analysis can be used to inform the practical choice of parameter scalings. We also test the accuracy and efficiency of the algorithm on two large scale real data sets. We find that the algorithm offers clear advantages over standard spectral clustering. We also find that it is competitive with the state-of-the-art LSC method of Chen and Cai (Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011), while having the added benefit of a consistency guarantee.
stat
Semiparametric Sensitivity Analysis: Unmeasured Confounding In Observational Studies
Establishing cause-effect relationships from observational data often relies on untestable assumptions. It is crucial to know whether, and to what extent, the conclusions drawn from non-experimental studies are robust to potential unmeasured confounding. In this paper, we focus on the average causal effect (ACE) as our target of inference. We build on the work of Franks et al. (2019)and Robins (2000) by specifying non-identified sensitivity parameters that govern a contrast between the conditional (on measured covariates) distributions of the outcome under treatment (control) between treated and untreated individuals. We use semiparametric theory to derive the non-parametric efficient influence function of the ACE, for fixed sensitivity parameters. We use this influence function to construct a one-step bias-corrected estimator of the ACE. Our estimator depends on semiparametric models for the distribution of the observed data; importantly, these models do not impose any restrictions on the values of sensitivity analysis parameters. We establish sufficient conditions ensuring that our estimator has root-n asymptotics. We use our methodology to evaluate the causal effect of smoking during pregnancy on birth weight. We also evaluate the performance of estimation procedure in a simulation study.
stat
Change-point detection in dynamic networks via graphon estimation
We propose a general approach for change-point detection in dynamic networks. The proposed method is model-free and covers a wide range of dynamic networks. The key idea behind our approach is to effectively utilize the network structure in designing change-point detection algorithms. This is done via an initial step of graphon estimation, where we propose a modified neighborhood smoothing~(MNBS) algorithm for estimating the link probability matrices of a dynamic network. Based on the initial graphon estimation, we then develop a screening and thresholding algorithm for multiple change-point detection in dynamic networks. The convergence rate and consistency for the change-point detection procedure are derived as well as those for MNBS. When the number of nodes is large~(e.g., exceeds the number of temporal points), our approach yields a faster convergence rate in detecting change-points comparing with an algorithm that simply employs averaged information of the dynamic network across time. Numerical experiments demonstrate robust performance of the proposed algorithm for change-point detection under various types of dynamic networks, and superior performance over existing methods is observed. A real data example is provided to illustrate the effectiveness and practical impact of the procedure.
stat
Provable More Data Hurt in High Dimensional Least Squares Estimator
This paper investigates the finite-sample prediction risk of the high-dimensional least squares estimator. We derive the central limit theorem for the prediction risk when both the sample size and the number of features tend to infinity. Furthermore, the finite-sample distribution and the confidence interval of the prediction risk are provided. Our theoretical results demonstrate the sample-wise nonmonotonicity of the prediction risk and confirm "more data hurt" phenomenon.
stat
Multivariate time series models for mixed data
We introduce a general approach for modeling the dynamic of multivariate time series when the data are of mixed type (binary/count/continuous). Our method is quite flexible and conditionally on past values, each coordinate at time $t$ can have a distribution compatible with a standard univariate time series model such as GARCH, ARMA, INGARCH or logistic models whereas past values of the other coordinates play the role of exogenous covariates in the dynamic. The simultaneous dependence in the multivariate time series can be modeled with a copula. Additional exogenous covariates are also allowed in the dynamic. We first study usual stability properties of these models and then show that autoregressive parameters can be consistently estimated equation-by-equation using a pseudo-maximum likelihood method, leading to a fast implementation even when the number of time series is large. Moreover, we prove consistency results when a parametric copula model is fitted to the time series and in the case of Gaussian copulas, we show that the likelihood estimator of the correlation matrix is strongly consistent. We carefully check all our assumptions for two prototypical examples: a GARCH/INGARCH model and logistic/log-linear INGARCH model. Our results are illustrated with numerical experiments as well as two real data sets.
stat
Machine-Learning Tests for Effects on Multiple Outcomes
In this paper we present tools for applied researchers that re-purpose off-the-shelf methods from the computer-science field of machine learning to create a "discovery engine" for data from randomized controlled trials (RCTs). The applied problem we seek to solve is that economists invest vast resources into carrying out RCTs, including the collection of a rich set of candidate outcome measures. But given concerns about inference in the presence of multiple testing, economists usually wind up exploring just a small subset of the hypotheses that the available data could be used to test. This prevents us from extracting as much information as possible from each RCT, which in turn impairs our ability to develop new theories or strengthen the design of policy interventions. Our proposed solution combines the basic intuition of reverse regression, where the dependent variable of interest now becomes treatment assignment itself, with methods from machine learning that use the data themselves to flexibly identify whether there is any function of the outcomes that predicts (or has signal about) treatment group status. This leads to correctly-sized tests with appropriate $p$-values, which also have the important virtue of being easy to implement in practice. One open challenge that remains with our work is how to meaningfully interpret the signal that these methods find.
stat
The Raise Regression: Justification, properties and application
Multicollinearity produces an inflation in the variance of the Ordinary Least Squares estimators due to the correlation between two or more independent variables (including the constant term). A widely applied solution is to estimate with penalized estimators (such as the ridge estimator, the Liu estimator, etc.) which exchange the mean square error by the bias. Although the variance diminishes with these procedures, all seems to indicate that the inference is lost and also the goodness of fit. Alternatively, the raise regression (\cite{Garcia2011} and \cite{Salmeron2017}) allows the mitigation of the problems generated by multicollinearity but without losing the inference and keeping the coefficient of determination. This paper completely formalizes the raise estimator summarizing all the previous contributions: its mean square error, the variance inflation factor, the condition number, the adequate selection of the variable to be raised, the successive raising and the relation between the raise and the ridge estimator. As a novelty, it is also presented the estimation method, the relation between the raise and the residualization, it is analyzed the norm of the estimator and the behaviour of the individual and joint significance test and the behaviour of the mean square error and the coefficient of variation. The usefulness of the raise regression as alternative to mitigate the multicollinearity is illustrated with two empirical applications.
stat
The role of swabs in modeling the COVID-19 outbreak in the most affected regions of Italy
The daily fluctuations in the released number of Covid-19 cases played a big role both at the beginning and in the most critical weeks of the outbreak, when local authorities in Italy had to decide whether to impose a lockdown and at which level. Public opinion was focused on this information as well, to understand how quickly the epidemic was spreading. When an increase/decrease was communicated, especially a large one, it was not easy to understand if it was due to a change in the epidemic evolution or if it was a fluctuation due to other reasons, such as an increase in the number of swabs or a delay in the swab processing. In this work, we propose a nonlinear asymmetric diffusion model, which includes information on the daily number of swabs, to describe daily fluctuations in the number of confirmed cases in addition to the main trend of the outbreak evolution. The class of diffusion models has been selected to develop our proposal, as it also allows estimation of the total number of confirmed cases at the end of the outbreak. The proposed model is compared to six existing models, among which the logistic and the SIRD models are used as benchmarks, in the five most affected Italian regions.
stat
Reluctant Interaction Modeling
Including pairwise interactions between the predictors of a regression model can produce better predicting models. However, to fit such interaction models on typical data sets in biology and other fields can often require solving enormous variable selection problems with billions of interactions. The scale of such problems demands methods that are computationally cheap (both in time and memory) yet still have sound statistical properties. Motivated by these large-scale problem sizes, we adopt a very simple guiding principle: One should prefer a main effect over an interaction if all else is equal. This "reluctance" to interactions, while reminiscent of the hierarchy principle for interactions, is much less restrictive. We design a computationally efficient method built upon this principle and provide theoretical results indicating favorable statistical properties. Empirical results show dramatic computational improvement without sacrificing statistical properties. For example, the proposed method can solve a problem with 10 billion interactions with 5-fold cross-validation in under 7 hours on a single CPU.
stat
A Bayesian Nonparametric model for textural pattern heterogeneity
Cancer radiomics is an emerging discipline promising to elucidate lesion phenotypes and tumor heterogeneity through patterns of enhancement, texture, morphology, and shape. The prevailing technique for image texture analysis relies on the construction and synthesis of Gray-Level Co-occurrence Matrices (GLCM). Practice currently reduces the structured count data of a GLCM to reductive and redundant summary statistics for which analysis requires variable selection and multiple comparisons for each application, thus limiting reproducibility. In this article, we develop a Bayesian multivariate probabilistic framework for the analysis and unsupervised clustering of a sample of GLCM objects. By appropriately accounting for skewness and zero-inflation of the observed counts and simultaneously adjusting for existing spatial autocorrelation at nearby cells, the methodology facilitates estimation of texture pattern distributions within the GLCM lattice itself. The techniques are applied to cluster images of adrenal lesions obtained from CT scans with and without administration of contrast. We further assess whether the resultant subtypes are clinically oriented by investigating their correspondence with pathological diagnoses. Additionally, we compare performance to a class of machine-learning approaches currently used in cancer radiomics with simulation studies.
stat
A general modelling framework for open wildlife populations based on the Polya Tree prior
Wildlife monitoring for open populations can be performed using a number of different survey methods. Each survey method gives rise to a type of data and, in the last five decades, a large number of associated statistical models have been developed for analysing these data. Although these models have been parameterised and fitted using different approaches, they have all been designed to model the pattern with which individuals enter and exit the population and to estimate the population size. However, existing approaches rely on a predefined model structure and complexity, either by assuming that parameters are specific to sampling occasions, or by employing parametric curves. Instead, we propose a novel Bayesian nonparametric framework for modelling entry and exit patterns based on the Polya Tree (PT) prior for densities. Our Bayesian non-parametric approach avoids overfitting when inferring entry and exit patterns while simultaneously allowing more flexibility than is possible using parametric curves. We apply our new framework to capture-recapture, count and ring-recovery data and we introduce the replicated PT prior for defining classes of models for these data. Additionally, we define the Hierarchical Logistic PT prior for jointly modelling related data and we consider the Optional PT prior for modelling long time series of data. We demonstrate our new approach using five different case studies on birds, amphibians and insects.
stat
bamlss: A Lego Toolbox for Flexible Bayesian Regression (and Beyond)
Over the last decades, the challenges in applied regression and in predictive modeling have been changing considerably: (1) More flexible model specifications are needed as big(ger) data become available, facilitated by more powerful computing infrastructure. (2) Full probabilistic modeling rather than predicting just means or expectations is crucial in many applications. (3) Interest in Bayesian inference has been increasing both as an appealing framework for regularizing or penalizing model estimation as well as a natural alternative to classical frequentist inference. However, while there has been a lot of research in all three areas, also leading to associated software packages, a modular software implementation that allows to easily combine all three aspects has not yet been available. For filling this gap, the R package bamlss is introduced for Bayesian additive models for location, scale, and shape (and beyond). At the core of the package are algorithms for highly-efficient Bayesian estimation and inference that can be applied to generalized additive models (GAMs) or generalized additive models for location, scale, and shape (GAMLSS), also known as distributional regression. However, its building blocks are designed as "Lego bricks" encompassing various distributions (exponential family, Cox, joint models, ...), regression terms (linear, splines, random effects, tensor products, spatial fields, ...), and estimators (MCMC, backfitting, gradient boosting, lasso, ...). It is demonstrated how these can be easily recombined to make classical models more flexible or create new custom models for specific modeling challenges.
stat
Semiparametric Methods for Exposure Misclassification in Propensity Score-Based Time-to-Event Data Analysis
In epidemiology, identifying the effect of exposure variables in relation to a time-to-event outcome is a classical research area of practical importance. Incorporating propensity score in the Cox regression model, as a measure to control for confounding, has certain advantages when outcome is rare. However, in situations involving exposure measured with moderate to substantial error, identifying the exposure effect using propensity score in Cox models remains a challenging yet unresolved problem. In this paper, we propose an estimating equation method to correct for the exposure misclassification-caused bias in the estimation of exposure-outcome associations. We also discuss the asymptotic properties and derive the asymptotic variances of the proposed estimators. We conduct a simulation study to evaluate the performance of the proposed estimators in various settings. As an illustration, we apply our method to correct for the misclassification-caused bias in estimating the association of PM2.5 level with lung cancer mortality using a nationwide prospective cohort, the Nurses' Health Study (NHS). The proposed methodology can be applied using our user-friendly R function published online.
stat
Revealing interpretable object representations from human behavior
To study how mental object representations are related to behavior, we estimated sparse, non-negative representations of objects using human behavioral judgments on images representative of 1,854 object categories. These representations predicted a latent similarity structure between objects, which captured most of the explainable variance in human behavioral judgments. Individual dimensions in the low-dimensional embedding were found to be highly reproducible and interpretable as conveying degrees of taxonomic membership, functionality, and perceptual attributes. We further demonstrated the predictive power of the embeddings for explaining other forms of human behavior, including categorization, typicality judgments, and feature ratings, suggesting that the dimensions reflect human conceptual representations of objects beyond the specific task.
stat
Sparse dimension reduction based on energy and ball statistics
As its name suggests, sufficient dimension reduction (SDR) targets to estimate a subspace from data that contains all information sufficient to explain a dependent variable. Ample approaches exist to SDR, some of the most recent of which rely on minimal to no model assumptions. These are defined according to an optimization criterion that maximizes a nonparametric measure of association. The original estimators are nonsparse, which means that all variables contribute to the model. However, in many practical applications, an SDR technique may be called for that is sparse and as such, intrinsically performs sufficient variable selection (SVS). This paper examines how such a sparse SDR estimator can be constructed. Three variants are investigated, depending on different measures of association: distance covariance, martingale difference divergence and ball covariance. A simulation study shows that each of these estimators can achieve correct variable selection in highly nonlinear contexts, yet are sensitive to outliers and computationally intensive. The study sheds light on the subtle differences between the methods. Two examples illustrate how these new estimators can be applied in practice, with a slight preference for the option based on martingale difference divergence in the bioinformatics example.
stat
The Extended Dawid-Skene Model: Fusing Information from Multiple Data Schemas
While label fusion from multiple noisy annotations is a well understood concept in data wrangling (tackled for example by the Dawid-Skene (DS) model), we consider the extended problem of carrying out learning when the labels themselves are not consistently annotated with the same schema. We show that even if annotators use disparate, albeit related, label-sets, we can still draw inferences for the underlying full label-set. We propose the Inter-Schema AdapteR (ISAR) to translate the fully-specified label-set to the one used by each annotator, enabling learning under such heterogeneous schemas, without the need to re-annotate the data. We apply our method to a mouse behavioural dataset, achieving significant gains (compared with DS) in out-of-sample log-likelihood (-3.40 to -2.39) and F1-score (0.785 to 0.864).
stat
D-optimal Design for Network A/B Testing
A/B testing refers to the statistical procedure of conducting an experiment to compare two treatments, A and B, applied to different testing subjects. It is widely used by technology companies such as Facebook, LinkedIn, and Netflix, to compare different algorithms, web-designs, and other online products and services. The subjects participating these online A/B testing experiments are users who are connected in different scales of social networks. Two connected subjects are similar in terms of their social behaviors, education and financial background, and other demographic aspects. Hence, it is only natural to assume that their reactions to the online products and services are related to their network adjacency. In this paper, we propose to use the conditional auto-regressive model to present the network structure and include the network effects in the estimation and inference of the treatment effect. A D-optimal design criterion is developed based on the proposed model. Mixed integer programming formulations are developed to obtain the D-optimal designs. The effectiveness of the proposed method is shown through numerical results with synthetic networks and real social networks.
stat
Spatial Matrix Completion for Spatially-Misaligned and High-Dimensional Air Pollution Data
In health-pollution cohort studies, accurate predictions of pollutant concentrations at new locations are needed, since the locations of fixed monitoring sites and study participants are often spatially misaligned. For multi-pollution data, principal component analysis (PCA) is often incorporated to obtain low-rank (LR) structure of the data prior to spatial prediction. Recently developed predictive PCA modifies the traditional algorithm to improve the overall predictive performance by leveraging both LR and spatial structures within the data. However, predictive PCA requires complete data or an initial imputation step. Nonparametric imputation techniques without accounting for spatial information may distort the underlying structure of the data, and thus further reduce the predictive performance. We propose a convex optimization problem inspired by the LR matrix completion framework and develop a proximal algorithm to solve it. Missing data are imputed and handled concurrently within the algorithm, which eliminates the necessity of a separate imputation step. We show that our algorithm has low computational burden and leads to reliable predictive performance as the severity of missing data increases.
stat
Deep Variable-Block Chain with Adaptive Variable Selection
The architectures of deep neural networks (DNN) rely heavily on the underlying grid structure of variables, for instance, the lattice of pixels in an image. For general high dimensional data with variables not associated with a grid, the multi-layer perceptron and deep brief network are often used. However, it is frequently observed that those networks do not perform competitively and they are not helpful for identifying important variables. In this paper, we propose a framework that imposes on blocks of variables a chain structure obtained by step-wise greedy search so that the DNN architecture can leverage the constructed grid. We call this new neural network Deep Variable-Block Chain (DVC). Because the variable blocks are used for classification in a sequential manner, we further develop the capacity of selecting variables adaptively according to a number of regions trained by a decision tree. Our experiments show that DVC outperforms other generic DNNs and other strong classifiers. Moreover, DVC can achieve high accuracy at much reduced dimensionality and sometimes reveals drastically different sets of relevant variables for different regions.
stat
Statistical Integration of Heterogeneous Data with PO2PLS
The availability of multi-omics data has revolutionized the life sciences by creating avenues for integrated system-level approaches. Data integration links the information across datasets to better understand the underlying biological processes. However, high-dimensionality, correlations and heterogeneity pose statistical and computational challenges. We propose a general framework, probabilistic two-way partial least squares (PO2PLS), which addresses these challenges. PO2PLS models the relationship between two datasets using joint and data-specific latent variables. For maximum likelihood estimation of the parameters, we implement a fast EM algorithm and show that the estimator is asymptotically normally distributed. A global test for testing the relationship between two datasets is proposed, and its asymptotic distribution is derived. Notably, several existing omics integration methods are special cases of PO2PLS. Via extensive simulations, we show that PO2PLS performs better than alternatives in feature selection and prediction performance. In addition, the asymptotic distribution appears to hold when the sample size is sufficiently large. We illustrate PO2PLS with two examples from commonly used study designs: a large population cohort and a small case-control study. Besides recovering known relationships, PO2PLS also identified novel findings. The methods are implemented in our R-package PO2PLS. Supplementary materials for this article are available online.
stat
Gaussian orthogonal latent factor processes for large incomplete matrices of correlated data
We introduce the Gaussian orthogonal latent factor processes for modeling and predicting large correlated data. To handle the computational challenge, we first decompose the likelihood function of the Gaussian random field with multi-dimensional input domain into a product of densities at the orthogonal components with lower dimensional inputs. The continuous-time Kalman filter is implemented to efficiently compute the likelihood function without making approximation. We also show that the posterior distribution of the factor processes are independent, as a consequence of prior independence of factor processes and orthogonal factor loading matrix. For studies with a large sample size, we propose a flexible way to model the mean in the model and derive the closed-form marginal posterior distribution. Both simulated and real data applications confirm the outstanding performance of this method.
stat
Multidimensional molecular changes-environment interaction analysis for disease outcomes
For the outcomes and phenotypes of complex diseases, multiple types of molecular (genetic, genomic, epigenetic, etc.) changes, environmental risk factors, and their interactions have been found to have important contributions. In each of the existing studies, only the interactions between one type of molecular changes and environmental risk factors have been analyzed. In recent biomedical studies, multidimensional profiling, under which data on multiple types of molecular changes is collected on the same subjects, is becoming popular. A myriad of recent studies have shown that collectively analyzing multiple types of molecular changes is not only biologically sensible but also leads to improved estimation and prediction. In this study, we conduct M-E interaction analysis, with M standing for multidimensional molecular changes and E standing for environmental risk factors, which can accommodate multiple types of molecular measurements and sufficiently account for their overlapping information (attributable to regulations) as well as independent information. The proposed approach is based on the penalization technique, has a solid statistical ground, and can be effectively realized. Extensive simulation shows that it outperforms multiple closely relevant alternatives. In the analysis of TCGA (The Cancer Genome Atlas) data on lung adenocarcinoma and cutaneous melanoma, sensible findings with superior stability and prediction are made.
stat
Leveraging Administrative Data for Bias Audits: Assessing Disparate Coverage with Mobility Data for COVID-19 Policy
Anonymized smartphone-based mobility data has been widely adopted in devising and evaluating COVID-19 response strategies such as the targeting of public health resources. Yet little attention has been paid to measurement validity and demographic bias, due in part to the lack of documentation about which users are represented as well as the challenge of obtaining ground truth data on unique visits and demographics. We illustrate how linking large-scale administrative data can enable auditing mobility data for bias in the absence of demographic information and ground truth labels. More precisely, we show that linking voter roll data -- containing individual-level voter turnout for specific voting locations along with race and age -- can facilitate the construction of rigorous bias and reliability tests. These tests illuminate a sampling bias that is particularly noteworthy in the pandemic context: older and non-white voters are less likely to be captured by mobility data. We show that allocating public health resources based on such mobility data could disproportionately harm high-risk elderly and minority groups.
stat
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
The bias-variance trade-off is a central concept in supervised learning. In classical statistics, increasing the complexity of a model (e.g., number of parameters) reduces bias but also increases variance. Until recently, it was commonly believed that optimal performance is achieved at intermediate model complexities which strike a balance between bias and variance. Modern Deep Learning methods flout this dogma, achieving state-of-the-art performance using "over-parameterized models" where the number of fit parameters is large enough to perfectly fit the training data. As a result, understanding bias and variance in over-parameterized models has emerged as a fundamental problem in machine learning. Here, we use methods from statistical physics to derive analytic expressions for bias and variance in three minimal models for over-parameterization (linear regression and two-layer neural networks with linear and nonlinear activation functions), allowing us to disentangle properties stemming from the model architecture and random sampling of data. All three models exhibit a phase transition to an interpolation regime where the training error is zero, with linear neural-networks possessing an additional phase transition between regimes with zero and nonzero bias. The test error diverges at the interpolation transition for all three models. However, beyond the transition, it decreases again for the neural network models due to a decrease in both bias and variance with model complexity. We also show that over-parameterized models can overfit even in the absence of noise. We synthesize these results to construct a holistic understanding of generalization error and the bias-variance trade-off in over-parameterized models.
stat
MIP-BOOST: Efficient and Effective $L_0$ Feature Selection for Linear Regression
Recent advances in mathematical programming have made Mixed Integer Optimization a competitive alternative to popular regularization methods for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. Here we propose MIP-BOOST, a revision of standard Mixed Integer Programming feature selection that reduces the computational burden of tuning the critical sparsity bound parameter and improves performance in the presence of feature collinearity and of signals that vary in nature and strength. The final outcome is a more efficient and effective $L_0$ Feature Selection method for applications of realistic size and complexity, grounded on rigorous cross-validation tuning and exact optimization of the associated Mixed Integer Program. Computational viability and improved performance in realistic scenarios is achieved through three independent but synergistic proposals.
stat
Bayesian Modeling for Exposure Response Curve via Gaussian Processes: Causal Effects of Exposure to Air Pollution on Health Outcomes
Motivated by environmental health research on air pollution, we address the challenge of uncertainty quantification for causal exposure-response functions. A causal exposure-response function (CERF) describes the relationship between a continuously varying exposure (or treatment) and its causal effect on a outcome. We propose a new Bayesian approach that relies on a Gaussian process (GP) model to estimate the CERF. We parametrize the covariance (kernel) function of the GP to mimic matching via a Generalized Propensity Score (GPS). The tuning parameters of the matching function are chosen to optimize covariate balance. Our approach achieves automatic uncertainty evaluation of the CERF with high computational efficiency, enables change point detection through inference on higher order derivatives of the CERF, and yields the desired separation of design and analysis phases for causal estimation. We provide theoretical results showing the correspondence between our Bayesian GP framework and traditional approaches in causal inference for estimating causal effects of a continuous exposure. We apply the methods to 520,711 ZIP code level observations to estimate the causal effect of long-term exposures to PM 2.5 on all cause mortality among Medicare enrollees in the United States.
stat
Deep Distribution Regression
Due to their flexibility and predictive performance, machine-learning based regression methods have become an important tool for predictive modeling and forecasting. However, most methods focus on estimating the conditional mean or specific quantiles of the target quantity and do not provide the full conditional distribution, which contains uncertainty information that might be crucial for decision making. In this article, we provide a general solution by transforming a conditional distribution estimation problem into a constrained multi-class classification problem, in which tools such as deep neural networks. We propose a novel joint binary cross-entropy loss function to accomplish this goal. We demonstrate its performance in various simulation studies comparing to state-of-the-art competing methods. Additionally, our method shows improved accuracy in a probabilistic solar energy forecasting problem.
stat
Analyzing initial stage of COVID-19 transmission through Bayesian time-varying model
Recent outbreak of the novel coronavirus COVID-19 has affected all of our lives in one way or the other. While medical researchers are working hard to find a cure and doctors/nurses to attend the affected individuals, measures such as `lockdown', `stay-at-home', `social distancing' are being implemented in different parts of the world to curb its further spread. To model the non-stationary spread, we propose a novel time-varying semiparametric AR$(p)$ model for the count valued time-series of newly affected cases, collected every day and also extend it to propose a novel time-varying INGARCH model. Our proposed structures of the models are amenable to Hamiltonian Monte Carlo (HMC) sampling for efficient computation. We substantiate our methods by simulations that show superiority compared to some of the close existing methods. Finally we analyze the daily time series data of newly confirmed cases to study its spread through different government interventions.
stat
Sampling with censored data: a practical guide
In this review, we present a simple guide for researchers to obtain pseudo-random samples with censored data. We focus our attention on the most common types of censored data, such as type I, type II, and random censoring. We discussed the necessary steps to sample pseudo-random values from long-term survival models where an additional cure fraction is informed. For illustrative purposes, these techniques are applied in the Weibull distribution. The algorithms and codes in R are presented, enabling the reproducibility of our study.
stat
Pseudo Bayesian Estimation of One-way ANOVA Model in Complex Surveys
We devise survey-weighted pseudo posterior distribution estimators under 2-stage informative sampling of both primary clusters and secondary nested units for a one-way ANOVA population generating model as a simple canonical case where population model random effects are defined to be coincident with the primary clusters. We consider estimation on an observed informative sample under both an augmented pseudo likelihood that co-samples random effects, as well as an integrated likelihood that marginalizes out the random effects from the survey-weighted augmented pseudo likelihood. This paper includes a theoretical exposition that enumerates easily verified conditions for which estimation under the augmented pseudo posterior is guaranteed to be consistent at the true generating parameters. We reveal in simulation that both approaches produce asymptotically unbiased estimation of the generating hyperparameters for the random effects when a key condition on the sum of within cluster weighted residuals is met. We present a comparison with frequentist EM and a methods that requires pairwise sampling weights.
stat
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
We propose Radial Bayesian Neural Networks (BNNs): a variational approximate posterior for BNNs which scales well to large models while maintaining a distribution over weight-space with full support. Other scalable Bayesian deep learning methods, like MC dropout or deep ensembles, have discrete support-they assign zero probability to almost all of the weight-space. Unlike these discrete support methods, Radial BNNs' full support makes them suitable for use as a prior for sequential inference. In addition, they solve the conceptual challenges with the a priori implausibility of weight distributions with discrete support. The Radial BNN is motivated by avoiding a sampling problem in 'mean-field' variational inference (MFVI) caused by the so-called 'soap-bubble' pathology of multivariate Gaussians. We show that, unlike MFVI, Radial BNNs are robust to hyperparameters and can be efficiently applied to a challenging real-world medical application without needing ad-hoc tweaks and intensive tuning. In fact, in this setting Radial BNNs out-perform discrete-support methods like MC dropout. Lastly, by using Radial BNNs as a theoretically principled, robust alternative to MFVI we make significant strides in a Bayesian continual learning evaluation.
stat
Burglary in London: Insights from Statistical Heterogeneous Spatial Point Processes
To obtain operational insights regarding the crime of burglary in London we consider the estimation of effects of covariates on the intensity of spatial point patterns. By taking into account localised properties of criminal behaviour, we propose a spatial extension to model-based clustering methods from the mixture modelling literature. The proposed Bayesian model is a finite mixture of Poisson generalised linear models such that each location is probabilistically assigned to one of the clusters. Each cluster is characterised by the regression coefficients which we subsequently use to interpret the localised effects of the covariates. Using a blocking structure of the study region, our approach allows specifying spatial dependence between nearby locations. We estimate the proposed model using Markov Chain Monte Carlo methods and provide a Python implementation.
stat
Cautious Reinforcement Learning via Distributional Risk in the Dual Domain
We study the estimation of risk-sensitive policies in reinforcement learning problems defined by a Markov Decision Process (MDPs) whose state and action spaces are countably finite. Prior efforts are predominately afflicted by computational challenges associated with the fact that risk-sensitive MDPs are time-inconsistent. To ameliorate this issue, we propose a new definition of risk, which we call caution, as a penalty function added to the dual objective of the linear programming (LP) formulation of reinforcement learning. The caution measures the distributional risk of a policy, which is a function of the policy's long-term state occupancy distribution. To solve this problem in an online model-free manner, we propose a stochastic variant of primal-dual method that uses Kullback-Lieber (KL) divergence as its proximal term. We establish that the number of iterations/samples required to attain approximately optimal solutions of this scheme matches tight dependencies on the cardinality of the state and action spaces, but differs in its dependence on the infinity norm of the gradient of the risk measure. Experiments demonstrate the merits of this approach for improving the reliability of reward accumulation without additional computational burdens.
stat
Bayesian Inference over the Stiefel Manifold via the Givens Representation
We introduce an approach based on the Givens representation for posterior inference in statistical models with orthogonal matrix parameters, such as factor models and probabilistic principal component analysis (PPCA). We show how the Givens representation can be used to develop practical methods for transforming densities over the Stiefel manifold into densities over subsets of Euclidean space. We show how to deal with issues arising from the topology of the Stiefel manifold and how to inexpensively compute the change-of-measure terms. We introduce an auxiliary parameter approach that limits the impact of topological issues. We provide both analysis of our methods and numerical examples demonstrating the effectiveness of the approach. We also discuss how our Givens representation can be used to define general classes of distributions over the space of orthogonal matrices. We then give demonstrations on several examples showing how the Givens approach performs in practice in comparison with other methods.
stat
Covariate Adaptive Family-wise Error Rate Control for Genome-Wide Association Studies
The family-wise error rate (FWER) has been widely used in genome-wide association studies. With the increasing availability of functional genomics data, it is possible to increase the detection power by leveraging these genomic functional annotations. Previous efforts to accommodate covariates in multiple testing focus on the false discovery rate control while covariate-adaptive FWER-controlling procedures remain under-developed. Here we propose a novel covariate-adaptive FWER-controlling procedure that incorporates external covariates which are potentially informative of either the statistical power or the prior null probability. An efficient algorithm is developed to implement the proposed method. We prove its asymptotic validity and obtain the rate of convergence through a perturbation-type argument. Our numerical studies show that the new procedure is more powerful than competing methods and maintains robustness across different settings. We apply the proposed approach to the UK Biobank data and analyze 27 traits with 9 million single-nucleotide polymorphisms tested for associations. Seventy-five genomic annotations are used as covariates. Our approach detects more genome-wide significant loci than other methods in 21 out of the 27 traits.
stat
Depth for curve data and applications
John W. Tukey (1975) defined statistical data depth as a function that determines centrality of an arbitrary point with respect to a data cloud or to a probability measure. During the last decades, this seminal idea of data depth evolved into a powerful tool proving to be useful in various fields of science. Recently, extending the notion of data depth to the functional setting attracted a lot of attention among theoretical and applied statisticians. We go further and suggest a notion of data depth suitable for data represented as curves, or trajectories, which is independent of the parametrization. We show that our curve depth satisfies theoretical requirements of general depth functions that are meaningful for trajectories. We apply our methodology to diffusion tensor brain images and also to pattern recognition of hand written digits and letters. Supplementary Materials are available online.
stat
Differentially Private SGD with Non-Smooth Loss
In this paper, we are concerned with differentially private SGD algorithms in the setting of stochastic convex optimization (SCO). Most of existing work requires the loss to be Lipschitz continuous and strongly smooth, and the model parameter to be uniformly bounded. However, these assumptions are restrictive as many popular losses violate these conditions including the hinge loss for SVM, the absolute loss in robust regression, and even the least square loss in an unbounded domain. We significantly relax these restrictive assumptions and establish privacy and generalization (utility) guarantees for private SGD algorithms using output and gradient perturbations associated with non-smooth convex losses. Specifically, the loss function is relaxed to have $\alpha$-H\"{o}lder continuous gradient (referred to as $\alpha$-H\"{o}lder smoothness) which instantiates the Lipschitz continuity ($\alpha=0$) and strong smoothness ($\alpha=1$). We prove that noisy SGD with $\alpha$-H\"older smooth losses using gradient perturbation can guarantee $(\epsilon,\delta)$-differential privacy (DP) and attain optimal excess population risk $O\Big(\frac{\sqrt{d\log(1/\delta)}}{n\epsilon}+\frac{1}{\sqrt{n}}\Big)$, up to logarithmic terms, with gradient complexity (i.e. the total number of iterations) $T =O( n^{2-\alpha\over 1+\alpha}+ n).$ This shows an important trade-off between $\alpha$-H\"older smoothness of the loss and the computational complexity $T$ for private SGD with statistically optimal performance. In particular, our results indicate that $\alpha$-H\"older smoothness with $\alpha\ge {1/2}$ is sufficient to guarantee $(\epsilon,\delta)$-DP of noisy SGD algorithms while achieving optimal excess risk with linear gradient complexity $T = O(n).$
stat
Efficient Experimental Design for Regularized Linear Models
Regularized linear models, such as Lasso, have attracted great attention in statistical learning and data science. However, there is sporadic work on constructing efficient data collection for regularized linear models. In this work, we propose an experimental design approach, using nearly orthogonal Latin hypercube designs, to enhance the variable selection accuracy of the regularized linear models. Systematic methods for constructing such designs are presented. The effectiveness of the proposed method is illustrated with several examples.
stat
On Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) and Estimation for Causal Inference
Standard Mendelian randomization analysis can produce biased results if the genetic variant defining the instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment. We provide novel identification conditions for the causal effect of a treatment in presence of unmeasured confounding, by leveraging an invalid IV for which both the IV independence and exclusion restriction assumptions may be violated. The proposed Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) approach relies on (i) an assumption that the treatment effect does not vary with the invalid IV on the additive scale; and (ii) that the selection bias due to confounding does not vary with the invalid IV on the odds ratio scale; and (iii) that the residual variance for the outcome is heteroscedastic and thus varies with the invalid IV. We formally establish that their conjunction can identify a causal effect even with an invalid IV subject to pleiotropy. MiSTERI is shown to be particularly advantageous in presence of pervasive heterogeneity of pleiotropic effects on additive scale, a setting in which two recently proposed robust estimation methods MR GxE and MR GENIUS can be severely biased. In order to incorporate multiple, possibly correlated and weak IVs, a common challenge in MR studies, we develop a MAny Weak Invalid Instruments (MR MaWII MiSTERI) approach for strengthened identification and improved accuracy MaWII MiSTERI is shown to be robust to horizontal pleiotropy, violation of IV independence assumption and weak IV bias. Both simulation studies and real data analysis results demonstrate the robustness of the proposed MR MiSTERI methods.
stat
Calibration Scoring Rules for Practical Prediction Training
In situations where forecasters are scored on the quality of their probabilistic predictions, it is standard to use `proper' scoring rules to perform such scoring. These rules are desirable because they give forecasters no incentive to lie about their probabilistic beliefs. However, in the real world context of creating a training program designed to help people improve calibration through prediction practice, there are a variety of desirable traits for scoring rules that go beyond properness. These potentially may have a substantial impact on the user experience, usability of the program, or efficiency of learning. The space of proper scoring rules is too broad, in the sense that most proper scoring rules lack these other desirable properties. On the other hand, the space of proper scoring rules is potentially also too narrow, in the sense that we may sometimes choose to give up properness when it conflicts with other properties that are even more desirable from the point of view of usability and effective training. We introduce a class of scoring rules that we call `Practical' scoring rules, designed to be intuitive to users in the context of `right' vs. `wrong' probabilistic predictions. We also introduce two specific scoring rules for prediction intervals, the `Distance' and `Order of magnitude' rules. These rules are designed to satisfy a variety of properties that, based on user testing, we believe are desirable for applied calibration training.
stat
A Unified Framework for Time-to-Event Dose-Finding Designs
In dose-finding trials, due to staggered enrollment, it might be desirable to make dose assignment decisions in real-time in the presence of pending toxicity outcomes, for example, when patient accrual is fast or the dose-limiting toxicity is late-onset. Patients' time-to-event information may be utilized to facilitate such decisions. We propose a unified statistical framework for time-to-event modeling in dose-finding trials, which leads to two classes of time-to-event designs: TITE deigns and POD designs. TITE designs are based on inference on toxicity probabilities, while POD designs are based on inference on dose-finding decisions. These two classes of designs contain existing designs as special cases and also give rise to new designs. We discuss and study the theoretical properties of these designs, including large-sample convergence properties, coherence principles, and the underlying decision rules. To facilitate the use of time-to-event designs in practice, we introduce efficient computational algorithms and review common practical considerations, such as safety rules and suspension rules. Finally, the operating characteristics of several designs are evaluated and compared through computer simulations.
stat
Bayesian posterior repartitioning for nested sampling
Priors in Bayesian analyses often encode informative domain knowledge that can be useful in making the inference process more efficient. Occasionally, however, priors may be unrepresentative of the parameter values for a given dataset, which can result in inefficient parameter space exploration, or even incorrect inferences, particularly for nested sampling (NS) algorithms. Simply broadening the prior in such cases may be inappropriate or impossible in some applications. Hence our previous solution to this problem, known as posterior repartitioning (PR), redefines the prior and likelihood while keeping their product fixed, so that the posterior inferences and evidence estimates remain unchanged, but the efficiency of the NS process is significantly increased. In its most practical form, PR raises the prior to some power $\beta$, which is introduced as an auxiliary variable that must be determined on a case-by-case basis, usually by lowering $\beta$ from unity according to some pre-defined `annealing schedule' until the resulting inferences converge to a consistent solution. Here we present a very simple yet powerful alternative Bayesian approach, in which $\beta$ is instead treated as a hyperparameter that is inferred from the data alongside the original parameters of the problem, and then marginalised over to obtain the final inference. We show through numerical examples that this Bayesian PR (BPR) method provides a very robust, self-adapting and computationally efficient `hands-off' solution to the problem of unrepresentative priors in Bayesian inference using NS. Moreover, unlike the original PR method, we show that even for representative priors BPR has a negligible computational overhead relative to standard nesting sampling, which suggests that it should be used as the default in all NS analyses.
stat
Mapping unobserved item-respondent interactions: A latent space item response model with interaction map
Classic item response models assume that all items with the same difficulty have the same response probability among all respondents with the same ability. These assumptions, however, may very well be violated in practice, and it is not straightforward to assess whether these assumptions are violated, because neither the abilities of respondents nor the difficulties of items are observed. An example is an educational assessment where unobserved heterogeneity is present, arising from unobserved variables such as cultural background and upbringing of students, the quality of mentorship and other forms of emotional and professional support received by students, and other unobserved variables that may affect response probabilities. To address such violations of assumptions, we introduce a novel latent space model which assumes that both items and respondents are embedded in an unobserved metric space, with the probability of a correct response decreasing as a function of the distance between the respondent's and the item's position in the latent space. The resulting latent space approach provides an interaction map that represents interactions of respondents and items, and helps derive insightful diagnostic information on items as well as respondents. In practice, such interaction maps enable teachers to detect students from underrepresented groups who need more support than other students. We provide empirical evidence to demonstrate the usefulness of the proposed latent space approach, along with simulation results.
stat
Greedy inference with structure-exploiting lazy maps
We propose a framework for solving high-dimensional Bayesian inference problems using \emph{structure-exploiting} low-dimensional transport maps or flows. These maps are confined to a low-dimensional subspace (hence, lazy), and the subspace is identified by minimizing an upper bound on the Kullback--Leibler divergence (hence, structured). Our framework provides a principled way of identifying and exploiting low-dimensional structure in an inference problem. It focuses the expressiveness of a transport map along the directions of most significant discrepancy from the posterior, and can be used to build deep compositions of lazy maps, where low-dimensional projections of the parameters are iteratively transformed to match the posterior. We prove weak convergence of the generated sequence of distributions to the posterior, and we demonstrate the benefits of the framework on challenging inference problems in machine learning and differential equations, using inverse autoregressive flows and polynomial maps as examples of the underlying density estimators.
stat
Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems
In this paper, we propose deep learning algorithms for ranking response surfaces, with applications to optimal stopping problems in financial mathematics. The problem of ranking response surfaces is motivated by estimating optimal feedback policy maps in stochastic control problems, aiming to efficiently find the index associated to the minimal response across the entire continuous input space $\mathcal{X} \subseteq \mathbb{R}^d$. By considering points in $\mathcal{X}$ as pixels and indices of the minimal surfaces as labels, we recast the problem as an image segmentation problem, which assigns a label to every pixel in an image such that pixels with the same label share certain characteristics. This provides an alternative method for efficiently solving the problem instead of using sequential design in our previous work [R. Hu and M. Ludkovski, SIAM/ASA Journal on Uncertainty Quantification, 5 (2017), 212--239]. Deep learning algorithms are scalable, parallel and model-free, i.e., no parametric assumptions needed on the response surfaces. Considering ranking response surfaces as image segmentation allows one to use a broad class of deep neural networks, e.g., UNet, SegNet, DeconvNet, which have been widely applied and numerically proved to possess high accuracy in the field. We also systematically study the dependence of deep learning algorithms on the input data generated on uniform grids or by sequential design sampling, and observe that the performance of deep learning is {\it not} sensitive to the noise and locations (close to/away from boundaries) of training data. We present a few examples including synthetic ones and the Bermudan option pricing problem to show the efficiency and accuracy of this method.
stat